JPH0214652Y2 - - Google Patents

Info

Publication number
JPH0214652Y2
JPH0214652Y2 JP1984037640U JP3764084U JPH0214652Y2 JP H0214652 Y2 JPH0214652 Y2 JP H0214652Y2 JP 1984037640 U JP1984037640 U JP 1984037640U JP 3764084 U JP3764084 U JP 3764084U JP H0214652 Y2 JPH0214652 Y2 JP H0214652Y2
Authority
JP
Japan
Prior art keywords
bearing
air supply
rotating shaft
hydrostatic
circumferential groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984037640U
Other languages
Japanese (ja)
Other versions
JPS60149521U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3764084U priority Critical patent/JPS60149521U/en
Publication of JPS60149521U publication Critical patent/JPS60149521U/en
Application granted granted Critical
Publication of JPH0214652Y2 publication Critical patent/JPH0214652Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は精密機器用回転装置に利用される静
圧軸受に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a hydrostatic bearing used in a rotating device for precision equipment.

〔従来の技術〕[Conventional technology]

第1図及び第2図は従来例を示す。第1図は、
多数孔型の静圧軸受であり、軸受1の内径面に多
数個配した微小な給気孔3を通じて回転軸2と軸
受1の内径面との軸受すきまに、外部から圧縮流
体を供給することにより、回転軸2を非接触で回
転可能に支持している。この多数孔型静圧軸受で
は、直径0.1〜0.5mm程度の微小な給気孔3が多数
必要であり、孔開け作業が極めて難しいことや、
給気孔3が詰まり易いなどの欠点があつた。
FIGS. 1 and 2 show a conventional example. Figure 1 shows
This is a multi-hole type static pressure bearing, and compressed fluid is supplied from the outside into the bearing gap between the rotating shaft 2 and the inner diameter surface of the bearing 1 through a large number of minute air supply holes 3 arranged on the inner diameter surface of the bearing 1. , rotatably supports the rotating shaft 2 without contact. This multi-hole hydrostatic bearing requires a large number of tiny air supply holes 3 with a diameter of about 0.1 to 0.5 mm, making drilling work extremely difficult.
There were drawbacks such as the air supply hole 3 being easily clogged.

これに対し、第2図の如く、軸受1aの内径面
に配される給気孔3aを半数以下に減らし、給気
孔3aを通る浅い円周溝4aを設けることによ
り、上記第1図の欠点の軽減と、軸受剛性の増加
などを目指した円周溝付静圧軸受が考え出されて
いる。この場合、円周溝4aは、例えば軸受すき
ま10μに対して10〜30μ程度と非常に浅くするこ
とが性能上必要であり、従つて溝加工の精度も厳
しい。そのため、円周溝4aの加工としては、通
常、給気孔3aの明いた内径を仕上げてから、研
削又は切削により溝加工を行うが、給気孔3aを
通過して加工するため、微小な給気孔3aが詰ま
つたり、バリが残るという問題があり、溝加工が
難しいばかりか、加工方法自体も相当制限される
といつた欠点があつた。
In contrast, as shown in Fig. 2, the number of air supply holes 3a arranged on the inner diameter surface of the bearing 1a is reduced to less than half, and a shallow circumferential groove 4a passing through the air supply holes 3a is provided, thereby eliminating the drawbacks shown in Fig. 1. Hydrostatic bearings with circumferential grooves have been devised to reduce the impact and increase bearing rigidity. In this case, it is necessary for performance to make the circumferential groove 4a very shallow, for example, about 10 to 30 microns for a bearing clearance of 10 microns, and therefore the precision of groove machining is also strict. Therefore, when machining the circumferential groove 4a, the groove is usually processed by grinding or cutting after finishing the open inner diameter of the air supply hole 3a. There are problems in that the grooves 3a become clogged and burrs remain, which not only makes it difficult to process the grooves, but also severely limits the processing method itself.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

