JPH0214497B2 - - Google Patents

Info

Publication number
JPH0214497B2
JPH0214497B2 JP60113404A JP11340485A JPH0214497B2 JP H0214497 B2 JPH0214497 B2 JP H0214497B2 JP 60113404 A JP60113404 A JP 60113404A JP 11340485 A JP11340485 A JP 11340485A JP H0214497 B2 JPH0214497 B2 JP H0214497B2
Authority
JP
Japan
Prior art keywords
inorganic
inorganic particles
sound absorption
porosity
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60113404A
Other languages
Japanese (ja)
Other versions
JPS61270434A (en
Inventor
Yoshihiro Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11340485A priority Critical patent/JPS61270434A/en
Publication of JPS61270434A publication Critical patent/JPS61270434A/en
Publication of JPH0214497B2 publication Critical patent/JPH0214497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は道路、鉄道、工場等の防音壁等に使用
される広い周波数領域にわたつて優れた吸音特性
を示す無機質吸音材に関するものである。 (従来の技術) 従来から、屋外の防音壁等には耐水性、耐候
性、機械的強度に優れた無機質吸音材が用いられ
ている(例えば、内田安三他編、「遮断材料総
覧」、(昭和53、11、15)、産業技術センター、
P.653〜654)が、従来のこの種の無機質吸音材の
うち第3図に示されるような無機質粒子10をバ
インダによつて結合したものは粒子間にしか空隙
ができず空隙も小さいものであつたので、第2図
に従来品として示すとおり吸音率が特定周波数の
部分で強いピーク性を示し、広い周波数の騒音に
対する吸音特性としては必ずしも満足できないも
のであつた。またこのような吸音材の吸音特性を
改善するため無機質粒子の粒度や充填密度を変え
ることによつて空隙率や空隙径を変える試みもな
されているが、このタイプの吸音材は空隙率の上
限が50%程度であり空隙率を上げるためには粒度
を揃えて粗充填する必要があるため空隙が大きく
なり、空隙形状の複雑性が損なわれ空気の流れ抵
抗が小さくなつて吸音特性が低下し、逆に空隙率
を小さくすると空気の流れ抵抗が大きくなつてや
はり吸音特性が低下するため、有効な解決策を得
ることはできなかつた。更にまた、発泡ウレタン
等にセラミツク原料のスラリーを含浸させ、乾
燥、焼成して得られた第4図に示されるような空
隙率80〜90%の無機質吸音材もあるが、このもの
は空隙率は大きいが空隙径も大きいうえに骨格部
11が連通細孔を持たないので、やはり空隙形状
の複雑性に乏しく吸音率の周波数特性は強いピー
ク性を示すものであつた。 (発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決して、
幅広い周波数領域にわたり優れた吸音特性を備え
た無機質吸音材を目的として完成されたものであ
る。 (問題点を解決するための手段) 本発明は、粒度が3mm以下の無機質粒子が結合
材により相互に結合された焼結体であつて、その
内部には該無機質粒子からなる30〜50%の空隙率
を有する壁体に囲まれた多数の空洞部が形成さ
れ、全体としての空隙率が50〜80%であることを
特徴とするものである。 本発明において用いられる無機質粒子として
は、アルミナ、シリカ、コージエライト等の陶磁
器、耐火物等の無機材料を粉砕したもの、あるい
は造粒したものを用いることができ、比重、組
成、熱膨脹係数等は限定されるものではない。そ
の粒度を3mmを越すものが多量に混入すると無機
質粒子により形成された壁体の空隙径が大きくな
りすぎて吸音特性が低下するため、粒度は3mm以
下、より好ましくは0.1〜1.0mm程度とするべきで
ある。これらの無機質粒子は例えばその100容量
部に対してガラス質結合剤のような適当な結合剤
3〜40容量部とともに混合されて、それ自体が30
〜50%の空隙率を持つとともにその内部に無機質
粒子の壁体によつて囲まれた平均径が0.5〜5mm
程度の相互に連通する空洞部を形成するように焼
成される。壁体自体の空隙率は30%未満となると
緻密になりすぎて全体としての空気の流れ抵抗が
大きくなるため吸音特性が低下し、50%を上まわ
ると全体としての空気の流れ抵抗が小さくなりす
ぎて吸音特性が低下するので30〜50%の範囲が好
ましい。このような空洞部を形成するには、焼成
時に焼失し得る合成樹脂、ゴム、木材等の有機質
の粒状物や、焼成時に収縮し得る天然及び人工ガ
ラス発泡粒子、軽量骨材等の無機質の粒状物であ
つて、その粒径が0.5〜5mmであるものを無機質
粒子100容量部に対して10〜300容量部混合したう
え焼成する方法を採ることができる。空洞部の径
は0.5mm未満であつても、5mmを越しても吸音率
の低下を招く。なお、原料混合の際に空洞部形成
用の粒状物表面への無機質粒子の接合を容易化す
るとともに混合物の生強度を高めるために、水溶
性の有機質の糊剤を3〜12容量部加えておくこと
が好ましい。このような粒状物の利用により本発
明の無機質吸音材は50〜80%の空隙率を持つもの
とされる。空隙率を50%未満とすると、全体が緻
密になりすぎて吸音率が低下し、逆に80%を上ま
わると空気の流れ抵抗が小さくなりすぎてやはり
吸音率の低下が生ずるとともに機械的強度が低下
することとなる。なお、本発明の無機質吸音材に
は必要に応じて結合剤への顔料添加、表面への着
色釉薬掛け等の方法で着色することができ、また
その表面に凹凸模様等を形成することもできる。
更にまた、低膨脹率の材料の選択によつて、耐熱
衝撃性の良いものを製造することもできる。 (作 用) このように構成されたものは、第1図に示され
るように、粒度が3mm以下の無機質粒子1の焼結
体であつて微細な多数の空隙2を備えているう
え、その内部には無機質粒子1により形成された
多孔質の壁体3に囲まれた上記空隙2よりも大き
い空洞部4を有して内部の空隙部の寸法及び形成
が変化に富んでいるので、空隙率が大きいうえに
適度な流れ抵抗を持たせることができ後述する実
施例のデータからも明らかなように広い周波数領
域にわたつて優れた吸音特性を発揮するものであ
る。また全体が無機質粒子1の焼結体からなるも
のであるから、耐水性、耐候性、強度に優れたも
のであることは従来のものと同様である。 (実施例) 磁器を粉砕して種々の粒度に分級した無機質粒
子100容量部に対して、結合剤として1mm以下に
粉砕した釉薬の乾燥粉末を3〜40容量部加え、糊
剤として澱粉の水溶液を3〜12容量部加え、3〜
5分間混合したうえ中空ガラス粒子又はプラスチ
ツク粒子等の粒状物を10〜300容量部加えた。得
られた混合物を500×500×50mmの金型に充填し、
均一にならしたうえで上型を乗せ振動加圧成形機
で成形した。成形品を50℃の乾燥室で24時間乾燥
した後1300℃で焼成し、次表のNo.1〜No.13の無機
質吸音材を得た。なおNo.14〜No.16は数値限定の範
囲を外れたもの、No.17〜No.18は部に空洞部を持た
ない第3図に示したような従来品である。 このように本発明の無機質吸音材はJIS A
1405「管内方による垂直入射吸音率測定方法」に
準拠し、背後空気層を50mmとして測定された250
〜2500Hzの平均吸音率が優れた値を示すものであ
り、例えばNo.5の無機質吸音剤の吸音率は第2図
に示すとおり広い周波数にわたり90%以上の値を
示す。なお、第2図中「従来品」はNo.18のサンプ
ルの測定値、「比較品」はNo.15のサンプルの測定
値である。
(Field of Industrial Application) The present invention relates to an inorganic sound-absorbing material that exhibits excellent sound-absorbing properties over a wide frequency range and is used for soundproof walls of roads, railways, factories, etc. (Prior art) Inorganic sound-absorbing materials with excellent water resistance, weather resistance, and mechanical strength have been used for outdoor soundproof walls, etc. (for example, Yasuzo Uchida et al., ed., "Overview of Insulation Materials", (Showa 53, 11, 15), Industrial Technology Center,
