JPH02146174A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH02146174A
JPH02146174A JP63299957A JP29995788A JPH02146174A JP H02146174 A JPH02146174 A JP H02146174A JP 63299957 A JP63299957 A JP 63299957A JP 29995788 A JP29995788 A JP 29995788A JP H02146174 A JPH02146174 A JP H02146174A
Authority
JP
Japan
Prior art keywords
memory cell
data
charge capacity
semiconductor memory
memory cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63299957A
Other languages
Japanese (ja)
Inventor
Toshio Saito
斉藤 寿男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63299957A priority Critical patent/JPH02146174A/en
Publication of JPH02146174A publication Critical patent/JPH02146174A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dram (AREA)

Abstract

PURPOSE:To improve the break proof quantity of data against a disturbance by setting the holding charge capacity of a memory cell arranged in the peripheral part of the memory cell group larger than the holding charge capacity of the other memory cell. CONSTITUTION:The memory cell, which is selected out of a three-transistor (TR) type dynamic memory cell group 101 arrange in a grating shape, in a range of, for example, 200 to 300mum from a side making contact with a peripheral circuit, which generates the disturbance, consists of a high break proof quantity cell 105, whose holding charge capacity is doubled compared with an ordinary memory cell. Thus, the probability of the memory cell having the highest data breaking probability is reduced, and the break proof quantity of the data can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体記憶装置に関し、特にダイナミック型M
O9記憶装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor memory device, and particularly to a dynamic type M
Regarding O9 storage device.

[従来の技術] 従来、この種の半導体記憶装置は第3図のようになフて
いた。
[Prior Art] Conventionally, this type of semiconductor memory device has been designed as shown in FIG.

第3図(a)は従来の半導体記憶装置の構成図、第3図
(b)は3トランジスタ型ダイナミツク記憶セルの回路
図である。格子状に多数配置されて記憶セル群301を
構成する記憶セルは記憶セル群301の左辺に配置され
た行デコーダ302、上辺に配置された列セレクタ30
3によりただ1つ選択される。さらに、上辺には読出し
・書込み回路304が配置されており、記憶セルの読出
し・書込みデータを制御する。第3図(b)に示す記憶
セルは書込み用トランジスタ305、読出し用トランジ
スタ306、増幅用トランジスタ307の3つのN型ト
ランジスタとデータ蓄積容量308により構成されてい
る。記憶セルにデータを書込むときは書込みワード線3
09を高電位にしてトランジスタ305をオンして書込
みデータ線310上dデータをセル内の容、11308
に導く。
FIG. 3(a) is a block diagram of a conventional semiconductor memory device, and FIG. 3(b) is a circuit diagram of a three-transistor type dynamic memory cell. A large number of memory cells are arranged in a grid to form the memory cell group 301. A row decoder 302 is arranged on the left side of the memory cell group 301, and a column selector 30 is arranged on the upper side.
Only one is selected by 3. Further, a read/write circuit 304 is arranged on the upper side and controls read/write data of the memory cells. The memory cell shown in FIG. 3(b) is composed of three N-type transistors: a write transistor 305, a read transistor 306, and an amplification transistor 307, and a data storage capacitor 308. When writing data to memory cells, write word line 3
09 is set to a high potential, the transistor 305 is turned on, and the d data on the write data line 310 is transferred to the cell content, 11308.
lead to.

また、データを読出すときは読出しワード線311を高
電位としてトランジスタ306をオンし、読出しデータ
線312からトランジスタ307のオン、オフを判定す
る。
Further, when reading data, the read word line 311 is set to a high potential, the transistor 306 is turned on, and whether the transistor 307 is on or off is determined from the read data line 312.

[発明が解決しようとする問題点] 上述した従来の半導体記憶装置では、記憶セルはダイナ
ミック型となっているので、記憶セル内の記憶データは
外乱により破壊されるという欠点がある。
[Problems to be Solved by the Invention] In the conventional semiconductor memory device described above, since the memory cells are of a dynamic type, there is a drawback that the data stored in the memory cells is destroyed by disturbances.

第4図に記憶セルの一部の断面図と外乱によるデータ破
壊のメカニズムを示す。第4図において、401はデー
タ蓄積容量、402は書込み用トランジスタである。こ
こで外乱とは基板403を流れる小数キャリア404(
この場合は電子)であり、容量401に電荷が蓄積され
ているとき小数キャリア404が書込み用トランジスタ
402のドレイン405の空乏層へ飛び込むと、容t4
01の蓄積電荷は基板へリークして記憶データが破壊さ
れることとなる。ここで前記小数キャリア404は主に
MOS)ランジスタのスイッチングにより発生するため
、記憶セル周辺のデコーダ、セレクタ、読出し・書込み
回路等が動作すれば基板403中の小数キャリア404
は増加する。そして、基板403中の小数キャリア40
4の量は再結合による消滅、基板コンタクトへの流出に
より、発生源から離れるほど少なくなる。このため、記
憶セルのデータ破壊の確率はデコーダ、セレクタ。
FIG. 4 shows a cross-sectional view of a part of a memory cell and the mechanism of data destruction due to disturbance. In FIG. 4, 401 is a data storage capacitor, and 402 is a write transistor. Here, the disturbance is the fractional carrier 404 flowing through the substrate 403 (
In this case, electrons), and when the minority carriers 404 jump into the depletion layer of the drain 405 of the write transistor 402 while charges are accumulated in the capacitor 401, the capacitance t4
The accumulated charges of 01 will leak to the substrate and the stored data will be destroyed. Here, the fractional carriers 404 are mainly generated by switching of MOS transistors, so if the decoder, selector, read/write circuit, etc. around the memory cell operate, the fractional carriers 404 in the substrate 403
increases. And the fractional carrier 40 in the substrate 403
The amount of 4 decreases with distance from the source due to extinction due to recombination and outflow to the substrate contact. Therefore, the probability of data corruption in a memory cell is determined by the decoder and selector.

読出し・書込み回路等に近い周辺部で高くなっている。It is higher in the peripheral areas near read/write circuits, etc.

[発明の従来技術に対する相違点コ 上述した従来の半導体記憶装置に対し、本発明は格子状
に配列した記憶セルのうち、周辺の数列の蓄積電荷量を
大きくし、外乱に対するデータ破壊耐量を上げるという
相違点を有する。
[Differences between the invention and the prior art] Compared to the above-mentioned conventional semiconductor memory device, the present invention increases the amount of accumulated charge in the peripheral rows of memory cells arranged in a lattice pattern to increase data destruction resistance against disturbances. There is a difference.

[問題点を解決するための手段] 本発明の半導体記憶装置は、ダイナミックなデータ保持
を行う記憶セルを格子状に複数個配設して成る記憶セル
群を備えた半導体記憶装置において、記憶セル群の周辺
部に配置された記憶セルの保持電荷容量を他の記憶セル
の保持電荷容量より大きく設定したことを特徴とする。
[Means for Solving the Problems] A semiconductor memory device of the present invention is a semiconductor memory device including a memory cell group in which a plurality of memory cells that dynamically retain data are arranged in a lattice pattern. It is characterized in that the storage charge capacity of the memory cells arranged at the periphery of the group is set to be larger than the storage charge capacity of other memory cells.

そして、本発明の好ましい一態様としては、記憶セルが
3個のMOS)ランジスタと電荷保持容量とにより構成
されていることを特徴とする。また、本発明の好ましい
他の一態様としては、記憶セルが高抵抗負荷とMOS)
ランジスタにより構成されていることを特徴とする。
A preferred embodiment of the present invention is characterized in that the memory cell is composed of three MOS transistors and a charge storage capacitor. Further, in another preferred embodiment of the present invention, the memory cell is a high resistance load (MOS)
It is characterized by being composed of transistors.

[実施例コ 次に本発明について図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の構成図である。101は1
28X128個の格子状に配置された3トランジスタ型
ダイナミック記憶セル群、102は行デコーダ、103
は列セレクタ、104は読出し・書込み回路である。そ
して、105は保持電荷容量を記憶セル群101を構成
する通常の記憶セルに比べて2倍にした記憶セル(以後
高耐量セルと呼ぶ)であり、記憶セル群101のうちの
外乱を発生する周辺回路に接する辺から200〜300
μm内の記憶セルが高耐量セル105により構成しであ
る。
FIG. 1 is a block diagram of an embodiment of the present invention. 101 is 1
A group of 3-transistor type dynamic memory cells arranged in a grid of 28×128, 102 is a row decoder, 103
1 is a column selector, and 104 is a read/write circuit. Reference numeral 105 denotes a memory cell (hereinafter referred to as a high-withstand cell) whose holding charge capacity is twice that of the normal memory cells constituting the memory cell group 101, and which generates disturbances in the memory cell group 101. 200 to 300 from the side touching the peripheral circuit
The memory cells within μm are constituted by high-withstand cells 105.

尚、上記構成で半導体記憶装置自体の動作は従来と何ら
変わることはない。
Incidentally, with the above configuration, the operation of the semiconductor memory device itself is no different from the conventional one.

第2図は本発明の他の一実施例の記憶セル回路である。FIG. 2 shows a memory cell circuit according to another embodiment of the present invention.

201はN型MOSトランジスタ、202は高抵抗負荷
(数十〜数百GΩ、203は高耐量用保持電荷容量、2
04はデータ線、205はワード線である。この実施例
では、記憶セルとして高抵抗負荷型セルを使用する。こ
の実施例でも多数の記憶セルを配設して構成した記憶セ
ル群の周辺回路に接する周辺部を上記の高抵抗負荷型高
耐量セルで構成し、外乱によるデータ破壊を防止する。
201 is an N-type MOS transistor, 202 is a high resistance load (several tens to hundreds of GΩ, 203 is a holding charge capacity for high withstand capacity, 2
04 is a data line, and 205 is a word line. In this embodiment, a high resistance load type cell is used as the memory cell. In this embodiment as well, the peripheral portion of a memory cell group in contact with the peripheral circuit, which is constructed by arranging a large number of memory cells, is constructed of the above-mentioned high resistance load type high withstand capacity cells to prevent data destruction due to external disturbances.

尚、上記高抵抗負荷型セルは回路上スタティックなデー
タ保持を行うが、高抵抗負荷が数十〜数百GΩと極めて
大きいのでダイナミック保持とほとんど同じである。
The high-resistance load type cell performs static data retention in the circuit, but since the high-resistance load is extremely large, ranging from tens to hundreds of GΩ, this is almost the same as dynamic data retention.

[発明の効果コ 以上説明したように本発明は、格子状に配置された記憶
セル群のうちの周辺回路に接する周辺部(例えば、周辺
から200〜300μm内)の記憶セルを高耐量セルと
したため、データ破壊確率の最も高い記憶セルの確率を
下げることができ、半導体記憶装置の信頼性を上げるこ
とができるという効果がある。
[Effects of the Invention] As explained above, the present invention allows the memory cells in the peripheral part (for example, within 200 to 300 μm from the peripheral part) that are in contact with the peripheral circuit of the memory cell group arranged in a lattice shape to be high-withstand cells. Therefore, the probability of a memory cell having the highest probability of data destruction can be lowered, and the reliability of the semiconductor memory device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る半導体記憶装置の構成
図、第2図は本発明の他の一実施例に係る半導体記憶セ
ルの回路図、第3図(a)は従来の半導体記憶装置の構
成図、第3図(b)はその記憶セルの構成図、第4図は
外乱によるデータ破壊メカニズムの説明図である。 203 ◆ ・高耐量用保持容量。
FIG. 1 is a block diagram of a semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a semiconductor memory cell according to another embodiment of the present invention, and FIG. 3(a) is a diagram of a conventional semiconductor memory device. FIG. 3(b) is a block diagram of the memory device, FIG. 3(b) is a block diagram of its memory cells, and FIG. 4 is an explanatory diagram of the mechanism of data destruction due to disturbance. 203 ◆ ・Holding capacity for high tolerance.

Claims (1)

【特許請求の範囲】[Claims] ダイナミックなデータ保持を行う記憶セルを格子状に複
数個配設して成る記憶セル群を備えた半導体記憶装置に
おいて、記憶セル群の周辺部に配置された記憶セルの保
持電荷容量を他の記憶セルの保持電荷容量より大きく設
定したことを特徴とする半導体記憶装置。
In a semiconductor memory device equipped with a memory cell group consisting of a plurality of memory cells that dynamically retain data arranged in a lattice pattern, the storage charge capacity of the memory cells arranged around the memory cell group is compared to that of other memory cells. A semiconductor memory device characterized in that the storage charge capacity is set to be larger than the storage charge capacity of a cell.
JP63299957A 1988-11-28 1988-11-28 Semiconductor memory Pending JPH02146174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63299957A JPH02146174A (en) 1988-11-28 1988-11-28 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63299957A JPH02146174A (en) 1988-11-28 1988-11-28 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH02146174A true JPH02146174A (en) 1990-06-05

Family

ID=17879007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63299957A Pending JPH02146174A (en) 1988-11-28 1988-11-28 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH02146174A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363938A (en) * 1976-11-19 1978-06-07 Hitachi Ltd Dynamic memory unit
JPS63257991A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Semiconductor storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363938A (en) * 1976-11-19 1978-06-07 Hitachi Ltd Dynamic memory unit
JPS63257991A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Semiconductor storage device

Similar Documents

Publication Publication Date Title
JP2508288B2 (en) Semiconductor memory device
GB1414228A (en) Semiconductor storage devices
JPH03173470A (en) Semiconductor storage device
JP2008263133A (en) Semiconductor storage device and its driving method
US4604639A (en) Semiconductor memory device
JP2003030980A (en) Semiconductor memory
US4882706A (en) Data storage element and memory structures employing same
US4920513A (en) Semiconductor memory device using diode-capacitor combination
US4339766A (en) Dummy columns for reducing pattern sensitivity in MOS/LSI dynamic RAM
EP0393863A2 (en) Semiconductor memory device
JPS61140170A (en) Semiconductor memory device
US4791611A (en) VLSI dynamic memory
US4151610A (en) High density semiconductor memory device formed in a well and having more than one capacitor
US4118794A (en) Memory array with larger memory capacitors at row ends
CA1046641A (en) Switched capacitor non-volatile mnos random access memory cell
US3753247A (en) Array of devices responsive to differential light signals
JPH02146174A (en) Semiconductor memory
EP0354784A2 (en) Semiconductor memory device having plural biasing circuits for substrate
US4247916A (en) Memory device in which one type carrier stored during write controls the flow of the other type carrier during read
US4250568A (en) Capacitor semiconductor storage circuit
JPS6026302B2 (en) quadrupole transistor memory logic element
US4399520A (en) Semiconductor integrated circuit device
JP2659536B2 (en) Semiconductor memory device
EP0007910A1 (en) A stratified charge memory device
JPH07321233A (en) Semiconductor storage device