JPS61140170A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS61140170A
JPS61140170A JP59263303A JP26330384A JPS61140170A JP S61140170 A JPS61140170 A JP S61140170A JP 59263303 A JP59263303 A JP 59263303A JP 26330384 A JP26330384 A JP 26330384A JP S61140170 A JPS61140170 A JP S61140170A
Authority
JP
Japan
Prior art keywords
mosfet
electrode
convex portion
capacitor
type layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59263303A
Other languages
Japanese (ja)
Inventor
Masaki Momotomi
正樹 百冨
Isao Ogura
庸 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59263303A priority Critical patent/JPS61140170A/en
Publication of JPS61140170A publication Critical patent/JPS61140170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To contrive to increase the integration and capacitance by integrating memory cells made of the MOSFET with source and drain regions formed in the longitudinal direction by utilizing the side wall of projections formed in periodical strips form, and of the MOS capacitor formed in stack on this source region. CONSTITUTION:The titled device uses a wafer with an N<+> layer 12 serving as the drain region of the MOSFET formed on a P-type Si substrate 11 in common to all memory cells, and with a P<-> type layer 13 formed thereon by epitaxial growth. A plurality of stripe projections are formed by digging grooves deep enough to reach the N<+> type layer 12, and a gate electrode 15 is continuous ly formed on the side wall of each projection via gate insulation film 14 and each forms other word lines. The projection top is discretely provided with arrangements of N<+> type layers 16 serving as the source region of the MOSFET independent in every memory cell, along both sides. This N<+> type layer 16 is the first electrode of the MOS capacitor, and the second electrode 19 of the capacitor is formed thereon via capacitor insulation film 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、−個(7)MOSFET、!ニー個(7)M
OSキャパシタを用いてメモリセルを構成する半導体記
憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides - (7) MOSFETs, ! Knee pieces (7) M
The present invention relates to a semiconductor memory device in which a memory cell is configured using an OS capacitor.

〔発明の技術的背景とその問題点) 半導体記憶装置は、高集積化、大容量化の一途を辿って
いる。特に−個のMOSFETと一個のMOSキャパシ
タによりメモリセルを構成するMOSダイナミックRA
Mは、そのメモリセル形式から最も集積化が進んでおり
、既に256にビットのものが実用化され、研究段階で
は1Mビットのものができている。
[Technical background of the invention and its problems] Semiconductor memory devices are becoming more highly integrated and larger in capacity. In particular, a MOS dynamic RA in which a memory cell is configured by - MOSFETs and one MOS capacitor.
M has the most advanced integration due to its memory cell format, and a 256-bit version has already been put into practical use, and a 1M-bit version is currently available at the research stage.

第7図は従来のメモリセルの断面である。31はp−型
81基板、32.33はn”/−ス、 ドレイン、34
.35は多結晶シリコン膜により形成されたそれぞれゲ
ート電極、キャパシタ電極、36はAl1線(ビット線
)である。このようなMOSダイナミックRAMを今後
更に高集積化、大容量化するためにはいくつかの問題が
ある。例えば上記セルでは、平面的にMOSFET、M
OSキャパシタ、ビット線とのコンタクトを有するため
、メモリセル寸法は縮小し難く高集積化できない。また
、セル寸法縮小によりキャパシタ面積が小さくなるにつ
れ、α線によるソフトエラーが起り易くなる。即ち、パ
ッケージ材料に含まれるU。
FIG. 7 is a cross section of a conventional memory cell. 31 is p-type 81 substrate, 32.33 is n"/-s, drain, 34
.. 35 is a gate electrode and a capacitor electrode formed of a polycrystalline silicon film, and 36 is an Al1 line (bit line). There are several problems in increasing the integration and capacity of such MOS dynamic RAMs in the future. For example, in the above cell, MOSFET, M
Since the memory cell has contact with the OS capacitor and the bit line, it is difficult to reduce the memory cell size and high integration is not possible. Furthermore, as the capacitor area becomes smaller due to cell size reduction, soft errors due to alpha rays become more likely to occur. That is, U included in the packaging material.

Thなとの放射性元素から放射されるα粒子は、基板に
電子−正孔対を発生させ、このうち電子がメモリセルの
ノードに達して記憶情報を破壊する。
α particles emitted from radioactive elements such as Th generate electron-hole pairs in the substrate, of which electrons reach nodes of memory cells and destroy stored information.

一方、ビット線に達した電子はその電位を変化させ、誤
動作の原因となる。このようなソフトエラーは1Mビッ
トレベルで既に重大な問題となっている。
On the other hand, electrons that reach the bit line change its potential, causing malfunction. Such soft errors have already become a serious problem at the 1M bit level.

〔発明の目的) 本発明の目的は、信頼性を損うことなく、高集積化、大
容量化を図った半導体記憶装置を提供することにある。
[Object of the Invention] An object of the present invention is to provide a semiconductor memory device that achieves high integration and large capacity without impairing reliability.

〔発明の概要〕[Summary of the invention]

本発明にかかる半導体記憶装置は、半導体基板に周期的
なストライプ状に形成された凸部の側壁を利用して縦方
向にソース領域とドレイン領域を形成してなるMOSF
ETと、このMOSFETのソース領域上に重ねて形成
されたMOSキャパシタとからなるメモリセルを集積し
て構成したこと、および凸部上面に各メモリセル毎に形
成されるソース領域を分離するため、凸部上面に固定電
位が与えられる高不純物濃度層を設けたことを特徴とす
る。
A semiconductor memory device according to the present invention is a MOSFET in which a source region and a drain region are vertically formed using side walls of convex portions formed in a periodic stripe shape on a semiconductor substrate.
In order to integrate a memory cell consisting of an ET and a MOS capacitor formed over the source region of this MOSFET, and to separate the source region formed for each memory cell on the upper surface of the convex portion, A feature is that a high impurity concentration layer to which a fixed potential is applied is provided on the upper surface of the convex portion.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MOSFET上にMOSキャパシタが
積層された構造となり、従来のMOSダイナミックRA
Mに比べて著しく高集積化、大容量化を図ることができ
る。また、凸部上面に各メモリセル毎に独立に形成され
るソース領域は高不純物濃度層により分離され、かつこ
の高不純物濃度層に固定電位を与えることにより信頼性
の高いdRAMが得られる。特に、MOSFETのドレ
イン領域を全メモリセルに共通の基板全面に設けられた
高不純物濃度層により形成し、キャパシタ電極をビット
線として用いる形式とした場合、上記固定電位が与えら
れる高不純物濃度層を設けることはMOSFETの基板
領域が70−ティングになるのを防止する上で重要な意
味を持つ。更に、上記のようにドレイン領域をビット線
とせず、キャパシタ電極をビット線とした場合、本発明
においては、凸部底面に設けられたトレイン領域を動作
中、所望の電位2例えばVcc (+5V)に固定する
ことができる。ドレイン領域は全メモリセルあるいは、
行または列方向に共通に設けることができるので、電圧
印加は容易である。かかるドレイン領域はα線により生
じた電子を吸収するので、セルモードでのソフトエラー
を緩和することができる。更にキャパシタ電極をビット
線としたことにより、ビット線モードでのソフトエラー
は、センスアンプにおける基板接続部に起因するものだ
けになるのでソフトエラーに関与する基板面積が小さく
なり、その改善を図ることができる。
According to the present invention, the structure is such that a MOS capacitor is stacked on a MOSFET, and the conventional MOS dynamic RA
Compared to M, it is possible to achieve significantly higher integration and larger capacity. Further, the source regions formed independently for each memory cell on the upper surface of the convex portion are separated by a high impurity concentration layer, and by applying a fixed potential to this high impurity concentration layer, a highly reliable dRAM can be obtained. In particular, when the drain region of the MOSFET is formed by a high impurity concentration layer provided on the entire surface of the substrate common to all memory cells, and the capacitor electrode is used as a bit line, the high impurity concentration layer to which the fixed potential is applied is Providing this has an important meaning in preventing the substrate region of the MOSFET from becoming 70-tinged. Furthermore, in the case where the drain region is not used as a bit line as described above and the capacitor electrode is used as a bit line, in the present invention, the train region provided on the bottom surface of the convex portion is set to a desired potential 2, for example, Vcc (+5V) during operation. can be fixed to. The drain region covers all memory cells or
Since it can be provided commonly in the row or column direction, voltage application is easy. Since such a drain region absorbs electrons generated by α rays, soft errors in cell mode can be alleviated. Furthermore, by using the bit line as the capacitor electrode, soft errors in bit line mode are only caused by the board connections in the sense amplifier, so the board area involved in soft errors is reduced, which can be improved. I can do it.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は一実施例のメモリセル配列部の模式的平面図で
あり、第2図はそのA−A”断面図、第3図はMOSF
ETを形成した状態での斜視図である。第2図に示すよ
うに本実施例では、p−型3i基板11に全メモリセル
に共通にMOSFETのドレイン領域となるn+型層1
2が形成され、このnゝ型層12上にp−型層13がエ
ピタキシャル成長により形成されたウェハを用いている
FIG. 1 is a schematic plan view of a memory cell array section of one embodiment, FIG. 2 is a cross-sectional view taken along line A-A'', and FIG. 3 is a MOSFET
It is a perspective view in the state where ET is formed. As shown in FIG. 2, in this embodiment, a p-type 3i substrate 11 has an n+-type layer 1 which serves as a MOSFET drain region common to all memory cells.
A wafer is used in which a p-type layer 13 is formed on the n-type layer 12 by epitaxial growth.

このようなウェハに、例えばRIEなどの異方性エツチ
ングによりn+型層12に達する深さの溝を形成してス
トライプ状の凸部が複数本形成され、各凸部の側壁にゲ
ート絶縁膜14を介してゲート電極15が連続的に形成
されている。ゲート電極15は第1層多結晶シリコン膜
により形成されている。一つの凸部の両側壁に形成され
たゲート電極15は、第1図および第3図から明らかな
ように、それぞれ別のワード線(WLlとWL2゜W 
L 3とWL4 、・・・)を構成する。凸部上面には
各メモリセル毎に独立のMOSFETのソース領域とな
るn+型層16が、両側に沿って離散的に配列形成され
ている。このように形成されたMOSFETの各ソース
領域であるn+型層16はMOSキャパシタの第1の電
極であり、この上にキャパシタ絶縁膜18を介してキャ
パシタの第2の電極19を形成している。この第2の電
極19は第2@多結晶シリコン膜により形成され、第1
図に示すようにゲート電極15とは直交する方向に連続
する複数本のビットWa  8L1.BL2゜BL3.
・・・を構成している。第2図の斜線で囲んだ領域が一
つのメモリセルを構成している。
In such a wafer, grooves deep enough to reach the n+ type layer 12 are formed by anisotropic etching such as RIE, and a plurality of striped convex portions are formed, and a gate insulating film 14 is formed on the sidewall of each convex portion. A gate electrode 15 is continuously formed through the gate electrode. Gate electrode 15 is formed of a first layer polycrystalline silicon film. As is clear from FIG. 1 and FIG.
L3 and WL4,...) are configured. On the upper surface of the convex portion, n+ type layers 16, which serve as source regions of independent MOSFETs for each memory cell, are discretely arranged along both sides. The n+ type layer 16, which is the source region of each MOSFET thus formed, is the first electrode of the MOS capacitor, and the second electrode 19 of the capacitor is formed thereon via the capacitor insulating film 18. . This second electrode 19 is formed of a second@polycrystalline silicon film, and
As shown in the figure, a plurality of bits Wa 8L1. BL2゜BL3.
It consists of... The area surrounded by diagonal lines in FIG. 2 constitutes one memory cell.

一方、凸部のp−型層13表面には、各メモリセルのM
OSFETのソース領域間を確実に分離するためにp+
型層17が形成されている。各凸部上のp+型層17は
第1図に示すように、基板の端部でコンタクト孔を介し
て電源配I!21に共通接続され、この電源配線を介し
てp+型層17に固定電位が与えられるようになってい
る。
On the other hand, on the surface of the p-type layer 13 in the convex portion, M of each memory cell is
p+ to ensure isolation between the source regions of the OSFETs.
A mold layer 17 is formed. As shown in FIG. 1, the p+ type layer 17 on each convex portion is connected to the power source I! via a contact hole at the edge of the substrate. 21, and a fixed potential is applied to the p+ type layer 17 via this power supply wiring.

第4図(a)はメモリセルの等何回路を示している。M
OSFET−Qのドレインは第2図で説明したように全
ビットに共通のn+型層12であり、これがVcc(例
えば、5V)に接続されφ。
FIG. 4(a) shows an equivalent circuit of a memory cell. M
As explained in FIG. 2, the drain of OSFET-Q is the n+ type layer 12 common to all bits, and this is connected to Vcc (eg, 5V) and φ.

そのためにはチップ周辺でVcc線とn+型層12のコ
ンタクトをとることが行われる。MOS FET−Qの
ゲート電極兼ワード線WLは第1層多結晶シリコン膜に
より、MOSキャパシタCの第2の電極兼ピット線BL
は第2層多結晶シリコン膜により形成されることは前述
の通りである。
For this purpose, contact is made between the Vcc line and the n+ type layer 12 around the chip. The gate electrode/word line WL of the MOS FET-Q is connected to the second electrode/pit line BL of the MOS capacitor C by the first layer polycrystalline silicon film.
As described above, is formed of the second layer polycrystalline silicon film.

第4図(b)(c)にこのメモリセルの書込み。Writing to this memory cell is shown in FIGS. 4(b) and 4(c).

読み出し時の動作電圧例を示す。Vccは正電圧例えば
+5V、電源配線21により与えられる基板電位は例え
ば−3■とする。先ず第4図(b)のように“O′°書
込み、読み出しの時は、そのセルのワード線WLを8V
としてMOSFETをオンさせ、ビット線BLをOVと
する。これにより、ノードNsは5■程度になる。これ
により書込みがなされる。次いでWLをoVとし、E3
LをVccと同じ5■にするとノードNsの電位は上昇
し、9■程度になる。これがプリチャージである。そし
てこのセルを読み出す時はWLに8Vを与える。これに
より8Lの電位は、 5−5X4XCs/(C日子〇s)[V]となる。ここ
で、CBはセル・キャパシタのキャパシタンス、Caは
BLの附随容壷である。従ってこの81の電位をセンス
アンプにより基準電位と比較すればよい。
An example of operating voltage during reading is shown. Vcc is a positive voltage, for example, +5V, and the substrate potential provided by the power supply wiring 21 is, for example, -3. First, as shown in FIG. 4(b), when writing or reading "O'°, the word line WL of the cell is set to 8V.
As a result, the MOSFET is turned on and the bit line BL is set to OV. As a result, the number of nodes Ns becomes approximately 5■. Writing is thereby performed. Then, WL is set to oV, and E3
When L is set to 5■, which is the same as Vcc, the potential of node Ns increases to about 9■. This is precharge. When reading this cell, 8V is applied to WL. As a result, the potential of 8L becomes 5-5X4XCs/(Cdays) [V]. Here, CB is the capacitance of the cell capacitor and Ca is the collateral capacity of BL. Therefore, it is sufficient to compare the potential of this 81 with a reference potential using a sense amplifier.

同様に、01゛′書込み、読み出しの時は第4図(C)
に示すように、WL−8V、BL−5Vとし、N5=5
Vとして書込みを行なう。プリチャージ時1tWL=O
V、BL−5V、Ns −5Vとする。従ってWL=8
VとするとBLには5vが現われ、11111読み出し
がなされる。
Similarly, when writing and reading 01'', see Figure 4 (C).
As shown, WL-8V, BL-5V, N5=5
Write as V. 1tWL=O during precharge
V, BL-5V, Ns -5V. Therefore WL=8
When V, 5V appears on BL, and 11111 is read.

このように構成される本実施例のdRAMは、次のよう
な利点を持つ。先ず本実施例のメモリセルは凸部の側壁
に形成された縦型MOSFETとこれに重ねられたMO
Sキャパシタとから構成され、しかもストライプ状に走
る凸部の両側壁にそれぞれメモリセルが形成されるため
、高密度、高集積化が図られる。また一方向に連続的に
形成されたキャパシタの第2の電極をピット線としてい
ることから、メモリセル部にコンタクトを要しないこと
も高集積化にとって非常に有効となっている。また情報
電荷を蓄積するMOSキャパシタと基板11との間はM
OSFETのドレイン領域となるn+型層12で隔てら
れているため、ソフトエラーに対して強くなっている。
The dRAM of this embodiment configured as described above has the following advantages. First, the memory cell of this embodiment consists of a vertical MOSFET formed on the side wall of the convex portion and an MOSFET superimposed on this.
Furthermore, since memory cells are formed on both side walls of the convex portion running in a stripe pattern, high density and high integration can be achieved. Further, since the second electrode of the capacitor formed continuously in one direction is used as a pit line, no contact is required in the memory cell portion, which is very effective for high integration. Furthermore, the distance between the MOS capacitor that stores information charge and the substrate 11 is M
Since they are separated by the n+ type layer 12 which becomes the drain region of the OSFET, they are resistant to soft errors.

更にMOSFETの基板領域であるp−型層13にα粒
子が入射した場合、発生した正孔は一3vが印加されて
いるp+型層17に吸収され、電子は5■が印加されて
いるn+型層12に吸収されるため、この意味でもソフ
トエラーに対して強くなっている。またMOSFETの
基板領域であるp−型層13はn+型層12により基板
11から分離されているが、p+型層17により一3V
に固定されている結果、フローティングになることはな
く安定したトランジスタ動作が得られる。更にワード線
を兼ねるゲート電極はストライプ状の凸部側壁に沿って
真直ぐ配設されており、これはマスクなしでRIEによ
り形成することができる。従ってプロセス的にも簡単に
なっており、高歩留りが期待できる。
Furthermore, when α particles are incident on the p-type layer 13, which is the substrate region of the MOSFET, the generated holes are absorbed by the p+-type layer 17 to which -3V is applied, and the electrons are absorbed by the n+-type layer 17 to which 5V is applied. Since it is absorbed by the mold layer 12, it is also resistant to soft errors in this sense. Furthermore, the p-type layer 13, which is the substrate region of the MOSFET, is separated from the substrate 11 by the n+-type layer 12, but the p+-type layer 17
As a result, stable transistor operation is obtained without floating. Furthermore, the gate electrode, which also serves as a word line, is arranged straight along the side wall of the striped convex portion, and can be formed by RIE without a mask. Therefore, the process is simple and a high yield can be expected.

第5図は本発明の他の実施例の第2図の断面に対応する
断面を示すものである。先の実施例と対応する部分には
同じ符号を付して詳細な説明は省略する。この実施例で
は、凸部表面の両側のn+型層16の間に溝22を掘っ
たものである。このような構造とすれば、n1型層16
の上面だけでなく側面をもキャパシタとして利用するこ
とになり、キャパシタ容量を大きくすることができ、よ
り好ましいメモリ特性が得られる。
FIG. 5 shows a cross section corresponding to the cross section of FIG. 2 of another embodiment of the present invention. Portions corresponding to those in the previous embodiment are given the same reference numerals and detailed explanations will be omitted. In this embodiment, a groove 22 is dug between the n+ type layers 16 on both sides of the surface of the convex portion. With such a structure, the n1 type layer 16
Since not only the top surface but also the side surface of the memory cell is used as a capacitor, the capacitance of the capacitor can be increased, and more preferable memory characteristics can be obtained.

第6図は更に他の実施例の第3図に対応する斜視図を示
すものである。先の実施例と対応する部分にはやはり同
じ符号を付して詳細な説明は省く。
FIG. 6 shows a perspective view corresponding to FIG. 3 of still another embodiment. Portions corresponding to those in the previous embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

先の実施例ではストライプ状の凸部の両側壁に対称的に
MOSFETを配列形成しているに対し、本実施例では
、互い違いにMOSFETを配列形成している。このよ
うな構造は例えば、限られたストライプ幅内で大きいキ
ャパシタ容量を実現したい場合に有効になる。
In the previous embodiment, the MOSFETs were arranged symmetrically on both side walls of the striped convex portion, whereas in this embodiment, the MOSFETs were arranged alternately. Such a structure is effective, for example, when it is desired to realize a large capacitor capacity within a limited stripe width.

本発明はその他、種々変形して実施することができる。The present invention can be implemented with various other modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のdRAMの模式的平面図、
第2図はそのA−A”断面図、第3図はMOSFETが
形成された状態を示す斜視図、第4図(a)〜(C)は
メモリセルの等価回路図および動作電圧関係を示す図、
第5図は他の実施例11・・・p−型3i基板、12・
・・n′″型層(ドレイン領域)、13・・・p−型層
、14・・・ゲート絶縁膜、15・・・ゲート電極(ワ
ード線)、16・・・n+型層(ソース領域兼キャパシ
タの第1の電極)、17・・・p+型層(分離層)、1
8・・・キャパシタ絶縁膜、19・・・キャパシタの第
2の電極 (ビット線)、20・・・コンタクト孔、2
1・・・電源配線。 第2図 第3図 第4図 第5因 第6図 第7図
FIG. 1 is a schematic plan view of a dRAM according to an embodiment of the present invention;
Figure 2 is a cross-sectional view taken along the line A-A'', Figure 3 is a perspective view showing the state in which the MOSFET is formed, and Figures 4 (a) to (C) are equivalent circuit diagrams and operating voltage relationships of the memory cell. figure,
FIG. 5 shows another example 11... p-type 3i substrate, 12...
...n''' type layer (drain region), 13...p- type layer, 14... gate insulating film, 15... gate electrode (word line), 16... n+ type layer (source region 17...p+ type layer (separation layer), 1
8... Capacitor insulating film, 19... Capacitor second electrode (bit line), 20... Contact hole, 2
1...Power wiring. Figure 2 Figure 3 Figure 4 Figure 5 Cause Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板に、MOSFETとMOSキャパシタ
からなるメモリセルを集積して構成される半導体記憶装
置において、前記メモリセルは、周期的なストライプ状
の凹凸が形成された半導体基板の凸部上面に各メモリセ
ル毎に独立に形成されたソース領域、凸部の底面に設け
られたドレイン領域および凸部の側壁に連続的に配設さ
れたゲート電極からなるMOSFETと、このMOSF
ETのソース領域を第1の電極としこの上に絶縁膜を介
して第2の電極を形成してなるMOSキャパシタとから
構成され、かつ前記凸部に、各MOSFETのソース領
域間を分離する、固定電位が与えられる高不純物濃度層
を有することを特徴とする半導体記憶装置。
(1) In a semiconductor memory device configured by integrating memory cells consisting of MOSFETs and MOS capacitors on a semiconductor substrate, the memory cells are arranged on the upper surface of a convex portion of the semiconductor substrate on which periodic striped concavities and convexities are formed. This MOSFET consists of a source region formed independently for each memory cell, a drain region provided on the bottom surface of the convex portion, and a gate electrode continuously arranged on the side wall of the convex portion, and this MOSFET.
a MOS capacitor in which the source region of the ET is used as a first electrode and a second electrode is formed thereon via an insulating film, and the source region of each MOSFET is separated in the convex portion; A semiconductor memory device characterized by having a high impurity concentration layer to which a fixed potential is applied.
(2)前記MOSFETのドレイン領域は全メモリセル
に共通の高不純物濃度層により形成され、ひとつの凸部
の両側壁に連続的に配設されるゲート電極はそれぞれ異
なるワード線を構成し、前記MOSキャパシタの第2の
電極が前記ゲート電極と交差する方向に連続的に配設さ
れてビット線を構成する特許請求の範囲第1項記載の半
導体記憶装置。
(2) The drain region of the MOSFET is formed of a high impurity concentration layer common to all memory cells, and the gate electrodes continuously arranged on both side walls of one convex portion constitute different word lines, and the 2. The semiconductor memory device according to claim 1, wherein the second electrode of the MOS capacitor is disposed continuously in a direction intersecting the gate electrode to form a bit line.
JP59263303A 1984-12-13 1984-12-13 Semiconductor memory device Pending JPS61140170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263303A JPS61140170A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263303A JPS61140170A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS61140170A true JPS61140170A (en) 1986-06-27

Family

ID=17387599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263303A Pending JPS61140170A (en) 1984-12-13 1984-12-13 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS61140170A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114248A (en) * 1986-10-31 1988-05-19 Texas Instr Japan Ltd Semiconductor integrated circuit device
US5034341A (en) * 1988-03-08 1991-07-23 Oki Electric Industry Co., Ltd. Method of making a memory cell array structure
US5315143A (en) * 1992-04-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. High density integrated semiconductor device
US5874760A (en) * 1997-01-22 1999-02-23 International Business Machines Corporation 4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation
US5929477A (en) * 1997-01-22 1999-07-27 International Business Machines Corporation Self-aligned diffused source vertical transistors with stack capacitors in a 4F-square memory cell array
US5990509A (en) * 1997-01-22 1999-11-23 International Business Machines Corporation 2F-square memory cell for gigabit memory applications
US6013548A (en) * 1997-01-22 2000-01-11 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
US6124729A (en) * 1998-02-27 2000-09-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6556068B2 (en) 1998-02-26 2003-04-29 Micron Technology, Inc. Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits
DE10306281A1 (en) * 2003-02-14 2004-09-02 Infineon Technologies Ag Arrangement of vertical transistor cells for dynamic read-write memory has active regions joining at least transistor cells adjacent in x-direction; charge transport is enabled between such cells
US6804142B2 (en) 2002-11-12 2004-10-12 Micron Technology, Inc. 6F2 3-transistor DRAM gain cell
US6838723B2 (en) 2002-08-29 2005-01-04 Micron Technology, Inc. Merged MOS-bipolar capacitor memory cell
US6956256B2 (en) 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
JP2007201454A (en) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd Semiconductor device and its manufacturing method
JP2008282459A (en) * 2007-05-08 2008-11-20 Elpida Memory Inc Semiconductor storage device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114248A (en) * 1986-10-31 1988-05-19 Texas Instr Japan Ltd Semiconductor integrated circuit device
US5034341A (en) * 1988-03-08 1991-07-23 Oki Electric Industry Co., Ltd. Method of making a memory cell array structure
US5315143A (en) * 1992-04-28 1994-05-24 Matsushita Electric Industrial Co., Ltd. High density integrated semiconductor device
US5409850A (en) * 1992-04-28 1995-04-25 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a high density semiconductor device
US5874760A (en) * 1997-01-22 1999-02-23 International Business Machines Corporation 4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation
US5929477A (en) * 1997-01-22 1999-07-27 International Business Machines Corporation Self-aligned diffused source vertical transistors with stack capacitors in a 4F-square memory cell array
US5990509A (en) * 1997-01-22 1999-11-23 International Business Machines Corporation 2F-square memory cell for gigabit memory applications
US6013548A (en) * 1997-01-22 2000-01-11 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
US6034389A (en) * 1997-01-22 2000-03-07 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
US6033957A (en) * 1997-01-22 2000-03-07 International Business Machines Corporation 4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation
US6077745A (en) * 1997-01-22 2000-06-20 International Business Machines Corporation Self-aligned diffused source vertical transistors with stack capacitors in a 4F-square memory cell array
US6556068B2 (en) 1998-02-26 2003-04-29 Micron Technology, Inc. Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits
US6674672B2 (en) 1998-02-26 2004-01-06 Micron Technology, Inc. Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits
US6124729A (en) * 1998-02-27 2000-09-26 Micron Technology, Inc. Field programmable logic arrays with vertical transistors
US6838723B2 (en) 2002-08-29 2005-01-04 Micron Technology, Inc. Merged MOS-bipolar capacitor memory cell
US6940761B2 (en) 2002-08-29 2005-09-06 Micron Technology, Inc. Merged MOS-bipolar capacitor memory cell
US6804142B2 (en) 2002-11-12 2004-10-12 Micron Technology, Inc. 6F2 3-transistor DRAM gain cell
US6975531B2 (en) 2002-11-12 2005-12-13 Micron Technology, Inc. 6F2 3-transistor DRAM gain cell
DE10306281A1 (en) * 2003-02-14 2004-09-02 Infineon Technologies Ag Arrangement of vertical transistor cells for dynamic read-write memory has active regions joining at least transistor cells adjacent in x-direction; charge transport is enabled between such cells
US7109544B2 (en) 2003-02-14 2006-09-19 Infineon Technologies Ag Architecture for vertical transistor cells and transistor-controlled memory cells
DE10306281B4 (en) * 2003-02-14 2007-02-15 Infineon Technologies Ag Arrangement and method for the production of vertical transistor cells and transistor-controlled memory cells
US6956256B2 (en) 2003-03-04 2005-10-18 Micron Technology Inc. Vertical gain cell
JP2007201454A (en) * 2006-01-26 2007-08-09 Samsung Electronics Co Ltd Semiconductor device and its manufacturing method
JP2008282459A (en) * 2007-05-08 2008-11-20 Elpida Memory Inc Semiconductor storage device

Similar Documents

Publication Publication Date Title
EP0175433B1 (en) Mos dynamic ram and manufacturing method thereof
JP4559728B2 (en) Semiconductor memory device
US7241658B2 (en) Vertical gain cell
KR950010393B1 (en) Semiconductor memory device
US7151024B1 (en) Long retention time single transistor vertical memory gain cell
JP2508288B2 (en) Semiconductor memory device
US7271052B1 (en) Long retention time single transistor vertical memory gain cell
TW511279B (en) Semiconductor memory device and its manufacturing method
US4855953A (en) Semiconductor memory device having stacked memory capacitors and method for manufacturing the same
JPS61140170A (en) Semiconductor memory device
US5243209A (en) Semiconductor memory device including junction field effect transistor and capacitor and method of manufacturing the same
JPH0337315B2 (en)
JPS6114747A (en) Memory
JPH0766659B2 (en) Semiconductor memory device
JPS61140172A (en) Semiconductor memory device
US4961095A (en) Semiconductor memory device with word lines adjacent and non-intersecting with capacitor grooves
KR890003372B1 (en) Dram access memory array
JP2554332B2 (en) 1-transistor type dynamic memory cell
JP2001102549A (en) Semiconductor memory
JPH06105770B2 (en) Dynamic semiconductor memory device
JPS61140171A (en) Semiconductor memory device
JPH0691216B2 (en) Semiconductor memory device
JPH01128563A (en) Semiconductor memory
JP2825039B2 (en) Semiconductor storage device
JPS63209158A (en) One-transistor type dynamic memory cell