P.653-654) Among conventional inorganic sound-absorbing materials of this type, those in which inorganic particles 10 are bound together with a binder as shown in Figure 3 have only small voids between the particles. As a result, as shown in FIG. 2 for the conventional product, the sound absorption coefficient showed a strong peak in a specific frequency range, and the sound absorption characteristics for noise over a wide range of frequencies were not necessarily satisfactory. In order to improve the sound absorption properties of such sound absorbing materials, attempts have been made to change the porosity and pore diameter by changing the particle size and packing density of inorganic particles, but this type of sound absorbing material has an upper limit of porosity. is approximately 50%, and in order to increase the porosity, it is necessary to roughly fill the particles with uniform particle size, which increases the size of the pores, reduces the complexity of the pore shape, reduces air flow resistance, and reduces sound absorption properties. On the other hand, if the porosity is reduced, the air flow resistance increases and the sound absorption properties deteriorate, so it was not possible to obtain an effective solution. Furthermore, there is also an inorganic sound absorbing material with a porosity of 80 to 90%, as shown in Figure 4, which is obtained by impregnating foamed urethane with a slurry of ceramic raw materials, drying, and firing. Although the pore size was large, the pore diameter was also large and the skeleton portion 11 did not have communicating pores, so the pore shape was still less complex and the frequency characteristics of the sound absorption coefficient showed a strong peak. (Problems to be solved by the invention) The present invention solves these conventional problems,
It was developed with the aim of producing an inorganic sound absorbing material with excellent sound absorbing properties over a wide frequency range. (Means for Solving the Problems) The present invention is a sintered body in which inorganic particles having a particle size of 3 mm or less are bonded to each other by a binder, and the inside thereof contains 30 to 50% of the inorganic particles. A large number of cavities are formed surrounded by walls having a porosity of 50 to 80% as a whole. The inorganic particles used in the present invention can be pulverized or granulated inorganic materials such as ceramics such as alumina, silica, and cordierite, and refractories, and the specific gravity, composition, coefficient of thermal expansion, etc. are limited. It is not something that will be done. If a large amount of particles with a particle size exceeding 3 mm are mixed in, the pore size of the wall formed by the inorganic particles will become too large and the sound absorption properties will deteriorate, so the particle size should be 3 mm or less, more preferably about 0.1 to 1.0 mm. Should. These inorganic particles are mixed with 3 to 40 parts by volume of a suitable binder, such as a vitreous binder, for example, per 100 parts by volume, so that the inorganic particles themselves contain 30 parts by volume.
It has a porosity of ~50% and is surrounded by a wall of inorganic particles with an average diameter of 0.5 to 5 mm.
fired to form several interconnecting cavities. If the porosity of the wall itself is less than 30%, it will become too dense and the overall airflow resistance will increase, resulting in a decrease in sound absorption properties.If it exceeds 50%, the overall airflow resistance will decrease. A range of 30 to 50% is preferable since the sound absorption properties will deteriorate if it is too high. To form such a cavity, it is necessary to use organic granules such as synthetic resin, rubber, and wood that can be burned away during firing, and inorganic granules such as natural and artificial glass foam particles and lightweight aggregates that can shrink during firing. A method can be adopted in which 10 to 300 parts by volume of a material having a particle size of 0.5 to 5 mm are mixed with 100 parts by volume of inorganic particles and then fired. Even if the diameter of the cavity is less than 0.5 mm, if it exceeds 5 mm, the sound absorption coefficient will decrease. In addition, when mixing the raw materials, 3 to 12 parts by volume of a water-soluble organic sizing agent was added in order to facilitate the bonding of the inorganic particles to the surface of the granules for forming cavities and to increase the green strength of the mixture. It is preferable to leave it there. By using such granular materials, the inorganic sound absorbing material of the present invention has a porosity of 50 to 80%. If the porosity is less than 50%, the entire structure becomes too dense and the sound absorption coefficient decreases.On the other hand, if it exceeds 80%, the air flow resistance becomes too small, resulting in a decrease in the sound absorption coefficient and mechanical strength. will decrease. In addition, the inorganic sound absorbing material of the present invention can be colored by adding a pigment to the binder, applying a colored glaze to the surface, etc., as necessary, and it is also possible to form an uneven pattern on the surface. .
Furthermore, by selecting a material with a low coefficient of expansion, it is possible to manufacture a material with good thermal shock resistance. (Function) As shown in Fig. 1, this structure is a sintered body of inorganic particles 1 with a particle size of 3 mm or less, and has many fine voids 2. The interior has a cavity 4 larger than the cavity 2 surrounded by a porous wall 3 formed by inorganic particles 1, and the size and formation of the interior cavity vary widely. In addition to having a large coefficient of flow, it can have an appropriate flow resistance, and as is clear from the data of Examples described later, it exhibits excellent sound absorption characteristics over a wide frequency range. Furthermore, since the entire structure is made of a sintered body of inorganic particles 1, it has excellent water resistance, weather resistance, and strength, similar to the conventional structure. (Example) To 100 parts by volume of inorganic particles obtained by crushing porcelain and classifying them into various particle sizes, 3 to 40 parts by volume of dry glaze powder crushed to 1 mm or less was added as a binder, and an aqueous solution of starch was added as a sizing agent. Add 3 to 12 volume parts of
After mixing for 5 minutes, 10 to 300 parts by volume of granules, such as hollow glass particles or plastic particles, were added. Fill the resulting mixture into a 500 x 500 x 50 mm mold,
After leveling it uniformly, an upper mold was placed on it and molded using a vibration pressure molding machine. The molded products were dried in a drying chamber at 50°C for 24 hours and then fired at 1300°C to obtain inorganic sound absorbing materials No. 1 to No. 13 in the following table. Note that No. 14 to No. 16 are products outside the range of numerical limitations, and No. 17 to No. 18 are conventional products as shown in FIG. 3, which do not have a hollow part. In this way, the inorganic sound absorbing material of the present invention is JIS A
250 measured in accordance with 1405 "Method for measuring normal incidence sound absorption coefficient from inside a pipe" with a rear air layer of 50 mm.
The average sound absorption coefficient of ~2500 Hz shows an excellent value. For example, the sound absorption coefficient of No. 5 inorganic sound absorbing material shows a value of 90% or more over a wide range of frequencies, as shown in FIG. In FIG. 2, the "conventional product" is the measured value of the No. 18 sample, and the "comparative product" is the measured value of the No. 15 sample.

【表】 (発明の効果) 本発明は以上の説明からも明らかなように、無
機質粒子の焼結体からなるもので強度、耐候性、
耐水性、耐熱性等に優れるうえに、その内部に無
機質粒子により形成された微細な空隙を有する壁
体に囲まれた多数の空洞部を有し、複雑な空隙部
の形状を備えたものであるから、広い周波数領域
にわたつて優れた吸音率を有するものである。よ
つて本発明は従来の無機質吸音材の問題点を解消
したものとして産業の発展に寄与するところは極
めて大である。
[Table] (Effects of the invention) As is clear from the above description, the present invention is made of a sintered body of inorganic particles, and has excellent strength, weather resistance,
In addition to being excellent in water resistance and heat resistance, it has a large number of cavities surrounded by walls with fine voids formed by inorganic particles, and has a complex shape of voids. Therefore, it has excellent sound absorption coefficient over a wide frequency range. Therefore, the present invention greatly contributes to the development of industry by solving the problems of conventional inorganic sound absorbing materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の無機質吸音材を示す断面図、
第2図は吸音率の周波数特性図、第3図及び第4
図は従来の無機質吸音材を示す断面図である。 1:無機質粒子、3:壁面、4:空洞部。
FIG. 1 is a sectional view showing the inorganic sound absorbing material of the present invention,
Figure 2 is a frequency characteristic diagram of sound absorption coefficient, Figures 3 and 4
The figure is a sectional view showing a conventional inorganic sound absorbing material. 1: inorganic particles, 3: wall surface, 4: cavity.

Claims (1)

【特許請求の範囲】 1 粒度が3mm以下の無機質粒子1が結合材によ
り相互に結合された焼結体であつて、その内部に
は該無機質粒子1からなる30〜50%の空隙率を有
する壁体3に囲まれた多数の空洞部4が形成さ
れ、全体としての空隙率が50〜80%であることを
特徴とする無機質吸音材。 2 空洞部4が0.5〜5mmの直径を有するもので
ある特許請求の範囲第1項記載の無機質吸音材。
[Scope of Claims] 1. A sintered body in which inorganic particles 1 having a particle size of 3 mm or less are bonded to each other by a binder, and the inside thereof has a porosity of 30 to 50% made up of the inorganic particles 1. An inorganic sound absorbing material characterized in that a large number of cavities 4 surrounded by walls 3 are formed and the overall porosity is 50 to 80%. 2. The inorganic sound absorbing material according to claim 1, wherein the cavity 4 has a diameter of 0.5 to 5 mm.
JP11340485A 1985-05-27 1985-05-27 Inorganic sound absorbing material Granted JPS61270434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11340485A JPS61270434A (en) 1985-05-27 1985-05-27 Inorganic sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11340485A JPS61270434A (en) 1985-05-27 1985-05-27 Inorganic sound absorbing material

Publications (2)

Publication Number Publication Date
JPS61270434A JPS61270434A (en) 1986-11-29
JPH0214497B2 true JPH0214497B2 (en) 1990-04-09

Family

ID=14611432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11340485A Granted JPS61270434A (en) 1985-05-27 1985-05-27 Inorganic sound absorbing material

Country Status (1)

Country Link
JP (1) JPS61270434A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130210A (en) * 1974-09-09 1976-03-15 Hitachi Chemical Co Ltd Kyuonban oyobi sonoseizoho
JPS5252909A (en) * 1975-10-24 1977-04-28 Nihon Cement Fireeresistant porous sounddabsorbing materials
JPS53133225A (en) * 1977-04-26 1978-11-20 Ngk Insulators Ltd Light weight sound absorber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138948U (en) * 1981-02-18 1982-08-31

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130210A (en) * 1974-09-09 1976-03-15 Hitachi Chemical Co Ltd Kyuonban oyobi sonoseizoho
JPS5252909A (en) * 1975-10-24 1977-04-28 Nihon Cement Fireeresistant porous sounddabsorbing materials
JPS53133225A (en) * 1977-04-26 1978-11-20 Ngk Insulators Ltd Light weight sound absorber

Also Published As

Publication number Publication date
JPS61270434A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
RU2277075C2 (en) Porous sound-absorbing ceramic article and method of production of such article (versions)
CN106116688B (en) Method for manufacturing ceramic of multi-layer structure
JP4446144B2 (en) Method for producing porous sound-absorbing ceramic molded body
JPH0545557B2 (en)
JPH0214497B2 (en)
USH48H (en) Method of making a ceramic article having open porous interior
JP4448565B2 (en) Porous lightweight ceramic product and manufacturing method thereof
KR20050117613A (en) The manufacturing method of ceramic body having good adiabatic capacity
JPH1149583A (en) Porous ceramic product and its production
US3778281A (en) Fusion bonded vermiculite molding material
US2079665A (en) Lightweight ceramic composition
JP3994232B2 (en) Porous lightweight ceramic product and manufacturing method thereof
US3274310A (en) Method of making a porous ceramic product
JPH04240168A (en) Production of sound-absorbing lightweight ceramic plate
JPH0516391B2 (en)
JPH0460952B2 (en)
US2826505A (en) Porous media
JPH0254305B2 (en)
JPH07242471A (en) Surface-smoothened porous body
JP3432804B2 (en) Lightweight tile manufacturing
JPH0643272B2 (en) Porous concrete compact and method for producing the same
KR20020026227A (en) Ceramic Bonding Mechanics of yellow clay and Carbon black members.
JPH042676A (en) Foamed material for exterior use and production thereof
JPH09286658A (en) Production of ceramic spherical hollow body and manufacture of ceramic panel using ceramic spherical hollow body as constituent material
JPH1149584A (en) Porous ceramic product and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term