この考案は、微小径給気孔を詰まらせることな
く溝加工ができ、溝加工の方法についても制限が
なく、研削加工、切削加工、転造加工など自由に
選択でき、容易で安価な加工方法が採用でき、少
ない給気孔数で軸受剛性の増加、流量の減少とい
つた軸受性能の向上を可能とした静圧軸受の提供
を目的としている。
This invention enables groove machining without clogging micro-diameter air supply holes, and there are no restrictions on the groove machining method. Grinding, cutting, rolling, etc. can be freely selected, making it an easy and inexpensive machining method. The purpose of the present invention is to provide a hydrostatic bearing that can be adopted and improve bearing performance by increasing bearing rigidity and reducing flow rate with a small number of air supply holes.

〔課題を解決するための手段〕[Means to solve the problem]

この考案の静圧軸受は、回転軸と軸受との間に
形成される軸受すきまに外部から圧縮流体を供給
して回転軸を非接触に支持するようにしたものに
おいて、軸受すきまを挾んで対向する軸受面の一
方に配した絞り作用をする微小径給気孔列の近傍
で、少なくとも開放側に、回転軸の円周方向に連
続した浅い円周溝を設けたことを特徴としてい
る。
The hydrostatic bearing of this invention supports the rotating shaft without contact by supplying compressed fluid from the outside into the bearing gap formed between the rotating shaft and the bearing. It is characterized in that a shallow circumferential groove continuous in the circumferential direction of the rotating shaft is provided at least on the open side in the vicinity of the micro-diameter air supply hole array that acts as a throttle and is arranged on one side of the bearing surface.

ラジアル軸受の場合は回転軸の外径面と軸受の
内径面が互いに対向する軸受面となり、スラスト
軸受の場合は回転軸と軸受の半径方向面が互いに
対向する軸受面となる。
In the case of a radial bearing, the outer diameter surface of the rotating shaft and the inner diameter surface of the bearing are mutually opposing bearing surfaces, and in the case of a thrust bearing, the rotating shaft and the radial direction surface of the bearing are mutually opposing bearing surfaces.

〔作用〕[Effect]

円周溝は給気孔列の近傍に位置するのでその加
工の際に給気孔の詰まりを起こさせるおそれがな
く、したがつて、溝加工に対する制約が緩和され
加工が容易となる。
Since the circumferential groove is located near the air supply hole array, there is no risk of clogging the air supply holes during machining, and therefore restrictions on groove machining are relaxed and machining becomes easy.

圧縮流体は、まず、微小径の給気孔で絞られ、
次に、給気孔から円周溝までの軸受すきまで絞ら
れ、さらに、円周溝の円周方向の流路抵抗によつ
て絞られて軸受すきま内に供給される。従来の円
周溝付軸受(第2図)の場合は給気孔と円周溝と
の精々2段階で圧縮流体が絞られるのに対し、こ
の考案によれば3段階に絞られる。
The compressed fluid is first squeezed through a micro-diameter air supply hole,
Next, the air is constricted to the bearing gap from the air supply hole to the circumferential groove, and further constricted by the flow path resistance in the circumferential direction of the circumferential groove, and is supplied into the bearing gap. In the case of a conventional circumferentially grooved bearing (FIG. 2), the compressed fluid is throttled in at most two stages, the air supply hole and the circumferential groove, but with this invention, it is throttled in three stages.

〔実施例〕〔Example〕

第3図はこの考案の第1の実施例であつて、軸
受10の内径面に少数個の給気孔30を円周方向
に等間隔に配列し、この給気孔30列の両側で、
給気孔30から下流側に僅か(0.3〜2mm程度)
離した位置に、軸受すきまgの1〜3倍程度の深
さを持つ浅い円周溝40を設けてある。
FIG. 3 shows a first embodiment of this invention, in which a small number of air supply holes 30 are arranged at equal intervals in the circumferential direction on the inner diameter surface of the bearing 10, and on both sides of the 30 rows of air supply holes,
A small amount (about 0.3 to 2 mm) downstream from the air supply hole 30
A shallow circumferential groove 40 having a depth of about 1 to 3 times the bearing clearance g is provided at a separated position.

上記構造により、外部から供給された圧縮流体
は、微小径の給気孔30、給気孔30から円周溝
40までの軸受すきまg′、及び円周溝40の円周
方向の流路抵抗により、3段階に絞られて軸受す
きまg″内に供給され、静圧軸受を構成して回転軸
20を非接触で回転可能に支持する。
With the above structure, the compressed fluid supplied from the outside is transferred due to the small diameter air supply hole 30, the bearing clearance g' from the air supply hole 30 to the circumferential groove 40, and the flow path resistance in the circumferential direction of the circumferential groove 40. It is narrowed down in three stages and supplied into the bearing gap g'', forming a hydrostatic bearing and rotatably supporting the rotating shaft 20 without contact.

第4図乃至第6図はこの考案の他の実施例を示
し、第4図は、2列給気型のジヤーナル軸受であ
り、この場合、軸受11の内径面の軸方向に離隔
して配した2列の給気孔31,31列の軸受開放
側すなわち、給気の流れの下流側にそれぞれ1箇
所づつ円周溝41を設けた場合である。
4 to 6 show other embodiments of this invention, and FIG. 4 shows a double-row air supply type journal bearing, in which the inner surface of the bearing 11 is spaced apart in the axial direction. This is a case where one circumferential groove 41 is provided in each of the two rows of air supply holes 31 and 31 rows on the bearing open side, that is, on the downstream side of the flow of air supply.

第5図は、軸から給気を行うタイプのジヤーナ
ル軸受であり、回転軸22の外径の給気孔32列
の両側に円周溝42を設けたもので、12は軸受
を示す。
FIG. 5 shows a journal bearing of the type in which air is supplied from the shaft, in which circumferential grooves 42 are provided on both sides of 32 rows of air supply holes on the outer diameter of the rotating shaft 22, and 12 indicates the bearing.

第6図は、スラスト軸受の例であり、軸受面に
配した給気孔33列の円周内側及び外側に円周溝
43を設けたもので、13は軸受を示す。なお、
図示していないが、内径側が密封されたスラスト
軸受では、円周給気孔列の外側(下流側)の1箇
所に円周溝を設ければ良いことはいうまでもな
い。
FIG. 6 shows an example of a thrust bearing, in which circumferential grooves 43 are provided on the inside and outside of the circumference of 33 rows of air supply holes arranged on the bearing surface, and 13 indicates the bearing. In addition,
Although not shown, in a thrust bearing whose inner diameter side is sealed, it goes without saying that a circumferential groove may be provided at one location outside (downstream side) of the circumferential supply hole array.

〔考案の効果〕[Effect of idea]

この考案は、給気孔を避けて円周溝を設けたか
ら、微小径給気孔を詰まらせることなく溝加工が
できる。また、溝加工の方法についても制限がな
くなり、研削加工、切削加工及び転造加工など自
由に選択でき、容易で安価な加工方法が採用でき
る。さらに、この考案の軸受では、圧縮流体が3
段階に絞られた軸受すきま内に供給され、絞り効
果が大きいことから、軸受剛性の増加、流量の減
少といつた軸受性能の向上を図ることができる。
In this invention, the circumferential groove is provided avoiding the air supply hole, so the groove can be machined without clogging the small diameter air supply hole. Further, there are no restrictions on the groove processing method, and grinding, cutting, rolling, etc. can be freely selected, and easy and inexpensive processing methods can be adopted. Furthermore, in the bearing of this invention, the compressed fluid
Since it is supplied into the bearing clearance which is narrowed in stages and has a large throttling effect, it is possible to improve the bearing performance by increasing the bearing rigidity and reducing the flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の静圧軸受の斜視断面
図、第3図〜第6図は本考案の実施例を示す静圧
軸受の斜視断面図である。 10,11,12,13……軸受、20,22
……回転軸、30,31,32,33……給気
孔、40,41,42,43……円周溝。
1 and 2 are perspective sectional views of conventional hydrostatic bearings, and FIGS. 3 to 6 are perspective sectional views of hydrostatic bearings showing embodiments of the present invention. 10, 11, 12, 13...Bearing, 20, 22
... Rotating shaft, 30, 31, 32, 33 ... Air supply hole, 40, 41, 42, 43 ... Circumferential groove.

Claims (1)

【実用新案登録請求の範囲】 (1) 回転軸と軸受との間に形成される軸受すきま
に外部から圧縮流体を供給して回転軸を非接触
に支持するようにした静圧軸受において、軸受
すきまを挾んで対向する軸受面の一方に配した
絞り作用をする微小径給気孔の近傍で、少なく
とも開放側に、回転軸の円周方向に連続した浅
い円周溝を設けたことを特徴とする静圧軸受。 (2) 前記軸受面が回転軸の外径面と軸受の内径面
である請求項1の静圧軸受。 (3) 前記軸受面が回転軸および軸受の半径方向面
である請求項1の静圧軸受。
[Claims for Utility Model Registration] (1) In a hydrostatic bearing that supports the rotating shaft without contact by supplying compressed fluid from the outside into the bearing gap formed between the rotating shaft and the bearing, A shallow circumferential groove continuous in the circumferential direction of the rotating shaft is provided at least on the open side near the micro-diameter air supply hole that acts as a throttle, which is arranged on one side of the bearing surfaces facing each other with a gap between them. hydrostatic bearing. (2) The hydrostatic bearing according to claim 1, wherein the bearing surfaces are an outer diameter surface of the rotating shaft and an inner diameter surface of the bearing. (3) The hydrostatic bearing according to claim 1, wherein the bearing surface is a radial surface of the rotating shaft and the bearing.
JP3764084U 1984-03-15 1984-03-15 hydrostatic bearing Granted JPS60149521U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3764084U JPS60149521U (en) 1984-03-15 1984-03-15 hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3764084U JPS60149521U (en) 1984-03-15 1984-03-15 hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPS60149521U JPS60149521U (en) 1985-10-04
JPH0214652Y2 true JPH0214652Y2 (en) 1990-04-20

Family

ID=30543908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3764084U Granted JPS60149521U (en) 1984-03-15 1984-03-15 hydrostatic bearing

Country Status (1)

Country Link
JP (1) JPS60149521U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002236B2 (en) * 2006-10-23 2012-08-15 株式会社東芝 Shaft motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444347B2 (en) * 1975-07-30 1979-12-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444347U (en) * 1978-07-14 1979-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444347B2 (en) * 1975-07-30 1979-12-25

Also Published As

Publication number Publication date
JPS60149521U (en) 1985-10-04

Similar Documents

Publication Publication Date Title
JPS6029013B2 (en) Improvements in reducing contact surface wear
JPH0214652Y2 (en)
CN110219887A (en) It is a kind of using special-shaped slider without retainer high-speed ball bearing
JP3821902B2 (en) Bearing device
JPS60234120A (en) Dynamic pressure thrust bearing
JP3325082B2 (en) Pneumatic spindle device
JPS6235947Y2 (en)
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JPH0425343A (en) Method for cooling bearing for main spindle of machine
JPH1151051A (en) Air guide roller with touchdown bearing
JPH07109216B2 (en) Spindle rotation support device
JPH0368768B2 (en)
JPH11336753A (en) Self-aligning roller bearing
JP2544876Y2 (en) Hydrostatic gas bearing device
JPH0645697Y2 (en) Rolling bearing having cage supported concentrically with bearing ring
JPS628650B2 (en)
JP2665817B2 (en) Air bearing for high-speed rotation
JPH0514008Y2 (en)
JPH0653323B2 (en) Preload adjustable spindle unit
JP2001140866A (en) Fluid dynamic pressure bearing and spindle motor
JPS5940580Y2 (en) Cylindrical roller bearing cage
JPH0740738Y2 (en) Air leakage prevention structure in air / oil lubrication
JPH0419236Y2 (en)
JPH0554820U (en) Bearing structure of hydrostatic spindle
JPH0439415A (en) Fluid bearing