JPH06157737A - Production of carbonate-type flame retardant - Google Patents

Production of carbonate-type flame retardant

Info

Publication number
JPH06157737A
JPH06157737A JP31501492A JP31501492A JPH06157737A JP H06157737 A JPH06157737 A JP H06157737A JP 31501492 A JP31501492 A JP 31501492A JP 31501492 A JP31501492 A JP 31501492A JP H06157737 A JPH06157737 A JP H06157737A
Authority
JP
Japan
Prior art keywords
reaction
phosgene
amount
mol
sodium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31501492A
Other languages
Japanese (ja)
Other versions
JP2968402B2 (en
Inventor
Yasuhisa Tahira
泰久 田平
Akikimi Yamamoto
章公 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP4315014A priority Critical patent/JP2968402B2/en
Publication of JPH06157737A publication Critical patent/JPH06157737A/en
Application granted granted Critical
Publication of JP2968402B2 publication Critical patent/JP2968402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To economically obtain a halocarbonate-type flame retardant in high yield by the use of phosgene saved to a minimum. CONSTITUTION:This flame retardant is produced by reaction between an aqueous alkaline solution of a halogen-substituted dihydric phenol and phosgene in the presence of an organic solvent and a catalyst. In this case, the amounts of the substances to be used are, respectively, as follows (based on the dihydric phenol): (1) the alkaline compound: 1.3-2.4 molar times; (2) the phosgene: 1.1-1.8 molar times; and (3) the amine catalyst: 0.01-0.1 molar times. The reaction is conducted as follows: phosgenation is made at pH9-12 at 10-30 deg.C followed by completing the reaction at pH>=12 at 30-38 deg.C in the presence of a monohydric phenol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カーボネート型難燃剤
を製造する方法、更に詳しくはハロゲン置換二価フェノ
ール及びホスゲンからカーボネート型難燃剤をホスゲン
の使用量を最低限に抑えて収率よく経済的に製造する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbonate type flame retardant, and more particularly to a carbonate type flame retardant from a halogen-substituted dihydric phenol and phosgene in a high yield with a minimized use amount of phosgene. Manufacturing method.

【0002】[0002]

【従来の技術】従来より、カーボネート型難燃剤特にハ
ロゲン化ポリカーボネートオリゴマーは熱可塑性樹脂用
の難燃剤として知られている。ハロゲン化ポリカーボネ
ートオリゴマーは通常2,2−ビス(3,5−ジブロム
−4−ヒドロキシフェニル)プロパン(以下テトラブロ
ムビスフェノールAという)のようなハロゲン置換二価
フェノールとホスゲンをアルカリ水溶液及び有機溶媒の
存在下で反応させることにより製造されている。しかし
ながら、テトラブロムビスフェノールAのようなハロゲ
ン置換二価フェノールとホスゲンの反応は、一般のポリ
カーボネート樹脂の原料である2,2−ビス(4−ヒド
ロキシフェニル)プロパン(以下ビスフェノールAとい
う)とホスゲンの反応に比べ、二個のブロムのオルト位
置換による水酸基の立体障害によって反応性が低く、ま
た平均重合度の低いオリゴマーを得るにはポリマーを得
るよりも過剰のホスゲンとアルカリ化合物を使用する必
要があるため、アルカリ化合物による分解反応が高い割
合で起こる欠点がある。
2. Description of the Related Art Conventionally, carbonate type flame retardants, particularly halogenated polycarbonate oligomers, have been known as flame retardants for thermoplastic resins. The halogenated polycarbonate oligomer is usually a halogen-substituted dihydric phenol such as 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (hereinafter referred to as tetrabromobisphenol A) and phosgene in the presence of an aqueous alkaline solution and an organic solvent. It is manufactured by reacting below. However, the reaction between a halogen-substituted dihydric phenol such as tetrabromobisphenol A and phosgene is a reaction between phosgene and 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A), which is a raw material for general polycarbonate resins. Compared with the above, the reactivity is low due to the steric hindrance of the hydroxyl group due to the ortho-position substitution of two bromines, and in order to obtain an oligomer with a low average degree of polymerization, it is necessary to use an excess of phosgene and an alkali compound rather than obtaining a polymer Therefore, there is a drawback that the decomposition reaction by the alkali compound occurs at a high rate.

【0003】特開平3−2216号公報には二価フェノ
ール、ホスゲン、アルカリ化合物、水、有機溶媒及びト
リアルキルアミンを、水相対有機溶媒相の容積比を0.
5〜1.0:1、アルカリ化合物対二価フェノールのモ
ル比を2.0〜2.4:1、ホスゲン対二価フェノール
のモル比を1.08〜1.50:1及びトリアルキルア
ミンを二価フェノールに対して0.01〜0.35モル
%にして15〜50℃で界面反応させることにより低割
合のホスゲンの使用でカーボネートオリゴマーのビスク
ロロホーメートを製造する方法が提案されている。しか
しながら、この方法をテトラブロムビスフェノールAに
適用したのでは、反応が充分に進行し難く、ホスゲンの
分解反応の割合も大きく、収率よくハロゲン化ポリカー
ボネートオリゴマーを製造することはできない。
JP-A-3-2216 discloses that dihydric phenol, phosgene, an alkali compound, water, an organic solvent and a trialkylamine are mixed in a volume ratio of an organic solvent phase relative to water of 0.
5 to 1.0: 1, alkali compound to dihydric phenol molar ratio of 2.0 to 2.4: 1, phosgene to dihydric phenol molar ratio of 1.08 to 1.50: 1 and trialkylamine. A method of producing a bischloroformate of a carbonate oligomer by using a low proportion of phosgene by interfacial reaction at 0.01 to 0.35 mol% with respect to a dihydric phenol at 15 to 50 ° C. has been proposed. There is. However, when this method is applied to tetrabromobisphenol A, the reaction is difficult to proceed sufficiently, the rate of decomposition reaction of phosgene is large, and it is not possible to produce a halogenated polycarbonate oligomer in good yield.

【0004】また、特公昭55−14093号公報に
は、有機溶媒及びアミン類触媒の存在下アルカリ水溶液
に溶解したハロゲン置換二価フェノールとホスゲンを反
応させる際に、ハロゲン置換二価フェノールに対するホ
スゲンのモル比を0.5〜1.1とし、アルカリ水溶液
のpHを10〜11にするハロゲン化ポリカーボネートオ
リゴマーの製造法が提案されている。しかしながら、こ
の方法で得られるハロゲン化ポリカーボネートオリゴマ
ーは反応性分子鎖末端であるヒドロキシル基とクロロホ
ーメート基が混在しており、熱可塑性樹脂の難燃剤とし
て使用すると耐熱性不良、物性低下、表面不良、金型腐
食等の問題が生じる。
Further, in Japanese Patent Publication No. 55-14093, when a phosgene is reacted with a halogen-substituted dihydric phenol dissolved in an alkaline aqueous solution in the presence of an organic solvent and an amine catalyst, phosgene is added to the halogen-substituted dihydric phenol. There has been proposed a method for producing a halogenated polycarbonate oligomer in which the molar ratio is 0.5 to 1.1 and the pH of the alkaline aqueous solution is 10 to 11. However, the halogenated polycarbonate oligomer obtained by this method has a mixture of hydroxyl groups and chloroformate groups, which are reactive molecular chain ends, and when used as a flame retardant for thermoplastic resins, it has poor heat resistance, poor physical properties, and surface defects. However, problems such as mold corrosion occur.

【0005】更に、特公昭52−36799号公報に
は、ハロゲン置換二価フェノールとホスゲンを界面反応
させる際にpHを7〜9にし、ハロゲン置換二価フェノー
ルに対して2〜20モル%の触媒を存在させてホスゲン
化反応させた後、pHを13より高くして重縮合反応させ
るポリカーボネートの製造法が提案されている。しかし
ながら、この方法ではホスゲン化反応時のpHが低すぎる
ためか、触媒効果が発揮されず、クロロホーメートの生
成反応が充分に進行し難く、ハロゲン化ポリカーボネー
トオリゴマーを収率よく製造することはできない。
Further, JP-B-52-36799 discloses that when the halogen-substituted dihydric phenol and phosgene are subjected to an interfacial reaction, the pH is set to 7 to 9 and the catalyst is 2 to 20 mol% based on the halogen-substituted dihydric phenol. A method for producing a polycarbonate has been proposed, in which a polycondensation reaction is carried out by increasing the pH to above 13 after the phosgenation reaction in the presence of. However, in this method, the catalyst effect is not exerted probably because the pH during the phosgenation reaction is too low, the formation reaction of the chloroformate is difficult to proceed sufficiently, and the halogenated polycarbonate oligomer cannot be produced in a high yield. .

【0006】[0006]

【発明が解決しようとする課題】本発明者は、従来技術
の欠点を改善し、ハロゲン化ポリカーボネートオリゴマ
ーをホスゲンの使用量を最低限に抑えて収率よく経済的
に製造する方法を提供せんとして鋭意検討を重ねた結
果、下記に特定する諸条件を満足させればハロゲン化ポ
リカーボネートオリゴマーに限らず、モノマー型ハロゲ
ン化カーボネートからハロゲン化ポリカーボネートまで
がホスゲンの使用量を最低限に抑えて収率よく経済的に
製造し得ることを見出し、本発明に到達した。
DISCLOSURE OF THE INVENTION The present inventor aims to improve the drawbacks of the prior art and provide a method for economically producing a halogenated polycarbonate oligomer in a high yield with a minimum amount of phosgene used. As a result of intensive studies, not only halogenated polycarbonate oligomers but also monomeric halogenated carbonates to halogenated polycarbonates can be used in a high yield by minimizing the amount of phosgene used as long as the conditions specified below are satisfied. They have found that they can be manufactured economically and have reached the present invention.

【0007】[0007]

【課題を解決するための手段】本発明は、ハロゲン置換
二価フェノールのアルカリ水溶液とホスゲンを有機溶媒
及び触媒の存在下反応させてカーボネート型難燃剤を製
造するに当り、アルカリ化合物の使用量を該二価フェノ
ールに対して1.3〜2.4倍モル、ホスゲンの使用量
を該二価フェノールに対して1.1〜1.8倍モルとし
且つ触媒として該二価フェノールに対して0.01〜
0.1倍モルのアミン類触媒を存在させて反応系のpH9
〜12、温度10〜30℃でホスゲン化反応させ、次い
で一価フェノールの存在下pH12以上、温度30〜38
℃で反応を完結することを特徴とするカーボネート型難
燃剤の製造法である。
Means for Solving the Problems In the present invention, an alkaline aqueous solution of a halogen-substituted dihydric phenol is reacted with phosgene in the presence of an organic solvent and a catalyst to produce a carbonate type flame retardant. The amount of phosgene used is 1.3 to 2.4 times the molar amount of the dihydric phenol, the amount of phosgene used is 1.1 to 1.8 times the molar amount of the dihydric phenol, and 0 as a catalyst is used. .01-
PH 9 of the reaction system in the presence of 0.1 times mol of amine catalyst
-12, phosgenation reaction at a temperature of 10 to 30 ° C., then pH 12 or more in the presence of monohydric phenol, temperature of 30 to 38
A method for producing a carbonate type flame retardant characterized by completing the reaction at a temperature of ° C.

【0008】本発明で使用するハロゲン置換二価フェノ
ールは、テトラブロムビスフェノールAを主たる対象と
するが、その一部又は全部を他のハロゲン置換二価フェ
ノールで置き換えてもよい。他のハロゲン置換二価フェ
ノールとしては例えば2,2−ビス(3,5−ジクロル
−4−ヒドロキシフェニル)プロパン、1,1−ビス
(3,5−ジブロム−4−ヒドロキシフェニル)エタ
ン、1,1−ビス(3,5−ジクロル−4−ヒドロキシ
フェニル)エタン、1,1−ビス(3,5−ジブロム−
4−ヒドロキシフェニル)シクロヘキサン、1,1−ビ
ス(3,5−ジクロル−4−ヒドロキシフェニル)シク
ロヘキサン、ビス(3,5−ジブロム−4−ヒドロキシ
フェニル)スルフィド、ビス(3,5−ジクロル−4−
ヒドロキシフェニル)スルフィド、ビス(3,5−ジブ
ロム−4−ヒドロキシフェニル)オキシド、ビス(3,
5−ジクロル−4−ヒドロキシフェニル)オキシド、ビ
ス(3,5−ジブロム−4−ヒドロキシフェニル)スル
ホキシド、ビス(3,5−ジクロル−4−ヒドロキシフ
ェニル)スルホキシド、ビス(3,5−ジブロム−4−
ヒドロキシフェニル)スルホン、ビス(3,5−ジクロ
ル−4−ヒドロキシフェニル)スルホン、ビス(3,5
−ジブロム−4−ヒドロキシフェニル)ケトン、ビス
(3,5−ジクロル−4−ヒドロキシフェニル)ケトン
等があげられる。
The halogen-substituted dihydric phenol used in the present invention is mainly tetrabromobisphenol A, but part or all of it may be replaced with another halogen-substituted dihydric phenol. Other halogen-substituted dihydric phenols include, for example, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane, 1,1-bis (3,5-dibromo-4-hydroxyphenyl) ethane, 1, 1-bis (3,5-dichloro-4-hydroxyphenyl) ethane, 1,1-bis (3,5-dibromo-)
4-hydroxyphenyl) cyclohexane, 1,1-bis (3,5-dichloro-4-hydroxyphenyl) cyclohexane, bis (3,5-dibromo-4-hydroxyphenyl) sulfide, bis (3,5-dichloro-4) −
Hydroxyphenyl) sulfide, bis (3,5-dibromo-4-hydroxyphenyl) oxide, bis (3,3
5-dichloro-4-hydroxyphenyl) oxide, bis (3,5-dibromo-4-hydroxyphenyl) sulfoxide, bis (3,5-dichloro-4-hydroxyphenyl) sulfoxide, bis (3,5-dibromo-4) −
Hydroxyphenyl) sulfone, bis (3,5-dichloro-4-hydroxyphenyl) sulfone, bis (3,5
-Dibromo-4-hydroxyphenyl) ketone, bis (3,5-dichloro-4-hydroxyphenyl) ketone and the like.

【0009】アルカリ化合物はアルカリ金属又はアルカ
リ土類金属の化合物であり、水酸化ナトリウム、水酸化
カリウム、水酸化リチウム、水酸化カルシウム等のアル
カリ金属又はアルカリ土類金属の水酸化物が好ましく、
なかでも水酸化ナトリウム及び水酸化カリウムが特に好
ましい。
The alkali compound is a compound of an alkali metal or an alkaline earth metal, preferably a hydroxide of an alkali metal or an alkaline earth metal such as sodium hydroxide, potassium hydroxide, lithium hydroxide or calcium hydroxide,
Of these, sodium hydroxide and potassium hydroxide are particularly preferable.

【0010】アミン類触媒としては例えばトリメチルア
ミン、トリエチルアミン、トリプロピルアミン、トリブ
チルアミン、トリヘキシルアミン、トリオクチルアミ
ン、トリデシルアミン、ジメチル−n−プロピルアミ
ン、ジエチル−n−プロピルアミン、N-ジメチルシクロ
ヘキシルアミン、ピリジン、キノリン、N-ジメチルアニ
リン、N-ジメチル−4−アミノピリジン、N-ジエチル−
4−アミノピリジン等の三級アミン、トリメチルドデシ
ルアンモニウムクロリド、トリエチルドデシルアンモニ
ウムクロリド、ジメチルベンジルフェニルアンモニウム
クロリド、ジエチルベンジルフェニルアンモニウムクロ
リド、トリメチルドデシルベンジルアンモニウムヒドロ
キシド、トリエチルドデシルベンジルアンモニウムヒド
ロキシド、トリメチルベンジルアンモニウムクロリド、
トリエチルベンジルアンモニウムクロリド、テトラメチ
ルアンモニウムクロリド、テトラエチルアンモニウムク
ロリド等の四級アンモニウム化合物があげられる。ま
た、トリフェニル−n−ブチルホスホニウムブロマイ
ド、トリフェニルメチルホスホニウムブロマイド等の四
級ホスホニウム塩を使用してもよい。これら触媒はホス
ゲン化反応時に添加するのが最も効果的であるが、後の
重合反応時に添加してもよい。
Examples of amine catalysts include trimethylamine, triethylamine, tripropylamine, tributylamine, trihexylamine, trioctylamine, tridecylamine, dimethyl-n-propylamine, diethyl-n-propylamine, N-dimethylcyclohexyl. Amine, pyridine, quinoline, N-dimethylaniline, N-dimethyl-4-aminopyridine, N-diethyl-
Tertiary amines such as 4-aminopyridine, trimethyldodecyl ammonium chloride, triethyl dodecyl ammonium chloride, dimethylbenzylphenylammonium chloride, diethylbenzylphenylammonium chloride, trimethyldodecylbenzylammonium hydroxide, triethyldodecylbenzylammonium hydroxide, trimethylbenzylammonium chloride ,
Examples thereof include quaternary ammonium compounds such as triethylbenzylammonium chloride, tetramethylammonium chloride and tetraethylammonium chloride. Further, a quaternary phosphonium salt such as triphenyl-n-butylphosphonium bromide or triphenylmethylphosphonium bromide may be used. These catalysts are most effectively added during the phosgenation reaction, but may be added during the subsequent polymerization reaction.

【0011】本発明で使用する有機溶媒は水に対して実
質的に不溶で、反応に対して不活性で且つ反応によって
生成するハロゲン化ポリカーボネートオリゴマーを溶解
する有機溶媒である。かかる有機溶媒としては例えば塩
化メチレン、1,2−ジクロロエタン、テトラクロロエ
タン、クロロホルム等の塩素化脂肪族炭化水素、クロロ
ベンゼン、ジクロロベンゼン、クロロトルエン等の塩素
化芳香族炭化水素、アセトフェノン、シクロヘキサノ
ン、アニソール等があげられ、これらは単独又は二種以
上混合して使用することができる。なかでも塩化メチレ
ンが好ましい。その使用量は通常ハロゲン置換二価フェ
ノールに対して15〜45倍モル程度である。
The organic solvent used in the present invention is an organic solvent which is substantially insoluble in water, inactive to the reaction and capable of dissolving the halogenated polycarbonate oligomer produced by the reaction. Examples of such organic solvents include chlorinated aliphatic hydrocarbons such as methylene chloride, 1,2-dichloroethane, tetrachloroethane and chloroform, chlorinated aromatic hydrocarbons such as chlorobenzene, dichlorobenzene and chlorotoluene, acetophenone, cyclohexanone and anisole. These may be used alone or in admixture of two or more. Of these, methylene chloride is preferred. The amount used is usually about 15 to 45 times the molar amount of the halogen-substituted dihydric phenol.

【0012】本発明にあってはホスゲン化反応に際し、
アルカリ化合物の使用量をハロゲン置換二価フェノール
に対して1.3〜2.4倍モル、好ましくは1.5〜
2.0倍モルにし、且つ反応系のpHを9〜12にするこ
とによって過剰のアルカリ化合物によるホスゲンや生成
したクロロホーメートの分解を抑制し、クロロホーメー
トの生成を促進する。アルカリ化合物の使用量が上記範
囲より少いとき及び/又はpHが9未満のときは、クロロ
ホーメートの生成反応が進行し難く、未反応物が多くな
り反応収率が低下するようになる。アルカリ化合物の使
用量が上記範囲より多いとき及び/又はpHが12より高
いときは、重合度の制御が難しくなり、また未反応物も
多くなり反応収率が低下するようになる。
In the present invention, in the phosgenation reaction,
The amount of the alkali compound used is 1.3 to 2.4 times, and preferably 1.5 to 2.4 times the mol of the halogen-substituted dihydric phenol.
The molar ratio is 2.0 times and the pH of the reaction system is set to 9 to 12 to suppress decomposition of phosgene and the formed chloroformate by an excessive alkali compound and accelerate the formation of chloroformate. When the amount of the alkaline compound used is less than the above range and / or when the pH is less than 9, it is difficult for the chloroformate-forming reaction to proceed, the amount of unreacted substances increases, and the reaction yield decreases. When the amount of the alkali compound used is larger than the above range and / or the pH is higher than 12, it is difficult to control the degree of polymerization, and unreacted substances are increased to decrease the reaction yield.

【0013】ホスゲン化反応におけるホスゲンの使用量
をハロゲン置換二価フェノールに対して1.1〜1.8
倍モルとし、反応温度を10〜30℃にする必要があ
る。ホスゲンの使用量が上記範囲より少いときはクロロ
ホーメートの生成反応が進行し難く、未反応物が多くな
り反応収率が低下するようになり、上記範囲より多いと
きは、より過剰のアルカリ化合物が必要になって、ホス
ゲンや生成したクロロホーメートの分解が多くなり、更
に得られる生成物にクロロホーメート基が残存して耐熱
性が悪化するようになる。反応温度が10℃より低いと
ホスゲン化反応速度が遅く未反応物が増えて反応収率が
低下し、30℃より高くなるとホスゲンや生成したクロ
ロホーメートの分解が多くなる。
The amount of phosgene used in the phosgenation reaction is 1.1 to 1.8 with respect to the halogen-substituted dihydric phenol.
It is necessary to adjust the reaction temperature to 10 to 30 ° C. by doubling the mole. When the amount of phosgene used is less than the above range, the formation reaction of the chloroformate is difficult to proceed, the unreacted substance is increased, and the reaction yield is lowered. Since a compound is required, decomposition of phosgene and the formed chloroformate increases, and further, a chloroformate group remains in the obtained product to deteriorate the heat resistance. When the reaction temperature is lower than 10 ° C, the reaction rate of phosgenation is slow, unreacted substances increase, and the reaction yield decreases, and when it is higher than 30 ° C, the decomposition of phosgene and the formed chloroformate increases.

【0014】また、ホスゲン化反応に際し、ハロゲン置
換二価フェノールに対して0.01〜0.1倍モルのア
ミン類触媒を存在させる。アミン類触媒の使用量が上記
範囲より少いとクロロホーメートの生成反応が進行し難
く、未反応物が多く反応収率が低下するようになり、上
記範囲より多いと重合度の制御が難しく、また反応収率
も低下するようになる。
Further, in the phosgenation reaction, 0.01 to 0.1 times mol of amine catalyst is present with respect to the halogen-substituted dihydric phenol. If the amount of the amine catalyst used is less than the above range, the formation reaction of the chloroformate is difficult to proceed, and the reaction yield tends to decrease with many unreacted substances. If the amount is more than the above range, it is difficult to control the degree of polymerization. In addition, the reaction yield also decreases.

【0015】ホスゲン化反応終了後、一価フェノールの
存在下アルカリ化合物を加えて反応系のpHを12以上に
し、30〜38℃でさらに重合反応させる。一価フェノ
ールとしては例えばフェノール、クレゾール、 sec−ブ
チルフェノール、tert−ブチルフェノール、tert−オク
チルフェノール、ノニルフェノール、クミルフェノー
ル、2,4,6−トリブロモフェノール、ペンタブロモ
フェノール、クロマン類等があげられ、これらは単独で
又は二種以上混合して使用してもよい。pHが12未満で
は触媒の効果が充分に発揮されず、反応温度が30℃よ
り低いと反応が進行し難く、いずれも収率が低下するよ
うになる。反応温度が38℃より高くなると分解反応が
生じるようになる。一価フェノールの使用量は目的とす
る生成物の重合度によって異なり、常法により調整すれ
ばよい。反応によって得られる有機溶媒溶液から酸洗浄
及び水洗等によって不純物を除去した後有機溶媒を除去
することによって粉粒状の製品が得られる。
After completion of the phosgenation reaction, an alkaline compound is added in the presence of a monohydric phenol to adjust the pH of the reaction system to 12 or higher, and the polymerization reaction is further carried out at 30 to 38 ° C. Examples of the monohydric phenol include phenol, cresol, sec-butylphenol, tert-butylphenol, tert-octylphenol, nonylphenol, cumylphenol, 2,4,6-tribromophenol, pentabromophenol and chromanes. These may be used alone or in combination of two or more. If the pH is less than 12, the effect of the catalyst is not sufficiently exerted, and if the reaction temperature is lower than 30 ° C., the reaction is difficult to proceed and the yield is lowered in any case. When the reaction temperature is higher than 38 ° C, a decomposition reaction occurs. The amount of monohydric phenol used depends on the degree of polymerization of the desired product, and may be adjusted by a conventional method. A powdery or granular product is obtained by removing impurities from the organic solvent solution obtained by the reaction by acid washing, water washing and the like and then removing the organic solvent.

【0016】かくして得られるカーボネート型難燃剤
は、末端停止剤として使用した一価フェノールの量によ
り比粘度が0.01〜0.7のモノマー型ハロゲン化カ
ーボネート、ハロゲン化ポリカーボネートオリゴマー、
ハロゲン化ポリカーボネートであり、特に従来製造が困
難であった比粘度が0.01〜0.1程度のモノマー型
乃至オリゴマー型のカーボネート型難燃剤が、本発明に
よれば容易に得られる。また、高分子型のものは難燃剤
として使用されるが、難燃性樹脂としても利用できる。
The carbonate type flame retardant thus obtained is a monomeric halogenated carbonate or halogenated polycarbonate oligomer having a specific viscosity of 0.01 to 0.7 depending on the amount of the monohydric phenol used as the terminal stopper.
According to the present invention, a monomeric or oligomeric carbonate flame retardant having a specific viscosity of about 0.01 to 0.1, which is a halogenated polycarbonate and which has been particularly difficult to manufacture in the past, can be easily obtained. Further, although a polymer type is used as a flame retardant, it can also be used as a flame retardant resin.

【0017】[0017]

【実施例】以下に実施例をあげて更に説明する。なお、
実施例中の部及び%は重量部及び重量%であり、反応収
率、ホスゲン分解率、比粘度、末端塩素量、融点の測定
及び衝撃強度、難燃性、外観の評価は下記の方法によ
る。
EXAMPLES The present invention will be further described below with reference to examples. In addition,
Parts and% in the examples are parts by weight and% by weight, and the reaction yield, phosgene decomposition rate, specific viscosity, terminal chlorine content, measurement of melting point and impact strength, flame retardancy, and evaluation of appearance are according to the following methods. .

【0018】(a) 反応収率:反応終了後の水相中のフェ
ノール成分量(未反応フェノール成分量)を、紫外線吸
収スペクトルを測定して求め、次式により算出した。な
お、仕込みフェノール成分量及び未反応フェノール成分
量には一価フェノール成分を含む。
(A) Reaction yield: The amount of phenol component (amount of unreacted phenol component) in the aqueous phase after completion of the reaction was determined by measuring the ultraviolet absorption spectrum and calculated by the following formula. The amount of charged phenol component and the amount of unreacted phenol component include monohydric phenol component.

【0019】[0019]

【数1】 [Equation 1]

【0020】実施例においてはハロゲン置換二価フェノ
ールとしてテトラブロムビスフェノールA、末端停止剤
としてp-tert−ブチルフェノール又は2,4,6−トリ
ブロモフェノールを使用したので、これらを使用した場
合について説明する。反応終了後の水相中に存在する未
反応のテトラブロムビスフェノールA、p-tert−ブチル
フェノール、2,4,6−トリブロモフェノールの各成
分の濃度は、各成分の紫外線吸収が重なって現れるの
で、各成分の吸収極大波長における吸光係数を求め、下
記の連立方程式により求めた。なお、吸光度は紫外線吸
収スペクトロメータ[(株)日立製作所製 U−3200
型]により測定した。テトラブロムビスフェノールAと
p-tert−ブチルフェノールの濃度の測定は
In the examples, tetrabromobisphenol A was used as the halogen-substituted dihydric phenol, and p-tert-butylphenol or 2,4,6-tribromophenol was used as the terminal terminator. The case where these are used will be described. . The concentration of each of unreacted tetrabromobisphenol A, p-tert-butylphenol, and 2,4,6-tribromophenol present in the aqueous phase after the completion of the reaction appears because the ultraviolet absorption of each component overlaps. , The absorption coefficient of each component at the maximum absorption wavelength was calculated, and was calculated by the following simultaneous equations. In addition, the absorbance is an ultraviolet absorption spectrometer [U-3200 manufactured by Hitachi, Ltd.].
Mold]. With tetrabromobisphenol A
To measure the concentration of p-tert-butylphenol

【0021】[0021]

【数2】 [Equation 2]

【0022】[Aは各波長での吸光度、bはセル光路長
(cm)、Cxはp-tert−ブチルフェノールの濃度(g/リ
ットル)、CyはテトラブロムビスフェノールAの濃度
(g/リットル)]により、テトラブロムビスフェノール
Aと2,4,6−トリブロモフェノールの濃度の測定は
[A is the absorbance at each wavelength, b is the cell optical path length (cm), Cx is the concentration of p-tert-butylphenol (g / liter), Cy is the concentration of tetrabromobisphenol A.
(g / liter)], the concentration of tetrabromobisphenol A and 2,4,6-tribromophenol can be measured by

【0023】[0023]

【数3】 [Equation 3]

【0024】[Aは各波長での吸光度、bはセル光路長
(cm)、CyはテトラブロムビスフェノールAの濃度(g
/リットル)、Czは2,4,6−トリブロモフェノー
ルの濃度(g/リットル)]による。
[A is the absorbance at each wavelength, b is the cell optical path length (cm), Cy is the concentration of tetrabromobisphenol A (g
/ L), and Cz depends on the concentration of 2,4,6-tribromophenol (g / L)].

【0025】(b) ホスゲン分解率:反応終了後の水相中
の炭酸ナトリウム量を中和滴定により求め、次式により
算出した。なお、ここでいうホスゲン分解率にはクロロ
ホーメートの分解も含む。
(B) Decomposition rate of phosgene: The amount of sodium carbonate in the aqueous phase after completion of the reaction was determined by neutralization titration and calculated by the following formula. In addition, the decomposition rate of phosgene includes the decomposition of chloroformate.

【0026】[0026]

【数4】 [Equation 4]

【0027】(c) 比粘度:乾燥した試料0.700g を
塩化メチレン100mlに溶解し、オストワルド粘度計に
より20℃で測定した。
(C) Specific viscosity: 0.700 g of the dried sample was dissolved in 100 ml of methylene chloride and measured at 20 ° C. with an Ostwald viscometer.

【0028】(d) 末端塩素量:乾燥した試料を塩化メチ
レンに溶解し、トリエチルアミンを加えて攪拌し、トリ
エチルアミンを加えないものをブランク値としてホルハ
ルト法により測定した。 (e) 融点:カバーグラス上に試料を乗せ、微量融点測定
装置[柳本(株)製]の熱板上にセットし、拡大鏡で観
察しつつ3℃/分で加熱して細かい液滴が認められたと
きから透明な液滴になるまでの温度を測定した。 (f) 衝撃強度:ポリブチレンテレフタレート樹脂[帝人
(株)製 TRB-H]100重量部に三酸化アンチモン[日
本精鉱(株)製 ATOX-S ]7重量部及び各実施例や比較
例で得られたカーボネート型難燃剤14重量部を混合
し、30mmφの押出機によりペレット化し、得られたペ
レットを乾燥した後射出成形機[名機(株)製3オン
ス]により64mm×12.7mm×3.18mm(1/
8″)及び64mm×12.7mm×6.35mm(1/
4″)の試験片を成形し、これらの試験片に0.25mm
R のノッチを付けて温度23℃、湿度50%で24時間
処理した後アイゾット衝撃試験機[東洋精機(製)]に
より測定した。
(D) Amount of terminal chlorine: The dried sample was dissolved in methylene chloride, triethylamine was added, and the mixture was stirred, and the one without addition of triethylamine was used as a blank value and measured by the Horhard method. (e) Melting point: Place the sample on a cover glass, set it on the hot plate of a trace melting point measuring device [manufactured by Yanagimoto Co., Ltd.], and heat it at 3 ° C / min while observing it with a magnifying glass to form fine droplets. The temperature from when it was observed to when it became a transparent droplet was measured. (f) Impact strength: 100 parts by weight of polybutylene terephthalate resin [TRB-H manufactured by Teijin Ltd.] and 7 parts by weight of antimony trioxide [ATOX-S manufactured by Nippon Seiko Co., Ltd.] and in each Example and Comparative Example. 14 parts by weight of the obtained carbonate type flame retardant was mixed, pelletized by an extruder of 30 mmφ, and the obtained pellet was dried and then 64 mm × 12.7 mm × by an injection molding machine [3 ounces manufactured by Meiki Co., Ltd.]. 3.18 mm (1 /
8 ") and 64 mm x 12.7 mm x 6.35 mm (1 /
4 ") test pieces were molded into these test pieces by 0.25 mm
After notching R, the sample was treated at a temperature of 23 ° C. and a humidity of 50% for 24 hours, and then measured with an Izod impact tester [Toyo Seiki (manufactured by)].

【0029】(g) 難燃性(UL−94):(f) で得られた
ペレットを乾燥した後射出成形機[名機(株)製3オン
ス]により152mm×12.7mm×3.18mm(1/
8″)及び152mm×12.7mm×6.35mm(1/
4″)の試験片を成形し、これらの試験片を使用してア
ンダーライターズラボラトリーの Subject94に従って
測定した。 (h) 外観:試験片の表面を目視により、凹凸があって光
沢のないものを×、凹凸があって光沢の少ないものを
△、凹凸がなく光沢のよいものを○とした。
(G) Flame retardance (UL-94): After drying the pellets obtained in (f), 152 mm × 12.7 mm × 3.18 mm by an injection molding machine [3 ounces manufactured by Meiki Co., Ltd.] (1 /
8 ") and 152 mm x 12.7 mm x 6.35 mm (1 /
4 ") test pieces were molded, and these test pieces were used and measured according to Subject 94 of Underwriters Laboratory. (H) Appearance: The surface of the test piece was visually inspected to have unevenness and no gloss. Poor, with unevenness and less gloss, was evaluated as Δ, and with no unevenness and having good gloss, was evaluated as ○.

【0030】[0030]

【実施例1】ホスゲン吹込管、温度計及び攪拌機を備え
たフラスコにテトラブロムビスフェノールA130g
(0.239モル)、7.0%水酸化ナトリウム水溶液
161ml(水酸化ナトリウム0.298モル)、塩化メ
チレン361ml及びトリエチルアミン0.84ml(0.
006モル)を仕込んで溶解し、攪拌下20〜25℃に
保持し、48.5%水酸化ナトリウム水溶液7.76ml
(水酸化ナトリウム0.141モル)を加えながらホス
ゲン29.8g (0.301モル)を90分を要して吹
込んでホスゲン化反応させた。ホスゲン化反応終了後p-
tert−ブチルフェノール11.1g (0.074モル)
と水酸化ナトリウム3.19g (0.080モル)を溶
解した水溶液185mlと共に48.5%水酸化ナトリウ
ム水溶液9.64ml(水酸化ナトリウム0.175モ
ル)を加え、30〜36℃に保持して2時間反応させ
た。反応終了後静置して水相と塩化メチレン相に分離
し、水相中の未反応フェノール成分量と炭酸ナトリウム
量から反応収率とホスゲン分解率を求めて結果を表2に
示した。
Example 1 130 g of tetrabromobisphenol A was placed in a flask equipped with a phosgene blow-in tube, a thermometer and a stirrer.
(0.239 mol), 161 ml of 7.0% aqueous sodium hydroxide solution (0.298 mol of sodium hydroxide), 361 ml of methylene chloride and 0.84 ml of triethylamine (0.
006 mol) was charged and dissolved, and the mixture was maintained at 20 to 25 ° C. with stirring, and 7.76 ml of 48.5% sodium hydroxide aqueous solution.
While adding (0.141 mol of sodium hydroxide), 29.8 g (0.301 mol) of phosgene was blown thereinto over 90 minutes to carry out a phosgenation reaction. After completion of phosgenation reaction p-
tert-Butylphenol 11.1 g (0.074 mol)
And 185 ml of an aqueous solution in which 3.19 g (0.080 mol) of sodium hydroxide were dissolved, 9.64 ml of 48.5% aqueous sodium hydroxide solution (0.175 mol of sodium hydroxide) was added, and the mixture was kept at 30 to 36 ° C. The reaction was carried out for 2 hours. After completion of the reaction, the mixture was allowed to stand and separated into an aqueous phase and a methylene chloride phase. The reaction yield and phosgene decomposition rate were determined from the amount of unreacted phenol component and the amount of sodium carbonate in the aqueous phase, and the results are shown in Table 2.

【0031】分離した塩化メチレン相を無機塩類及びア
ミン類がなくなるまで酸洗浄及び水洗した後、塩化メチ
レンを除去してハロゲン化ポリカーボネートオリゴマー
を得た。各成分の仕込みモル比、反応条件、反応収率、
ホスゲン分解率、比粘度、末端塩素量、融点を表1及び
表2に示した。また、得られたオリゴマーを上記の通り
ポリブチレンテレフタレート樹脂及び三酸化アンチモン
と混合し、押出機により240℃でペレット化し、得ら
れたペレットを120℃で5時間乾燥した後射出成形機
によりシリンダー温度240℃で衝撃強度測定試験片及
び難燃性測定試験片を作成して衝撃強度、難燃性、外観
を評価し、その結果を表2に示した。
The separated methylene chloride phase was washed with acid and water until the inorganic salts and amines were removed, and then methylene chloride was removed to obtain a halogenated polycarbonate oligomer. Charged molar ratio of each component, reaction conditions, reaction yield,
The phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point are shown in Tables 1 and 2. The obtained oligomer is mixed with polybutylene terephthalate resin and antimony trioxide as described above, pelletized by an extruder at 240 ° C., the obtained pellets are dried at 120 ° C. for 5 hours, and then by an injection molding machine at a cylinder temperature. Impact strength, flame retardancy, and appearance were evaluated by preparing impact strength measurement test pieces and flame retardancy measurement test pieces at 240 ° C., and the results are shown in Table 2.

【0032】[0032]

【実施例2】ホスゲン吹込時に加える48.5%水酸化
ナトリウム水溶液の使用量を8.04ml(水酸化ナトリ
ウム0.146モル)とし、ホスゲンの使用量を31.
6g(0.319モル)とし、ホスゲン化反応終了後に
加えるp-tert−ブチルフェノール水溶液をp-tert−ブチ
ルフェノール16.8g (0.112モル)と水酸化ナ
トリウム4.83g (0.121モル)を溶解した水溶
液280mlとし、これと共に加える48.5%水酸化ナ
トリウム水溶液の使用量を8.42ml(水酸化ナトリウ
ム0.153モル)にする以外は実施例1と同様にして
ハロゲン化ポリカーボネートオリゴマーを得た。各成分
の仕込みモル比、反応条件、反応収率、ホスゲン分解
率、比粘度、末端塩素量、融点を表1及び表2に示し
た。また、実施例1と同様にして衝撃強度測定試験片及
び難燃性測定試験片を作成して衝撃強度、難燃性、外観
を評価し、その結果を表2に示した。
Example 2 The amount of 48.5% sodium hydroxide aqueous solution added at the time of blowing phosgene was 8.04 ml (0.146 mol of sodium hydroxide), and the amount of phosgene used was 31.
To 6 g (0.319 mol), p-tert-butylphenol aqueous solution added after the phosgenation reaction was added was p-tert-butylphenol 16.8 g (0.112 mol) and sodium hydroxide 4.83 g (0.121 mol). A halogenated polycarbonate oligomer was obtained in the same manner as in Example 1 except that the dissolved aqueous solution was 280 ml and the amount of the 48.5% sodium hydroxide aqueous solution added together was 8.42 ml (sodium hydroxide 0.153 mol). It was Tables 1 and 2 show the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0033】[0033]

【実施例3】ホスゲン吹込時に加える48.5%水酸化
ナトリウム水溶液の使用量を5.24ml(水酸化ナトリ
ウム0.095モル)とし、ホスゲンの使用量を27.
8g(0.281モル)とし、ホスゲン化反応終了後に
加えるp-tert−ブチルフェノール水溶液をp-tert−ブチ
ルフェノール4.84g (0.032モル)と水酸化ナ
トリウム1.39g(0.035モル)を溶解した水溶液
80.6mlとし、これと共に加える48.5%水酸化ナ
トリウム水溶液の使用量を13.9ml(水酸化ナトリウ
ム0.253モル)にする以外は実施例1と同様にして
ハロゲン化ポリカーボネートオリゴマーを得た。各成分
の仕込みモル比、反応条件、反応収率、ホスゲン分解
率、比粘度、末端塩素量、融点を表1及び表2に示し
た。また、シリンダー温度を250℃にする以外は実施
例1と同様にして衝撃強度測定試験片及び難燃性測定試
験片を作成して衝撃強度、難燃性、外観を評価し、その
結果を表2に示した。
Example 3 The amount of 48.5% aqueous sodium hydroxide solution added at the time of blowing phosgene was 5.24 ml (0.095 mol of sodium hydroxide), and the amount of phosgene used was 27.
8 g (0.281 mol) and p-tert-butylphenol aqueous solution added after the completion of the phosgenation reaction was added with p-tert-butylphenol 4.84 g (0.032 mol) and sodium hydroxide 1.39 g (0.035 mol). A halogenated polycarbonate oligomer was prepared in the same manner as in Example 1 except that the amount of the dissolved aqueous solution was 80.6 ml, and the amount of the 48.5% sodium hydroxide aqueous solution added thereto was 13.9 ml (sodium hydroxide 0.253 mol). Got Tables 1 and 2 show the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point. Further, an impact strength measurement test piece and a flame retardance measurement test piece were prepared in the same manner as in Example 1 except that the cylinder temperature was set to 250 ° C., and impact strength, flame retardancy and appearance were evaluated, and the results are shown in a table. Shown in 2.

【0034】[0034]

【実施例4】ホスゲン吹込時に加える48.5%水酸化
ナトリウム水溶液の使用量を9.46ml(水酸化ナトリ
ウム0.172モル)とし、ホスゲンの使用量を33.
5g(0.338モル)とし、ホスゲン化反応終了後に
加えるp-tert−ブチルフェノール水溶液に代えて2,
4,6−トリブロモフェノール36.4g (0.110
モル)と水酸化ナトリウム15.2g (0.38モル)
を溶解した水溶液197mlとし、これと共に加える4
8.5%水酸化ナトリウム水溶液を加えない以外は実施
例1と同様にしてハロゲン化ポリカーボネートオリゴマ
ーを得た。各成分の仕込みモル比、反応条件、反応収
率、ホスゲン分解率、比粘度、末端塩素量、融点を表1
及び表2に示した。また、実施例1と同様にして衝撃強
度測定試験片及び難燃性測定試験片を作成して衝撃強
度、難燃性、外観を評価し、その結果を表2に示した。
Example 4 The amount of 48.5% aqueous sodium hydroxide solution added at the time of blowing phosgene was 9.46 ml (0.172 mol of sodium hydroxide), and the amount of phosgene used was 33.
5 g (0.338 mol), and instead of the p-tert-butylphenol aqueous solution added after the completion of the phosgenation reaction, 2,
3,6-tribromophenol 36.4 g (0.110
Mol) and sodium hydroxide 15.2 g (0.38 mol)
197 ml of an aqueous solution in which was dissolved and added together with it 4
A halogenated polycarbonate oligomer was obtained in the same manner as in Example 1 except that the 8.5% sodium hydroxide aqueous solution was not added. Table 1 shows the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point.
And shown in Table 2. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0035】[0035]

【実施例5】ホスゲン吹込時に加える48.5%水酸化
ナトリウム水溶液の使用量を14.6ml(水酸化ナトリ
ウム0.266モル)とし、ホスゲンの使用量を42.
4g(0.428モル)とし、ホスゲン化反応終了後に
加えるp-tert−ブチルフェノール水溶液をp-tert−ブチ
ルフェノール43.0g (0.287モル)と水酸化ナ
トリウム12.4g (0.310モル)を溶解した水溶
液717mlとし、これと共に加える48.5%水酸化ナ
トリウム水溶液の使用量を6.21ml(水酸化ナトリウ
ム0.113モル)にする以外は実施例1と同様にして
モノマー型ハロゲン化カーボネートを得た。各成分の仕
込みモル比、反応条件、反応収率、ホスゲン分解率、比
粘度、末端塩素量、融点を表1及び表2に示した。ま
た、実施例1と同様にして衝撃強度測定試験片及び難燃
性測定試験片を作成して衝撃強度、難燃性、外観を評価
し、その結果を表2に示した。
Example 5 The amount of 48.5% sodium hydroxide aqueous solution added at the time of blowing phosgene was set to 14.6 ml (0.266 mol of sodium hydroxide), and the amount of phosgene used was 42.
4 g (0.428 mol), and p-tert-butylphenol aqueous solution added after the phosgenation reaction was added with p-tert-butylphenol 43.0 g (0.287 mol) and sodium hydroxide 12.4 g (0.310 mol). A monomeric halogenated carbonate was prepared in the same manner as in Example 1 except that 717 ml of the dissolved aqueous solution was added, and the amount of the 48.5% sodium hydroxide aqueous solution added thereto was 6.21 ml (0.113 mol of sodium hydroxide). Obtained. Tables 1 and 2 show the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0036】[0036]

【実施例6】ホスゲン吹込時に加える48.5%水酸化
ナトリウム水溶液の使用量を4.51ml(水酸化ナトリ
ウム0.082モル)とし、ホスゲンの使用量を26.
3g(0.265モル)とし、ホスゲン化反応終了後に
加えるp-tert−ブチルフェノール水溶液をp-tert−ブチ
ルフェノール0.359g (0.0024モル)と水酸
化ナトリウム0.104g (0.0026モル)を溶解
した水溶液6.0mlとし、これと共に加える48.5%
水酸化ナトリウム水溶液の使用量を19.1ml(水酸化
ナトリウム0.348モル)にする以外は実施例1と同
様にしてハロゲン化ポリカーボネートを得た。得られた
ハロゲン化ポリカーボネートを衝撃式粉砕機で予備粉砕
した後、湿式粉砕機で平均粒径4μm に微粉砕した。微
粉砕したハロゲン化ポリカーボネートを充分に乾燥し
た。各成分の仕込みモル比、反応条件、反応収率、ホス
ゲン分解率、比粘度、末端塩素量、融点を表1及び表2
に示した。また、シリンダー温度を250℃にする以外
は実施例1と同様にして衝撃強度測定試験片及び難燃性
測定試験片を作成して衝撃強度、難燃性、外観を評価
し、その結果を表2に示した。
Example 6 The amount of 48.5% sodium hydroxide aqueous solution added at the time of blowing phosgene was 4.51 ml (sodium hydroxide 0.082 mol), and the amount of phosgene used was 26.
3 g (0.265 mol), and p-tert-butylphenol aqueous solution added after completion of the phosgenation reaction was added with p-tert-butylphenol 0.359 g (0.0024 mol) and sodium hydroxide 0.104 g (0.0026 mol). Dissolve aqueous solution to 6.0 ml and add with it 48.5%
A halogenated polycarbonate was obtained in the same manner as in Example 1 except that the amount of the aqueous sodium hydroxide solution used was 19.1 ml (sodium hydroxide 0.348 mol). The obtained halogenated polycarbonate was pre-crushed by an impact crusher and then finely crushed by a wet crusher to an average particle size of 4 μm. The finely ground halogenated polycarbonate was thoroughly dried. Table 1 and Table 2 show the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point.
It was shown to. Further, an impact strength measurement test piece and a flame retardance measurement test piece were prepared in the same manner as in Example 1 except that the cylinder temperature was set to 250 ° C., and impact strength, flame retardancy and appearance were evaluated, and the results are shown in a table. Shown in 2.

【0037】[0037]

【比較例1】ホスゲン吹込管、温度計及び攪拌機を備え
たフラスコにテトラブロムビスフェノールA108g
(0.199モル)、4.6%水酸化ナトリウム水溶液
420ml(水酸化ナトリウム0.498モル)及び塩化
メチレン300mlを仕込んで溶解し、攪拌下20〜25
℃に保持し、48.5%水酸化ナトリウム水溶液30.
8ml(水酸化ナトリウム0.560モル)を加えつつホ
スゲン42.3g (0.428モル)を90分を要して
吹込んでホスゲン化反応させた。ホスゲン化反応終了
後、p-tert−ブチルフェノール9.2g (0.061モ
ル)と水酸化ナトリウム2.65g (0.066モル)
を溶解した水溶液153mlと共に48.5%水酸化ナト
リウム水溶液10.0ml(水酸化ナトリウム0.182
モル)及びトリエチルアミン0.78ml(0.0056
モル)を加え、30〜36℃に保持して2時間反応させ
た。反応終了後実施例1と同様にしてハロゲン化ポリカ
ーボネートオリゴマーを得た。各成分の仕込みモル比、
反応条件、反応収率、ホスゲン分解率、比粘度、末端塩
素量、融点を表1及び表2に示した。また、実施例1と
同様にして衝撃強度測定試験片及び難燃性測定試験片を
作成して衝撃強度、難燃性、外観を評価し、その結果を
表2に示した。
Comparative Example 1 108 g of tetrabromobisphenol A was placed in a flask equipped with a phosgene blow-in tube, a thermometer and a stirrer.
(0.199 mol), 420 ml of 4.6% aqueous sodium hydroxide solution (0.498 mol of sodium hydroxide) and 300 ml of methylene chloride were charged and dissolved, and stirred for 20 to 25
Hold at 4 ° C., 48.5% aqueous sodium hydroxide solution 30.
Phosgene 42.3 g (0.428 mol) was blown in over 90 minutes while adding 8 ml (sodium hydroxide 0.560 mol) to carry out a phosgenation reaction. After completion of the phosgenation reaction, 9.2 g (0.061 mol) of p-tert-butylphenol and 2.65 g (0.066 mol) of sodium hydroxide.
And 153 ml of an aqueous solution in which is dissolved in 48.5% sodium hydroxide aqueous solution 10.0 ml (sodium hydroxide 0.182).
Mol) and 0.78 ml of triethylamine (0.0056)
Mol) was added, and the mixture was kept at 30 to 36 ° C. and reacted for 2 hours. After completion of the reaction, a halogenated polycarbonate oligomer was obtained in the same manner as in Example 1. Charged molar ratio of each component,
The reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point are shown in Tables 1 and 2. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0038】[0038]

【比較例2】ホスゲン吹込管、温度計及び攪拌機を備え
たフラスコにテトラブロムビスフェノールA93.0g
(0.171モル)、4.3%水酸化ナトリウム水溶液
318ml(水酸化ナトリウム0.358モル)及び塩化
メチレン397mlを仕込んで溶解し、攪拌下20〜25
℃に保持し、48.5%水酸化ナトリウム水溶液52.
0ml(水酸化ナトリウム0.946モル)を加えつつホ
スゲン49.5g (0.5モル)を90分を要して吹込
んでホスゲン化反応させた。ホスゲン化反応終了後トリ
エチルアミン0.36ml(0.0025モル)を加えて
5分間攪拌し、次いで2,4,6−トリブロモフェノー
ル26.0g (0.079モル)と水酸化ナトリウム1
0.8g (0.27モル)を溶解した水溶液141mlと
共にトリエチルアミン0.86ml(0.006モル)を
加え、30〜36℃に保持して2時間反応させた。反応
終了後実施例1と同様にしてハロゲン化ポリカーボネー
トオリゴマーを得た。各成分の仕込みモル比、反応条
件、反応収率、ホスゲン分解率、比粘度、末端塩素量、
融点を表1及び表2に示した。また、実施例1と同様に
して衝撃強度測定試験片及び難燃性測定試験片を作成し
て衝撃強度、難燃性、外観を評価し、その結果を表2に
示した。
[Comparative Example 2] 93.0 g of tetrabromobisphenol A was placed in a flask equipped with a phosgene blow-in tube, a thermometer and a stirrer.
(0.171 mol), 318 ml of 4.3% sodium hydroxide aqueous solution (0.358 mol of sodium hydroxide) and 397 ml of methylene chloride were charged and dissolved, and the mixture was stirred for 20 to 25
Hold at 4 ° C., 48.5% aqueous sodium hydroxide solution 52.
Phosgene 49.5 g (0.5 mol) was blown in over 90 minutes while adding 0 ml (sodium hydroxide 0.946 mol) to carry out the phosgenation reaction. After completion of the phosgenation reaction, 0.36 ml (0.0025 mol) of triethylamine was added and stirred for 5 minutes, and then 26.0 g (0.079 mol) of 2,4,6-tribromophenol and 1 part of sodium hydroxide.
0.86 ml (0.006 mol) of triethylamine was added together with 141 ml of an aqueous solution in which 0.8 g (0.27 mol) was dissolved, and the mixture was kept at 30 to 36 ° C. and reacted for 2 hours. After completion of the reaction, a halogenated polycarbonate oligomer was obtained in the same manner as in Example 1. Charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine,
The melting points are shown in Tables 1 and 2. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0039】[0039]

【比較例3】ホスゲン化反応終了後に行う反応の温度を
23〜27℃にする以外は実施例1と同様にしてハロゲ
ン化ポリカーボネートオリゴマーを得た。各成分の仕込
みモル比、反応条件、反応収率、ホスゲン分解率、比粘
度、末端塩素量、融点を表1及び表2に示した。また、
実施例1と同様にして衝撃強度測定試験片及び難燃性測
定試験片を作成して衝撃強度、難燃性、外観を評価し、
その結果を表2に示した。
Comparative Example 3 A halogenated polycarbonate oligomer was obtained in the same manner as in Example 1 except that the temperature of the reaction performed after the completion of the phosgenation reaction was 23 to 27 ° C. Tables 1 and 2 show the charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point. Also,
Impact strength measurement test pieces and flame retardancy measurement test pieces were prepared in the same manner as in Example 1 to evaluate impact strength, flame retardancy and appearance,
The results are shown in Table 2.

【0040】[0040]

【比較例4】実施例1におけるホスゲン化反応終了後に
加える48.5%水酸化ナトリウム水溶液を加えない以
外は実施例1と同様にしてハロゲン化ポリカーボネート
オリゴマーを得た。各成分の仕込みモル比、反応条件、
反応収率、ホスゲン分解率、比粘度、末端塩素量、融点
を表1及び表2に示した。また、実施例1と同様にして
衝撃強度測定試験片及び難燃性測定試験片を作成して衝
撃強度、難燃性、外観を評価し、その結果を表2に示し
た。
Comparative Example 4 A halogenated polycarbonate oligomer was obtained in the same manner as in Example 1 except that the 48.5% sodium hydroxide aqueous solution added after the completion of the phosgenation reaction in Example 1 was not added. Charged molar ratio of each component, reaction conditions,
The reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine, and melting point are shown in Tables 1 and 2. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0041】[0041]

【比較例5】ホスゲン化反応時の温度を5〜7℃にする
以外は実施例1と同様にしてハロゲン化ポリカーボネー
トオリゴマーを得た。各成分の仕込みモル比、反応条
件、反応収率、ホスゲン分解率、比粘度、末端塩素量、
融点を表1及び表2に示した。また、実施例1と同様に
して衝撃強度測定試験片及び難燃性測定試験片を作成し
て衝撃強度、難燃性、外観を評価し、その結果を表2に
示した。
Comparative Example 5 A halogenated polycarbonate oligomer was obtained in the same manner as in Example 1 except that the temperature during the phosgenation reaction was 5 to 7 ° C. Charged molar ratio of each component, reaction conditions, reaction yield, phosgene decomposition rate, specific viscosity, amount of terminal chlorine,
The melting points are shown in Tables 1 and 2. Further, an impact strength measurement test piece and a flame retardancy measurement test piece were prepared in the same manner as in Example 1 to evaluate the impact strength, flame retardancy and appearance, and the results are shown in Table 2.

【0042】なお、表1中の仕込みモル比の欄に記載す
る記号は下記の化合物を示し、N.D.は検出されないこと
を示す。 (1) TEA :トリエチルアミン (2) TBA :テトラブロムビスフェノールA (3) PG :ホスゲン (4) PTBP:p-tert−ブチルフェノール (5) TBP :2,4,6−トリブロモフェノール
The symbols shown in the column of charged molar ratio in Table 1 indicate the following compounds, and ND indicates that they are not detected. (1) TEA: triethylamine (2) TBA: tetrabromobisphenol A (3) PG: phosgene (4) PTBP: p-tert-butylphenol (5) TBP: 2,4,6-tribromophenol

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明の方法によれば、比粘度が0.0
1〜0.7のモノマー型ハロゲン化カーボネート、ハロ
ゲン化ポリカーボネートオリゴマー、ハロゲン化ポリカ
ーボネート難燃剤をホスゲンの使用量を最低限に抑えて
収率よく製造することを可能にし、その工業的効果は格
別なものである。
According to the method of the present invention, the specific viscosity is 0.0
1-0.7 monomer type halogenated carbonates, halogenated polycarbonate oligomers, halogenated polycarbonate flame retardants can be produced in high yield with the minimum amount of phosgene used, and their industrial effect is exceptional. It is a thing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ハロゲン置換二価フェノールのアルカリ
水溶液とホスゲンを有機溶媒及び触媒の存在下反応させ
てカーボネート型難燃剤を製造するに当り、アルカリ化
合物の使用量を該二価フェノールに対して1.3〜2.
4倍モル、ホスゲンの使用量を該二価フェノールに対し
て1.1〜1.8倍モルとし且つ触媒として該二価フェ
ノールに対して0.01〜0.1倍モルのアミン類触媒
を存在させて反応系のpH9〜12、温度10〜30℃で
ホスゲン化反応させ、次いで一価フェノールの存在下pH
12以上、温度30〜38℃で反応を完結することを特
徴とするカーボネート型難燃剤の製造法。
1. When a carbonate-type flame retardant is produced by reacting an alkaline aqueous solution of a halogen-substituted dihydric phenol with phosgene in the presence of an organic solvent and a catalyst, the amount of the alkali compound used is 1 with respect to the dihydric phenol. .3-2.
4 times mole, the amount of phosgene used is 1.1 to 1.8 times mole to the dihydric phenol, and 0.01 to 0.1 times mole of amines catalyst to the dihydric phenol is used as a catalyst. The phosgenation reaction is carried out at a pH of the reaction system of 9 to 12 at a temperature of 10 to 30 ° C, and then in the presence of a monohydric phenol.
A method for producing a carbonate-type flame retardant, characterized in that the reaction is completed at a temperature of 12 or more and a temperature of 30 to 38 ° C.
JP4315014A 1992-11-25 1992-11-25 Manufacturing method of carbonate type flame retardant Expired - Fee Related JP2968402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4315014A JP2968402B2 (en) 1992-11-25 1992-11-25 Manufacturing method of carbonate type flame retardant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4315014A JP2968402B2 (en) 1992-11-25 1992-11-25 Manufacturing method of carbonate type flame retardant

Publications (2)

Publication Number Publication Date
JPH06157737A true JPH06157737A (en) 1994-06-07
JP2968402B2 JP2968402B2 (en) 1999-10-25

Family

ID=18060387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4315014A Expired - Fee Related JP2968402B2 (en) 1992-11-25 1992-11-25 Manufacturing method of carbonate type flame retardant

Country Status (1)

Country Link
JP (1) JP2968402B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240736A (en) * 2000-02-29 2001-09-04 Teijin Chem Ltd Reinforced flame retardant polycarbonate resin composition
JP2010222534A (en) * 2009-03-25 2010-10-07 Teijin Chem Ltd High molecular weight halogenated polycarbonate compound and production method thereof
JP2011219596A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Method for producing carbonate type flame retardant
CN105482091A (en) * 2015-12-28 2016-04-13 甘肃银光聚银化工有限公司 Preparation method of low-molecular-weight halogen flame-retardant polycarbonate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026897A (en) * 1973-03-30 1975-03-19
JPH02147627A (en) * 1988-11-29 1990-06-06 Teijin Chem Ltd Preparation of carbonate type flame-retardant
JPH032216A (en) * 1989-04-03 1991-01-08 General Electric Co <Ge> Production of oligomeric carbonate bischloro- formate by using phosgene in low ratio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026897A (en) * 1973-03-30 1975-03-19
JPH02147627A (en) * 1988-11-29 1990-06-06 Teijin Chem Ltd Preparation of carbonate type flame-retardant
JPH032216A (en) * 1989-04-03 1991-01-08 General Electric Co <Ge> Production of oligomeric carbonate bischloro- formate by using phosgene in low ratio

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240736A (en) * 2000-02-29 2001-09-04 Teijin Chem Ltd Reinforced flame retardant polycarbonate resin composition
JP2010222534A (en) * 2009-03-25 2010-10-07 Teijin Chem Ltd High molecular weight halogenated polycarbonate compound and production method thereof
JP2011219596A (en) * 2010-04-08 2011-11-04 Teijin Chem Ltd Method for producing carbonate type flame retardant
CN105482091A (en) * 2015-12-28 2016-04-13 甘肃银光聚银化工有限公司 Preparation method of low-molecular-weight halogen flame-retardant polycarbonate

Also Published As

Publication number Publication date
JP2968402B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
US4506066A (en) Thermoplastic polycarbonates, their preparation and their use as shaped articles and films
JPS6051499B2 (en) Method for recovering high quality polycarbonate from polycarbonate scrap
TWI492960B (en) Alkylphenol-terminated copolycarbonates, processes for preparing the same, molding compositions containing the same, and articles prepared therefrom
US3541049A (en) Cyanuric chloride branched polycarbonates
US8202961B2 (en) Alkylphenol for adjusting the molecular weight, and polycarbonate compositions having improved properties
JP5241552B2 (en) Process for producing polycarbonate and diaryl carbonate
JP2968402B2 (en) Manufacturing method of carbonate type flame retardant
US4282391A (en) Continuous process for producing halogenated diphenols
CA1152532A (en) Polycarbonates having sulfur containing phenolic diols incorporated therein
US5986037A (en) Polycarbonate resin with a reduced volatile chlorine content and process for producing the same
JP3365444B2 (en) Aromatic polycarbonate and method for producing the same
KR920010146B1 (en) Flame-proof polycarbonate containing units deriving from halogenated macrocyclic compounds
JP5495317B2 (en) Production method of carbonate-type flame retardant
AU641468B2 (en) Halogenated copolycarbonates having improved end group selectivity and resistance to degradation
JP3039757B2 (en) Low glass transition temperature copolyester carbonate
JPH0627189B2 (en) Method for producing carbonate type flame retardant
US4174437A (en) Process for the preparation of branched polycarbonates
JPS58168651A (en) Polycarbonate calcite composition
JP3687690B2 (en) Polymer type flame retardant and resin composition
US6797837B2 (en) Process for the preparation of stabilized polycarbonate
US6288204B1 (en) Branched polycarbonate resin and process for producing the same
JP3778756B2 (en) Halogenated carbonate compound, method for producing the same, and flame-retardant resin composition using the same
JP2535464B2 (en) Method for producing halogenated polycarbonate flame retardant
US4224434A (en) Continuous process for producing halogenated polycarbonates and the polycarbonates obtained therefrom
JP3166804B2 (en) Polycarbonate-polyorganosiloxane copolymer

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080820

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100820

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100820

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees