JPH02146106A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH02146106A
JPH02146106A JP63300154A JP30015488A JPH02146106A JP H02146106 A JPH02146106 A JP H02146106A JP 63300154 A JP63300154 A JP 63300154A JP 30015488 A JP30015488 A JP 30015488A JP H02146106 A JPH02146106 A JP H02146106A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
recording medium
magnetic recording
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63300154A
Other languages
Japanese (ja)
Other versions
JP2843342B2 (en
Inventor
Kazuharu Iwasaki
和春 岩崎
Masashi Meguro
目黒 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63300154A priority Critical patent/JP2843342B2/en
Publication of JPH02146106A publication Critical patent/JPH02146106A/en
Application granted granted Critical
Publication of JP2843342B2 publication Critical patent/JP2843342B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the magnetic recording medium which exhibits high output and high CN in either of long wavelength and short wavelength regions by regulating the coercive force distribution when the angle of inclination in the impressed magnetic field direction with respect to the normal direction of a magnetic layer is changed. CONSTITUTION:The coercive force is measured while the angle theta formed by the normal direction and the impressed magnetic field direction is changed within one plane orthogonal with the magnetic layer of the coating type magnetic recording medium formed with the magnetic layer contg. acicular magnetic powder. A hysteresis curve is then recorded. The coercive force has the max. value in 0 deg.<=theta<=30 deg. and -60 deg.<=theta<=-30 deg. ranges respectively and has the min. value at -30 deg.<=theta<0 deg.. The max. value is made larger than the coercive force in the intra-surface direction (theta=90 deg.) and the min. value is made smaller than the coercive force in the intra-surface direction. The coercive force curve is, therefore, asymmetrical with the normal direction of the medium as a center. The such magnetic recording medium is preferably obtd. by previously orienting the magnetic layer in the longitudinal direction, then diagonally orienting the same.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塗布型の磁気記録媒体に関するものであり、
特にその電磁変換特性の改善に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coated magnetic recording medium.
In particular, it relates to the improvement of its electromagnetic conversion characteristics.

〔発明の概要] 本発明は、針状磁性粉末を含有する6n性層が形成され
てなる磁気記録媒体において、磁性層の法線方向に対し
て印加磁界方向の傾斜角θを変化させたときの保磁力分
布を規定することにより、長波長域、短波長域のいずれ
においても高出力を発揮する磁気記録媒体を提供しよう
とするものである。
[Summary of the Invention] The present invention provides a magnetic recording medium in which a 6n layer containing acicular magnetic powder is formed, when the inclination angle θ of the direction of the applied magnetic field is changed with respect to the normal direction of the magnetic layer. By defining the coercive force distribution, it is intended to provide a magnetic recording medium that exhibits high output in both the long wavelength region and the short wavelength region.

〔従来の技術〕[Conventional technology]

例えば、オーディオテープレコーダやビデオテープレコ
ーダ等に使用される磁気記録媒体としては、針状磁性粉
末を磁性層中に面内方向(特に媒体の長手方向)に配向
したものが広く使用されている。
For example, as magnetic recording media used in audio tape recorders, video tape recorders, etc., media in which acicular magnetic powder is oriented in the in-plane direction (particularly in the longitudinal direction of the medium) in a magnetic layer are widely used.

そして、通常この長手方向への配向処理は、例えば永久
磁石、電磁石等を用い、媒体長手方向に磁性粉末の保磁
力よりも大きな磁場を印加することにより、当該磁性粉
末の向きを強制的に非磁性支持体の長手方向に向けるよ
うにして行われる。
Normally, this longitudinal orientation treatment is performed by forcibly changing the orientation of the magnetic powder by applying a magnetic field greater than the coercive force of the magnetic powder in the longitudinal direction of the medium using, for example, a permanent magnet or an electromagnet. The magnetic support is oriented in the longitudinal direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、磁気記録の分野5特にビデオテープレコーダ
等においては、高画質化等を図るために、より一層の高
密度記録化が要請されており、長波長域から短波長域に
亘り高出力を発揮する磁気記録媒体が必要とされている
By the way, in the field of magnetic recording5, especially in video tape recorders, etc., there is a demand for even higher density recording in order to achieve higher image quality, etc., and magnetic recording devices that exhibit high output from long wavelength ranges to short wavelength ranges are required. There is a need for a magnetic recording medium that can

しかしながら、これまで用いられている長手配向磁気記
録媒体では、特に短波長域での高出力。
However, the longitudinally oriented magnetic recording media used so far have a high output, especially in the short wavelength range.

高CN比を確保するのは難しい。It is difficult to ensure a high CN ratio.

そこで本発明は、かかる従来の実情に鑑みて提案された
ものであって、長波長域から短波長域に亘って高出力、
高CN比を発揮する磁気記録媒体を提供することを目的
とする。
Therefore, the present invention has been proposed in view of the conventional situation, and it provides high output power and
An object of the present invention is to provide a magnetic recording medium that exhibits a high CN ratio.

(課題を解決するための手段) 本発明者等は、前述の目的を達成するために種々検討を
重ねた結果、保磁力!1 cの分布が媒体の法線方向を
中心として左右非対称となることが有効であるとの知見
を得るに至った。
(Means for Solving the Problems) As a result of various studies to achieve the above-mentioned object, the present inventors found that coercive force! It has been found that it is effective for the distribution of 1c to be asymmetrical with respect to the normal direction of the medium.

本発明は、かかる知見に基づいて完成されたものであっ
て、針状磁性粉末を含有する磁性層が形成されてなる磁
気記録媒体において、前記磁性層に対して直交する一平
面内で法線方向と印加磁界方向のなす角θを変化させな
がら保磁力を測定したときに、 0° ≦θ≦30″ 及び 60″ ≦θ≦−30゜ にそれぞれ極大値を有するとともに、 306≦θくO@ に極小値を有し、かつ面内方向での保磁力よりも前記極
大値が大きく極小値が小さいことを特徴とするものであ
る。
The present invention has been completed based on such knowledge, and provides a magnetic recording medium in which a magnetic layer containing acicular magnetic powder is formed, in which a normal line within a plane orthogonal to the magnetic layer is formed. When the coercive force is measured while changing the angle θ between the direction and the direction of the applied magnetic field, it has maximum values at 0°≦θ≦30″ and 60″≦θ≦−30°, and 306≦θ≦O It has a minimum value in @, and is characterized in that the maximum value is larger and the minimum value is smaller than the coercive force in the in-plane direction.

すなわち、先ず第1図に示すようなテープ等の媒体面(
11)を考える。そして、この媒体面(11)上の点0
における法線Zを中心として、該法線Zを含む垂直な一
平面〔以下、法面と称する。) (12)内で印加磁界
(Hex)方向の傾斜角(以下、磁界印加角度と称する
。)θを一90°〜90°の範囲で変化させながらヒス
テリシス曲線を記録する。したがって、印加磁界(He
x)の方向が法線Zと家政したときがθ=0°1面内方
向(X方向)と−致したときがθ−90°9面内方向(
x’力方向と一致したときがθ−−90°ということに
なる。
That is, first, as shown in Fig. 1, the medium surface (
Consider 11). Then, point 0 on this medium surface (11)
A perpendicular plane (hereinafter referred to as a slope) centered on the normal Z in . ) Record the hysteresis curve while changing the inclination angle (hereinafter referred to as magnetic field application angle) θ of the direction of the applied magnetic field (Hex) within the range of -90° to 90° within (12). Therefore, the applied magnetic field (He
When the direction of
When it coincides with the x' force direction, it is θ--90°.

なお、前記法面は、61性層に対して任意の向きに設定
すれば良く、また傾斜角θの符号の取り方も任意であり
、いずれにしても磁性層のいずれかの法面で後述の特性
を満足すれば良い。
Note that the slope surface may be set in any direction with respect to the 61 magnetic layer, and the sign of the tilt angle θ may be arbitrary. It is sufficient if the characteristics of

ただし、通常は磁性層中の針状磁性粉末の配向方向から
前記法面が決められ、例えば第2図に模式的に示すよう
に、法線Zと非磁性支持体(13)上に形成された磁性
層(14)中の針状磁性粉末(!5)の配向方向Yを含
む面が法面とされる。また、傾斜角θの符号は、法線Z
を基準(0°)として、前記配向方向と同し向きに傾斜
さ仕る場合(法線Zに対して図中右回り方向に1頃斜さ
せる場合)をプラス これとは逆の向きに傾斜させる場
合(法線Zに対して図中左回り方向に傾斜させる場合)
をマイナスとする。この場合、一般的には前記面内方向
x −x ’がテープ走行方向(ディスク状媒体の場合
にはディスクの接線方向)である。
However, the slope is usually determined from the orientation direction of the acicular magnetic powder in the magnetic layer, and for example, as schematically shown in FIG. The plane including the orientation direction Y of the acicular magnetic powder (!5) in the magnetic layer (14) is defined as a slope. Also, the sign of the inclination angle θ is the normal Z
is the reference (0°), and if it is tilted in the same direction as the orientation direction (if it is tilted about 1 in the clockwise direction in the figure with respect to the normal Z), plus it is tilted in the opposite direction. (When tilting counterclockwise in the figure with respect to the normal Z)
is a negative value. In this case, generally the in-plane direction x-x' is the tape running direction (in the case of a disk-shaped medium, the tangential direction of the disk).

次に、各ヒステリシス曲線から保磁力Hcを求め、これ
を上記磁界印加角度θに対してプロットすると、例えば
第3図に示すようなi(c−0曲線(以下、これを保磁
力曲線と称する。)が得られる。
Next, the coercive force Hc is obtained from each hysteresis curve and plotted against the above magnetic field application angle θ. .) is obtained.

通常の長手配向磁気記録媒体では、この保磁力曲線がθ
−0°のときに極小値をとり、かつθ=0°を中心とし
て一90’ 〜90’の範囲で極大値の位置が左右対称
となる。
In a normal longitudinally oriented magnetic recording medium, this coercive force curve is θ
The minimum value is taken at -0°, and the position of the maximum value is symmetrical in the range of -90' to 90' with θ=0° as the center.

これに対して、本発明の磁気記録媒体では、極小値がθ
−0°から若干ずれており、また極大値も0″≦θ≦3
0″′及び−60″′≦θ≦−30@の範囲にシフトし
、したがって保磁力曲線は左右非対称となっている。
In contrast, in the magnetic recording medium of the present invention, the minimum value is θ
It deviates slightly from -0°, and the maximum value is also 0″≦θ≦3
0″' and -60″'≦θ≦−30@, and therefore the coercive force curve is left-right asymmetrical.

さらに、この保磁力曲線における極大値、極小値も明瞭
で、特に極大値は面内方向(θ−90°)での保磁力よ
りも大きくなっている。
Further, the maximum and minimum values in this coercive force curve are also clear, and in particular, the maximum value is larger than the coercive force in the in-plane direction (θ-90°).

このような特性を有する磁気記録媒体を作成するには、
針状磁性粉末を磁性層面に対して斜めに配向すればよい
が、この場合単に斜め配向させる方法によったのでは配
向が不十分で、極大値や極小値のピークが不明瞭となり
易く、またこれらピークの位置が前述の範囲から外れ、
極大値と極小値の差も小さくなる傾向にある。
To create a magnetic recording medium with such characteristics,
It is possible to orient the acicular magnetic powder obliquely to the surface of the magnetic layer, but in this case, simply using an oblique orientation method will result in insufficient orientation, and the peaks of maximum and minimum values will likely become unclear. The positions of these peaks are outside the range mentioned above,
The difference between the maximum value and the minimum value also tends to become smaller.

したがって、確実に前述の特性を有する磁気記録媒体を
得るには、予め長手配向させた後、斜め配向させること
が好ましい。
Therefore, in order to reliably obtain a magnetic recording medium having the above-mentioned characteristics, it is preferable to perform longitudinal orientation in advance and then perform oblique orientation.

かかる方法によれば、針状磁性f5)末が斜めに配向さ
れ易くなり、極大値及び極小値のピークが明瞭なものと
なり、しかもその位置が確実に前述の範囲に入る。
According to this method, the acicular magnetic f5) ends are easily oriented obliquely, the peaks of the maximum value and the minimum value become clear, and their positions are reliably within the above-mentioned range.

なお、長手配向のための方法としては、通常の長手配向
技術がいずれも採用でき、例えば直流磁場を印加できる
ものであれば永久磁石、電磁石のいずれを用いてもよい
。また、斜め配向のための方法としても、永久磁石を用
いる方法、電iff石(直流または交流)を用いる方法
等、如何なるものであってもよい−ただし、斜め配向を
行うに際しては、第2図に示すようにマグネットMMを
配置したときに、印加6n界の向きψが、Iff性層面
に対して20°〈ψ〈8o° の範囲にあることが好ま
しい。
Note that as a method for longitudinal orientation, any ordinary longitudinal orientation technique can be employed, and for example, either a permanent magnet or an electromagnet may be used as long as a direct current magnetic field can be applied. In addition, any method may be used for oblique orientation, such as a method using a permanent magnet or a method using an IFF magnet (DC or AC).However, when performing oblique orientation, When the magnet MM is arranged as shown in FIG. 2, it is preferable that the direction ψ of the applied 6n field is in the range of 20°<ψ<8o° with respect to the Iff layer surface.

本発明が対象とする磁気記録媒体は、針状磁性粉末を結
合剤とともに非磁性支持体上に塗布してiff性層が形
成される。いわゆる塗布型の磁気記録媒体であるが、結
合剤として使用される樹脂は、この種の磁気記録媒体に
使用されるものであれば如何なるものであってもよい。
In the magnetic recording medium to which the present invention is directed, an IF layer is formed by applying acicular magnetic powder together with a binder onto a nonmagnetic support. Although this is a so-called coating type magnetic recording medium, any resin used as a binder may be used as long as it is used in this type of magnetic recording medium.

例示するならば、塩化ビニル−酢酸ビニル共重合体、塩
化ビニル−酢酸ビニル−ビニルアルコール共重合体、塩
化ビニル−酢酸ビニル−マレイン酸共重合体、塩化ビニ
ル−塩化ビニリデン共重合体、塩化ビニル−アクリロニ
トリル共重合体、アクリル酸エステル−アクリロニトリ
ル共重合体アクリル酸エステル−塩化ビニリデン共重合
体メタクリル酸エステル−塩化ビニリデン共重合体。
Examples include vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, vinyl chloride-vinyl acetate-maleic acid copolymer, vinyl chloride-vinylidene chloride copolymer, and vinyl chloride-vinylidene chloride copolymer. Acrylonitrile copolymer, acrylic ester-acrylonitrile copolymer, acrylic ester-vinylidene chloride copolymer, methacrylic ester-vinylidene chloride copolymer.

メタクリル酸エステル−スチレン共重合体、熱可塑性ポ
リウレタン樹脂、ポリ弗化ビニル、塩化ビニリデン−ア
クリロニトリル共重合体、ブタジェン−アクリロニトリ
ル共重合体、アクリロニトリル−ブタジェン−メタクリ
ル酸共重合体、ポリビニルブチラール、セルロースMH
体、スチレンブタジェン共重合体、ポリエステル樹脂、
フェノール樹脂、エポキシ樹脂、熱硬化性ポリウレタン
樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂。
Methacrylic acid ester-styrene copolymer, thermoplastic polyurethane resin, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymer, butadiene-acrylonitrile copolymer, acrylonitrile-butadiene-methacrylic acid copolymer, polyvinyl butyral, cellulose MH
body, styrene-butadiene copolymer, polyester resin,
Phenolic resin, epoxy resin, thermosetting polyurethane resin, urea resin, melamine resin, alkyd resin.

尿素−ホルムアルデヒド樹脂またはこれらの混合物等で
ある。
Such as urea-formaldehyde resin or a mixture thereof.

針状磁性粉末も、通常この種の磁気記録媒体に使用され
るものであればいずれも使用でき、強磁性酸化鉄系磁性
粉末や強磁性二酸化クロム系磁性粉末1強磁性金属系磁
性tjl末(いわゆるメタルパウダー)、窒化鉄系磁性
粉末等が使用できる。
Any acicular magnetic powder that is normally used in this type of magnetic recording medium can be used, such as ferromagnetic iron oxide magnetic powder, ferromagnetic chromium dioxide magnetic powder 1, ferromagnetic metal magnetic TJL powder ( So-called metal powder), iron nitride magnetic powder, etc. can be used.

なお、磁性層には、これら結合剤や針状磁性粉末の他、
分散剤、研磨剤、帯電防止剤、防錆剤5潤滑剤等、各種
添加剤が加えられていてもよい。
In addition to these binders and acicular magnetic powder, the magnetic layer also contains
Various additives such as a dispersant, an abrasive, an antistatic agent, a rust preventive agent, and a lubricant may be added.

また非6fi性支持体の材質も問わないが、加工性成形
性等の点で有機高分子体が適しており、なかでもポリエ
ステル頬、ポリオレフィン類、ポリアクリレート類、ポ
リカーボネート ポリスルフォン、ポリアミド、芳香族
ポリアミド、ポリフェニレンスルフィド、ポリフェニレ
ンオキサイド、ポリアミドイミド、ポリイミド、ポリ塩
化ビニル。
The material of the non-6fi support does not matter, but organic polymers are suitable in terms of processability, moldability, etc. Among them, polyester, polyolefins, polyacrylates, polycarbonate, polysulfone, polyamide, aromatic Polyamide, polyphenylene sulfide, polyphenylene oxide, polyamideimide, polyimide, polyvinyl chloride.

ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテト
ラフルオロエチレン、酢酸セルロース、メチルセルロー
ス、エチルセルロース、エポキシ樹脂、ウレタン樹脂、
あるいはこれらの混合物や共重合体等が適している。こ
れらの非磁性支持体は、磁性層を形成するに先立ち、接
着性の向上、平面性の改良0着色、帯電防止、耐摩耗性
の付与等の目的で、表面処理や前処理が行われていても
よい。
Polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, cellulose acetate, methylcellulose, ethylcellulose, epoxy resin, urethane resin,
Alternatively, mixtures and copolymers thereof are suitable. Prior to forming the magnetic layer, these nonmagnetic supports are subjected to surface treatment or pretreatment for the purpose of improving adhesion, improving flatness, coloring, preventing static electricity, imparting wear resistance, etc. You can.

磁気記録媒体の形態としては、ドラム状、ディスク状、
シート状、テープ状、カード状等、いずれであってもよ
いが、配向性を問題とするものであるので、テープ状媒
体に適用して好適である。
The forms of magnetic recording media are drum-shaped, disk-shaped,
The medium may be in the form of a sheet, tape, card, etc., but since orientation is a problem, it is suitable for application to tape-like media.

〔作用〕[Effect]

針状磁性粉末を用いた塗布型磁気記録媒体において、 i)法面内での磁化測定において、印加磁界方向と膜面
法線方向とのなす角をθとした場合、0゜≦θ≦30°
及び−60゜≦θ≦−30°の範囲内に保磁力の極大値
を持つこと、 ii)同様に一30°≦θ〈O“の範囲内に保磁力の極
小値を持つこと、 iii )同様に膜面内方向の保磁力より極大値が大き
く、極小値が小さいこと、 なる条件に設定することによって、電磁変換特性上、特
に短波長域においても高出力、高C/Nが得られる。
In a coated magnetic recording medium using acicular magnetic powder, i) When measuring magnetization on a slope, if the angle between the direction of the applied magnetic field and the normal direction of the film surface is θ, then 0°≦θ≦30. °
and having a maximum value of coercive force within the range of -60°≦θ≦-30°, ii) Similarly, having a minimum value of coercive force within the range of -30°≦θ〈O“, iii) Similarly, by setting the conditions such that the maximum value is larger and the minimum value is smaller than the coercive force in the in-plane direction, high output and high C/N can be obtained in terms of electromagnetic conversion characteristics, especially in the short wavelength range. .

〔実施例〕〔Example〕

以下、本発明を具体的な実施例に基づいて説明する。 The present invention will be described below based on specific examples.

実省11上 先ず、保磁ノJ1363エルステッドの針状磁性粉末を
結合剤に分散させて磁性塗料を調製し、これを非磁性支
持体上に塗布した。
First, a magnetic paint was prepared by dispersing acicular magnetic powder of J1363 Oersted in a binder, and this was coated on a non-magnetic support.

次いで、第4図に示すように、この塗布型の磁気記録媒
体(20)を矢印へ方向に走行させなから長手配向用電
磁石(21)により2にガウスの強さの長手配向磁界を
印加し、磁性層中の針状磁性粉末を長手配向させた。
Next, as shown in FIG. 4, before the coated magnetic recording medium (20) is moved in the direction of the arrow, a longitudinal direction magnetic field of Gaussian strength is applied to 2 by a longitudinal direction electromagnet (21). was applied to longitudinally orient the acicular magnetic powder in the magnetic layer.

さらに、永久磁石(22)により媒体面に対して斜め方
向に直流磁場を印加し、斜め配向(45’)を施した。
Furthermore, a direct current magnetic field was applied in an oblique direction to the medium surface using a permanent magnet (22) to provide oblique orientation (45').

実J[ 斜め配向の角度を75゛とし、他は実施例1に準じて磁
気記録媒体を作成した。
A magnetic recording medium was prepared according to Example 1 except that the angle of diagonal orientation was 75°.

、旧教」ロー 実施例1と同様の長手配向用電磁石により長手配向のみ
行い、他は実施例1に準じて磁気記録媒体を作成した。
A magnetic recording medium was produced in accordance with Example 1 except that only the longitudinal direction was performed using the same longitudinal direction electromagnet as in Example 1.

此lu辻λ 先ず、保磁力1363エルステツドの針状磁性粉末を結
合剤に分散させて磁性塗料を調製し、これを非磁性支持
体上に塗布した。
First, a magnetic paint was prepared by dispersing acicular magnetic powder with a coercive force of 1363 oersted in a binder, and this was coated on a non-magnetic support.

次いで、永久磁石(5にガウス)により6f1性層中の
針状磁性粉末を膜面に対して垂直方向に配向させ、垂直
配向磁気記録媒体を作成した。
Next, the acicular magnetic powder in the 6f1 layer was oriented in a direction perpendicular to the film surface using a permanent magnet (5 Gauss) to produce a vertically oriented magnetic recording medium.

これら実施例並びに比較例の磁気記録媒体について、磁
化測定〔印加磁界を媒体走行方向(針状!n性粉末の配
向方向)と一致する法面(したがって、第1図において
X方向が媒体走行方向ということになる。)内で法線方
向に対して変化させながら保磁力を測定〕を行った。結
果を第5図に示す。
Regarding the magnetic recording media of these Examples and Comparative Examples, magnetization measurements were performed [the applied magnetic field was applied to a slope surface that coincided with the medium running direction (orientation direction of the acicular! n-type powder) (therefore, in FIG. 1, the X direction was the medium running direction). This means that the coercive force was measured while changing it in the normal direction within ). The results are shown in Figure 5.

この第5図を見ると、本発明を通用した各実施例の保[
fl力曲線は、左右非対称であって、■O゜≦θ≦30
°及び−60゜≦θ≦−30゛ に保磁力の極大値を持
つ。
Looking at this FIG.
The fl force curve is asymmetrical, and ■O゜≦θ≦30
It has a maximum coercive force at ° and -60°≦θ≦-30°.

■−30” ≦θ<Q’ に保磁力の極小値を持つ。■Has a minimum value of coercive force at −30”≦θ<Q’.

0面内方向(90°)での保iff力よりも極大値が大
きい。
The maximum value is larger than the holding force in the 0-plane direction (90°).

0面内方向(90°)での保磁力よりも極小値が小さい
The minimum value is smaller than the coercive force in the 0-plane direction (90°).

なる条件をいずれも満たしていることがわかる。It can be seen that both conditions are satisfied.

これに対して、比較例1の磁気記録媒体(長手配向磁気
記録媒体)では、保磁力[III線は左右対称で、極小
値はθ−〇°で、極大値も先の条件■から外れているこ
とがわかる。
On the other hand, in the magnetic recording medium of Comparative Example 1 (longitudinally oriented magnetic recording medium), the coercive force [III line is symmetrical, the minimum value is θ-〇°, and the maximum value also deviates from the previous condition You can see that

また、比較例2の磁気記録媒体(垂直配向磁気記録媒体
)は、θ=0°付近に極大値を有するのみである。
Further, the magnetic recording medium of Comparative Example 2 (vertically oriented magnetic recording medium) only has a maximum value near θ=0°.

そこで、実施例1のiff気記録媒体と、各比較例のC
11気記録媒体の電磁変換特性上 波長依存性)を調べた。結果を第6図に示す。
Therefore, the IF recording medium of Example 1 and the C of each comparative example.
The wavelength dependence of the electromagnetic conversion characteristics of the 11K recording medium was investigated. The results are shown in Figure 6.

この第6図を見ると、長手配向磁気記録媒体では短波長
域での出力低下が大きく、逆に垂直配向磁気記録媒体で
は長波長域での出力の低下が大きい。
Looking at FIG. 6, it can be seen that the longitudinally oriented magnetic recording medium has a large output drop in the short wavelength range, and the vertically oriented magnetic recording medium has a large output drop in the long wavelength range.

これに対して、実施例1の磁気記録媒体は、これら両者
の長所を併せ持ち、長波長域から短波長域に亘り、良好
な再生出力を発揮することがわかる。
On the other hand, it can be seen that the magnetic recording medium of Example 1 has both of these advantages and exhibits good reproduction output over a long wavelength range to a short wavelength range.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の磁気記録媒
体においては、磁性層の法線方向に対して印加磁界方向
の傾斜角θを変化させたときの保磁力分布を規定してい
るので、長波長域、短波長域のいずれにおいても高出力
を発揮し、高C/Hの磁気記録媒体を提供することがで
きる。
As is clear from the above explanation, in the magnetic recording medium of the present invention, the coercive force distribution is defined when the inclination angle θ of the direction of the applied magnetic field is changed with respect to the normal direction of the magnetic layer. It is possible to provide a magnetic recording medium that exhibits high output in both the long wavelength region and the short wavelength region, and has a high C/H.

示す特性図である。FIG.

第4図は実施例で採用した配向手段を示す要部概略斜視
図である。
FIG. 4 is a schematic perspective view of essential parts showing the orientation means employed in the example.

第5図は実施例及び比較例で作成された411気記録媒
体の保磁力曲線を示す特性図である。
FIG. 5 is a characteristic diagram showing the coercive force curves of the 411K recording media prepared in Examples and Comparative Examples.

第6図は実施例及び比較例で作成された磁気記録媒体の
再生出力の記録波長依存性を示す特性図である。
FIG. 6 is a characteristic diagram showing the recording wavelength dependence of the reproduction output of the magnetic recording media prepared in the example and the comparative example.

特許出願人   ソニー株式会社 代理人 弁理士 小池 晃(他2名)Patent applicant: Sony Corporation Agent: Patent attorney Akira Koike (and 2 others)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は保磁力曲線を求める際の磁界印加角
度を説明するための模式図であり、第3図は長手配向G
11気記録媒体の保磁力曲線の一例を第1図 (面囚乃向)(寥忌方百)(面内方向)第3図 η 第2図 第4図 具生出力 i@−
Figures 1 and 2 are schematic diagrams for explaining the magnetic field application angle when determining the coercive force curve, and Figure 3 is a longitudinal direction G.
An example of the coercive force curve of a 11K recording medium is shown in Fig. 1 (in-plane direction) (in-plane direction) Fig. 3 η Fig. 2 Fig. 4 Raw output i@-

Claims (1)

【特許請求の範囲】 針状磁性粉末を含有する磁性層が形成されてなる磁気記
録媒体において、 前記磁性層に対して直交する一平面内で法線方向と印加
磁界方向のなす角θを変化させながら保磁力を測定した
ときに、 0゜≦θ≦30゜ 及び −60゜≦θ≦−30゜ にそれぞれ極大値を有するとともに、 −30゜≦θ<0゜ に極小値を有し、かつ面内方向での保磁力よりも前記極
大値が大きく極小値が小さいことを特徴とする磁気記録
媒体。
[Claims] In a magnetic recording medium formed with a magnetic layer containing acicular magnetic powder, the angle θ between the normal direction and the direction of the applied magnetic field is varied within a plane perpendicular to the magnetic layer. When the coercive force is measured while A magnetic recording medium characterized in that the maximum value is larger and the minimum value is smaller than the coercive force in the in-plane direction.
JP63300154A 1988-11-28 1988-11-28 Manufacturing method of magnetic recording medium Expired - Fee Related JP2843342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300154A JP2843342B2 (en) 1988-11-28 1988-11-28 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300154A JP2843342B2 (en) 1988-11-28 1988-11-28 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH02146106A true JPH02146106A (en) 1990-06-05
JP2843342B2 JP2843342B2 (en) 1999-01-06

Family

ID=17881396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300154A Expired - Fee Related JP2843342B2 (en) 1988-11-28 1988-11-28 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2843342B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758247A (en) * 1980-09-22 1982-04-07 Toshiba Corp Manufacture of vertical magnetic recording medium
JPS59151342A (en) * 1983-02-16 1984-08-29 Hitachi Maxell Ltd Magnetic recording medium and its manufacture
JPS62298002A (en) * 1986-06-17 1987-12-25 Hitachi Maxell Ltd Magnetic recording and reproducing method
JPS6366724A (en) * 1986-09-06 1988-03-25 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758247A (en) * 1980-09-22 1982-04-07 Toshiba Corp Manufacture of vertical magnetic recording medium
JPS59151342A (en) * 1983-02-16 1984-08-29 Hitachi Maxell Ltd Magnetic recording medium and its manufacture
JPS62298002A (en) * 1986-06-17 1987-12-25 Hitachi Maxell Ltd Magnetic recording and reproducing method
JPS6366724A (en) * 1986-09-06 1988-03-25 Hitachi Maxell Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JP2843342B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US4486496A (en) Magnetic recording medium
KR860000310B1 (en) Magnetic recording media
JPH04123312A (en) Magnetic recording medium for master
JPS6343811B2 (en)
JPH02146106A (en) Magnetic recording medium
JPS62208415A (en) Magnetic recording medium and its production
JP2803052B2 (en) Magnetic recording media
JPH0370854B2 (en)
JPH0349025A (en) Magnetic recording medium
JPS6146893B2 (en)
JPH0466048B2 (en)
JPH0562152A (en) Magnetic tape
JPH0349024A (en) Magnetic recording medium
JPH0773445A (en) Magnetic recording medium and recording method
JPH0489623A (en) Production of perpendicular magnetic recording medium
JPS62298018A (en) Magnetic recording medium and its production
JPH01251427A (en) Magnetic recording medium
JPS62239319A (en) Horizontally oriented magnetic recording medium and its recording and reproducing method
JPH06274876A (en) Orienting device for magnetic recording medium
JPH03224133A (en) Production of perpendicular magnetic recording medium
JPH02257428A (en) Production of perpendicular magnetic recording medium
JPH08263824A (en) Magnetic recording medium
JPS62277626A (en) Production of magnetic recording medium
JPH08106622A (en) Magnetic recording medium and its production
JPS62298002A (en) Magnetic recording and reproducing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees