JPH0214438B2 - - Google Patents

Info

Publication number
JPH0214438B2
JPH0214438B2 JP61220521A JP22052186A JPH0214438B2 JP H0214438 B2 JPH0214438 B2 JP H0214438B2 JP 61220521 A JP61220521 A JP 61220521A JP 22052186 A JP22052186 A JP 22052186A JP H0214438 B2 JPH0214438 B2 JP H0214438B2
Authority
JP
Japan
Prior art keywords
plating
distribution
present
layer
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61220521A
Other languages
Japanese (ja)
Other versions
JPS6376896A (en
Inventor
Kazuya Ezure
Takao Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61220521A priority Critical patent/JPS6376896A/en
Priority to EP87104231A priority patent/EP0260374B1/en
Priority to DE87104231T priority patent/DE3788178T2/en
Priority to CA000532926A priority patent/CA1331962C/en
Priority to AU70712/87A priority patent/AU573122B2/en
Publication of JPS6376896A publication Critical patent/JPS6376896A/en
Publication of JPH0214438B2 publication Critical patent/JPH0214438B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はシーム溶接性、耐食性に優れた表面処
理鋼板の製造方法に関するもので、特に缶胴をシ
ーム溶接法で接合する金属容器用素材としての利
用価値が大きい。 〔従来の技術〕 従来電解Snメツキ鋼板(以下ブリキと称す)、
電解クロム酸処理鋼板(以下TFS−CTと称す)、
又一部に電解Niメツキ鋼板(以下TFS−NT)
が知られており、3ピース缶製缶法としてそれぞ
れハンダ接合、接着接合、シーム溶接等によつて
製缶されてきた。 ブリキは従来製缶用素材として最も広く使用さ
れてきたが、製缶コスト節減の中でSnが薄メツ
キ化され、製缶法も従来のハンダ付に替りシーム
溶接法が採用され始めたが、Snメツキ量が片面
当り0.20μm厚以下になると塗装耐食性、シーム
溶接性共劣化し、又シーム溶接缶用素材として一
部で使用されているTFS−NT(Niメツキ鋼板)
はシーム溶接性能が実用可能な範囲ではあるが十
分ではなく、又塗装耐食性も強酸性食品等腐食性
が高い内容物の場合不十分であることから、低コ
ストでしかも塗装耐食性、シーム溶接性に優れた
製缶用表面処理鋼板が要望されている。 〔発明が解決しようとする問題点〕 これに対し本発明者は特開昭60−75586号等で
鋼板上に微量Niメツキ被覆を行つた後Snメツキ
する手法を発明し、加熱時に形成されるFe−Sn
合金層が微量のNiによつて緻密化することから
耐食性が向上し、そして加熱時のFe−Sn合金化
反応が抑制されることで、シーム溶接性も向上す
ることを知見した。さらに本発明者はこれらシー
ム溶接缶用素材としての特性には表面に存在する
金属Snの分布状態が影響し、金属Snの分布状態
が均一であるより不均一な凹凸分布を有する方が
特性が良好となることも見い出し、特願昭61−
16471号にて既に出願した。 これらは確かに従来の単純な薄Snメツキ鋼板
と比較して、シーム溶接性等に効果を有するが、
得られる特性が一定でなくバラツキを持つため、
シーム溶接性、耐食性等特性が安定して良好な素
材が望まれていた。このため本発明者は鋼板上に
微量のNiメツキ処理を施した後、Snメツキを重
層被覆する鋼板の特性をさらに改善すべくその製
造条件の詳細を鋭意検討し、本発明に到達したの
である。 〔問題点を解決するための手段・作用〕 本発明表面処理鋼板は鋼板表面に片面当り2〜
100mg/m2のNiを不連続な島状に被覆した後、引
き続き片面当り200〜2000mg/m2のSnメツキを施
こし、さらにSnメツキ層融点以上での加熱処理
を施こした後、電解クロメート処理を施すもので
あり、本発明のポイントは、鋼板表面に形成する
片面当り2〜100mg/m2のNi層を不均一な島状に
被覆する点にある。このように本発明はNiを下
地メツキする薄Snメツキ鋼板の最適な製造方法
を提供するものであり、本発明と同量のNiを連
続な均一層として被覆する場合と比較し、シーム
溶接性、耐食性等特性が安定して良好となる。本
発明をさらに詳しく説明する。 溶接缶用素材として使用される片面当り200〜
2000mg/m2のSnメツキ鋼板に要求される特性で最
も重要なのは、シーム溶接性であり、そして塗膜
下錆等の耐食性である。これら特性には、Fe/Sn
界面に形成されるFe−Sn合金層又金属Sn層等の
構造、形態、分布が大きく影響することが知られ
ている。このためSnメツキを施す前に片面当り
2〜100mg/m2のNiメツキ処理を施す手法が考案
され、このNiメツキ前処理によつてFe/Sn界面
に形成されるFe−Sn合金層が緻密化し、耐食性
の向上、さらに塗装焼付等加熱工程でのFe−Sn
合金化反応が抑制されることでシーム溶接性向上
に寄与する金属Snの確保が同一Snメツキ層の場
合に容易となるのである。このように溶接缶用薄
Snメツキ鋼板の特性はNiメツキ前処理によつて
確かに向上し、さらに本発明者が特願昭60−
24749号、特願昭61−16471号で既に出願したよう
にSnメツキ層の分布状態を不均一な凹凸分布と
することで特性はより向上する。そしてこのよう
なSnメツキ層の凹凸分布状態を安定して得るた
め藤本らは〓鉄と銅〓(Vol72.No.5S445)でNiメ
ツキ処理前にアルカリ浴中で陽極処理を施す必要
があることを報告し、さらに一般的にはSnメツ
後のフラツクス処理条件の影響も大きいことが知
られている。しかしこのような対策を取つても安
定した特性を得ることはできず、本発明者は鋼板
上に施こす微量のNiメツキ処理に着目して研究
を行ない、Niの分布状態を不連続な島状とする
ことで、溶接缶用素材としての特性を安定して満
足できることを見い出したのである。 シーム溶接缶用薄Snメツキ鋼板に要求される
特性は、シーム溶接性、耐食性であるが、前述し
たようにこれら特性には緻密で耐食性に優れた
Fe−Sn合金層の形成及び本発明者が特願昭61−
16471号で既に知見したような凹凸分布を有する
Snメツキ層形態の影響が大きく、これにはNiメ
ツキ処理時のNi分布状態が大きく影響すること
を本発明者は知見した。鋼板上に片面当り2〜
100mg/m2のNiを被覆する際、このNiを均一に連
続して被覆する場合と不均一な島状に被覆する場
合では、Fe/Sn界面に形成されるFe−Sn合金層
の形成状況そしてSnメツキ層の分布状況が大き
く異なり、Niを不均一な島状に分布させると緻
密で耐食性に優れたFe−Sn合金層、及び凹凸分
布を持つSnメツキ層が、製造工程中のSnメツキ
処理条件、Snメツキ後の溶融加熱処理条件等の
若干の変動が有つても安定して形成され、その結
果シーム溶接缶用素材としての特性が安定して優
れたものになる。次にこのNiメツキ層の不均一
な島状分布状態及びNi分布状態がSnメツキ層の
凹凸分布等に大きく影響する理由についてさらに
詳しく説明する。 Niメツキ層の不均一な島状分布であるが、こ
れには様々な分布状況が有り、その例を第1図、
第2図に示す。第1図は素地鋼板1上に連続した
Ni層を有するが、その分布が不均一な凹凸状を
なす場合であり、この場合Ni層凹部の最低厚を
hnio及び凸部の最大厚をhnaxとした時hnax≧2hnio
の関係を持つことが必須となり、hnax≧0.002μm
の範囲を満足する必要がある。さらにNiメツキ
厚が0.001μm以上である領域が鋼板表面の面積率
にして少なくとも90%以下であることが本発明の
要件であり、又下限は特に規定しないが、10%以
上が望ましい。これはこの範囲を満足しなけれ
ば、本発明の意義が失われ、例えば最適なSnメ
ツキ層凹凸分布を得ることが困難となるからであ
る。 次に第2図はNi層が完全に不連続となり、Ni
が付着せず素地鋼板1の表面が部分的に露出して
いる場合であり、この場合素地鋼板1の露出部に
は酸化Fe皮膜が存在していても良い。この様に
Ni層が完全に不連続な島状を呈する時にもNiが
着している部分の最大Ni厚hnaxは0.002μm以上で
ある必要があり、又Niの鋼板表面被覆率は鋼板
表面面積率として少なくとも90%以下であること
が好ましい。又下限は特に限定しないが、10%以
上であることが望ましい。限定理由は第1図の場
合と全く同様である。ここではNiメツキ層の不
均一な島状分布例として以上の2例について述べ
たが、第1図の例と第2図の例が混在する場合等
様々な分布状態が考えられ、一般的な概念である
不均一な島状のNiメツキ分布を持つ場合全てが
本発明範囲に含まれるものである。なおこのよう
なNiの不均一な島状分布状態はEPMA(Electron
Probed Micro Analyser又はAES(Auger
Electron Spectroscopy)等の手法で確認でき
る。そしてこのような不均一な島状Niメツキ分
布とすることで、シーム溶接缶用素材としての薄
Snメツキ鋼板の特性が向上する理由は次のよう
に考えられる。 すなわちこのようなNiメツキ前処理層を有す
る薄Snメツキ鋼板の製造プロセスを考え、それ
に伴うメツキ断面構造の変化をモデル図で示すと
第3図に示す如くである。第3図はNiメツキ層
が本発明例の不均一島状分布を呈する場合(この
場合第2図で示した例)及び従来の連続した均一
分布を持つ場合両者を比較して示すが、本発明の
ようにNiが不均一な島状に存在する場合は、Ni
が厚く存在する部分及びNiが少ないが、もしく
は存在しない部分でのSnメツキ層溶融処理に於
けるFe−Sn合金層(この場合Fe−Ni−Sn三元合
金となる)の生成挙動が異なり、Niが厚く存在
する部分では合金化スピードが速く、Fe−Sn合
金生成が速いと共に合金量も多くなるのに対し、
Niが少ないか、もしくは存在しない部分ではFe
−Sn合金生成が遅れ、合金量が少なくなるため
結果として生成したFe−Sn合金層の分布状態は
最初にNiが島状に存在した分布状況と対応した
凹凸分布を持つようになる。そして一般に学会等
で公知な如く、Fe−Sn合金上とFe−Sn合金層が
薄いか、もしくは存在しない部分の間で溶融した
Snの濡れ性が異なるため、Snメツキ層溶融加熱
処理の初期の段階で溶融Snの濡れ性の相違に基
き、Snメツキ層も第3図に示すように、最初
にNiが島状に存在した分布状況と対応した凹凸
分布を安定して持つようになるのである。 これに対し、Niを連続な均一分布となるよう
被覆した場合は鋼板表面で均一にFe−Sn合金が
生成し成長するため、鋼板表面の局部的な溶融
Sn濡れ性の差が小さいため、Snメツキ層溶融加
熱処理終了後のSnメツキ層分布状態は基本的に
第3図に示すような均一な分布を呈し、Snメ
ツキ処理後のフラツクス条件の変化で、第3図
に示すような凹凸分布を有するSnメツキ層にな
つたり、又第3図,の状態が混存するような
Snメツキ層となつたりして、結果的にシーム溶
接性、耐食性等特性が不安定になるのである。 このようにNiメツキ層の分布状態が最終製品
としてのFe−Sn合金層、及びSnメツキ層の構造
に大きく影響することが、本発明者の研究によつ
て判明し、Niを不均一な島状分布とすることで
初めて溶接缶用素材としての薄Snメツキ鋼板の
特性を安定して向上させることが可能となつたも
のである。 引き続き本発明製造方法について限定理由と共
にさらに説明する。本発明は通常の方法で表面清
浄化した鋼板をメツキ原液として使用するが、そ
の使用する原板、又表面清浄化処理について何ら
限定するものでなく、表面清浄化時に硫酸等の酸
洗処理浴、又カ性ソーダ等脱脂処理浴中で陽極電
解する手法も含まれる。引き続き片面当り2〜
100mg/m2のNiを前述したような不均一な島状に
被覆するが、Niメツキ処理浴としては一般的な
ワツト浴等の硫酸浴が使用でき、処理浴組成、電
解電流密度等電解条件の調整で本発明のポイント
となる不均一島状のNiメツキ分布を得ることが
できる。なお本発明にはこのようなNiメツキ分
布を得られる手法であれば、電気メツキ法によら
ず、無電解メツキ法等の手法も当然包含されるも
のであり、又Niメツキ後に陽極電解処理を施す
場合も含まれる。また、Niメツキ後加熱処理に
より鋼中に拡散させてもよい。ここで平均した
Niメツキ量を片面当り2〜100mg/m2と限定した
のはNi量がこれ以上に増加するとNiメツキ分布
を不均一な島状とすることが困難となり、特性が
低下するからであり、又Ni量の下限は平均被覆
量として片面当り2mg/m2とする。これはNiメツ
キ前処理によるFe−Sn合金層の緻密化等耐食性
向上効果等を維持するためであり片面当り5mg/
m2以上が好ましい。なおNi中にZn、Fe、P、B
の一種又は二種以上が重量%として20%以下含有
した場合も本発明に含むものとする。 次にSnメツキ被覆を施こすが、手法としては
電気メツキ法が最も合理的であり、通常のSnメ
ツキ処理法がそのまま適用できる。Snメツキ量
として片面当り200〜2000mg/m2と限定したのは
Sn量が限定値以上に増大しても本発明の効果は
飽和し、コストアツプとなるからであり、又下限
はシーム溶接性、耐食性の面から片面当り500mg/
m2以上とした。なおSnメツキ量は鋼板の表/裏
で相違する差厚メツキとしても良い。 本発明はSnメツキ後水洗しそのまま、又は一
般に使用されるフエノールスルフオン酸を主体と
するフラツクス又は塩化アルモニウム等塩化物を
主体とするフラツクス等に浸漬し、乾燥後Snメ
ツキ層溶融加熱処理が施される。フラツクス処理
を施すか又は施さず直接Snメツキ層溶融加熱処
理を施すかは状況に応じて適時選択でき、又フラ
ツクス浴濃度を通常のぶりき製造時に使用される
濃度の1/2〜1/3に調整して実施することもでき
る。Snメツキ層溶融加熱処理の方法は一般的な
抵抗加熱法、高周波誘導加熱法が利用でき、その
雰囲気として不活性ガス中で実施することもでき
る。又このSnメツキ層溶融加熱時にFe/Sn界面
に形成されるFe−Sn合金の平均被覆量は合金中
のSn量として被覆する全Sn量の1/3程度以下に抑
制することが望ましい。 本発明による不均一島状Niメツキを施し、引
き続きSnメツキ処理、Snメツキ層溶融加熱処理
を施すことで、薄Snメツキ鋼板のメツキ層状態
を溶接缶用素材として最も好ましい状態にコント
ロールすることが可能となり、本発明者が既に出
願した特願昭61−16471号に示す状態を容易に安
定して保つことが可能となる。 本発明は塗装後使用されることが多く、最表面
に不動態化処理としてクロメート処理を施すが、
これはTFS−CTのクロメート処理として工業的
に実施されている方法で十分であり、一般にはア
ニオンを添加しない無水クロム酸浴中、又は硫酸
イオン、フツ素イオン等を少量添加した無水クロ
ム酸浴中等でのカソード還元処理が適用ででき
る。又本発明に於いても学会等で公知であるクロ
メート被覆層中の共析アニオンを低減、除去する
各種手法を適用可能であることは言うまでもな
い。すなわち本発明のクロメート被覆はクロム水
和酸化物のみで構成されてもよくまた金属クロム
とクロム水和酸化物から構成されてもよい。この
クロメート被覆量としては金属クロム換算で3〜
30mg/m2の範囲が好ましい。その理由は、3mg/m2
以下では耐食性、塗料の密着性が不十分であり、
また30mg/m2以上では溶接性が低下するからであ
る。 〔実施例〕 次に本発明の実施例について説明する。 実施例 1 通常の条件で表面清浄化した鋼板両面にに示
す処理浴中で各種条件にて片面当り平均量として
片面当り2〜120mg/m2のNiメツキ処理を施し、
処理浴組成、PH、さらに電解電流密度等電解条件
を変更することで、Niメツキ層状態を本発明の
不均一島状分布及び比較例としての連続な均一分
布に作り分けた。このNiメツキ層状態はAES,
EPMAで調査し、第一表にNi分布状態を不均一
島状分布及び連続均一分布と分類し、さらにNi
メツキ層最大厚、及びNiメツキ厚が0.001μm以
上である領域の面積率で示した。なお本発明要件
はNiメツキ層最大厚が0.002μm以上又Niメツキ
厚が0.001μm以上である領域が鋼板表面の面積率
として90%以下であることである。引き続きに
示す処理浴中で片面当り被覆量として800及び
1000mg/m2のSnメツキ処理後に示したフラツク
ス溶液中へ浸漬、乾燥し、抵抗加熱法を用いて大
気雰囲気中でSnメツキ層溶融加熱処理を施した。
Snメツキ層溶融加熱処理条件は、溶融加熱処理
時にFe/Sn界面に形成されるFe−Sn合金中のSn
量が全Snメツキ量の1/3となるような条件で実施
した。 そしてに示す条件で電解クロメート処理を施
し、金属クロム換算で片面当り12〜17mg/m2のク
ロメート被膜層を形成し供試料とした。 NiSO4・7H2O:200g/ NiCl2・6H2O:60g/ H3BO3:50g/ 浴温50℃ 浴PH:1.8〜4.0 陰極電流密度:5〜50A/dm2 硫酸錫:25g/ フエノールスルフオン酸:30g/ エトキシ化α−ナフトール スルフオン酸:2g/ 浴温:40〜50℃ 陰極電流密度:20A/dm2 [フエノールスルフオン酸:1〜2g/] 浴温45℃ CrO3:20〜100g/ H2SO4:0.1〜1.0g/ Na2SiF6:0〜3g/ 浴温:40〜60℃ 陰極電流密度:5〜90A/dm2 実施例 2 実施例1に於いてSnメツキ処理浴としてに
替えの条件とし、又Snメツキ処理後のフラツ
クス処理を省略し、水洗のみとした実施例であ
り、その他項目は実施例1と同じ 塩化第一錫:75g/ 弗化ナトリウム:25g/ 弗化水素カリウム:50g/ 塩化ナトリウム:45g/ 浴温:40〜50℃ 陰極電流密度:20〜40A/dm2 比較例 実施例1に於いてNiメツキ処を全て省略した
比較例でその他項目は実施例1と同じ そして本発明実施例及び比較例は製造チヤンス
ごとの特性のバラツキ範囲を確認するため、全く
同一の製造条件で2回の試作を行ない、それぞれ
特性を同一チヤンスで評価し、2回の製造チヤン
スのバラツキを考慮して総合評価した。 なお従来例として片面当りのSnメツキ量が
2800mg/m2の#25ぶりきを同時に評価した。評価
試験は下記の(A),(B)2項目について実施し、その
結果を第1表に示した。 (A) シーム溶接性テスト 各試片を缶胴に成形した後、製缶用シーム溶
接接機を使用して、缶胴接合部のラツプ幅0.4
mm、加圧力45Kgf、製缶速度45mpmの条件で、
溶接2次電流を変化させることによつて調査し
た。そして評価は良好な溶接が可能な溶接2次
電流範囲で表示した。 適正溶接2次電流の下限値は溶接部の強度の
下限で、又上限値はスプラツシユ発生の上限で
決定したが溶接部の強度は衝撃テスト及び溶接
部にV形のノツチを入れペンチで引きさく引き
さきテストにより判定し、シーム溶接部の外観
は目視で散りの有無等より判定した。なおシー
ム溶接性テストに供した試片は全て電気エアー
オーブン中で210℃、20分の空焼を行つた。 (B) 耐塗膜下錆性テスト 各試片に製缶用エポキシ−フエノール塗料を
片面当り55mg/dm2ロールコートし、205℃で10
分間焼付し、さらに190℃で10分間追焼処理し
た。そしてカツターナイフを用いて塗膜にスク
ラツチを入れ、エリクセン試験機で5mmのエリ
クセン加工を施し供試サンプルとした。供試サ
ンプルは5%NaClを用いた塩水噴霧を1時間
行つた後25℃、相対湿度85%の恒温、恒湿試験
機中に14日間保定し、スクラツチ部から発錆状
況を目視評価した。判定は◎糸錆発生なし、〇
発生小、△やや大、×大とした。 以上の試験結果は第1表より明らかなように本
発明実施例に於いて本発明限定範囲を満足するも
のは、2回の製造チヤンス共得られた特性は安定
しており、製造チヤンスごとのドラツキが少ない
優れた特性が得られるのに対し、本発明限定範囲
を満足しないもの及び比較例例は2回の製造チヤ
ンスのうち少なくとも1回は得られる特性が不十
分であり、劣つていることが判る。
[Industrial Field of Application] The present invention relates to a method for manufacturing a surface-treated steel sheet with excellent seam weldability and corrosion resistance, and is particularly useful as a material for metal containers in which can bodies are joined by seam welding. [Conventional technology] Conventional electrolytic Sn-plated steel sheet (hereinafter referred to as tinplate),
Electrolytic chromic acid treated steel sheet (hereinafter referred to as TFS-CT),
Also, some parts are made of electrolytic Ni-plated steel sheet (hereinafter referred to as TFS-NT)
are known, and three-piece can manufacturing methods have been used to manufacture cans by soldering, adhesive joining, seam welding, etc., respectively. Tinplate has traditionally been the most widely used material for can manufacturing, but in order to reduce can manufacturing costs, tin plating has become thinner, and seam welding has begun to be adopted instead of the traditional soldering method for can manufacturing. If the amount of Sn plating is less than 0.20 μm per side, both the paint corrosion resistance and seam weldability will deteriorate, and TFS-NT (Ni-plated steel sheet), which is partially used as a material for seam welding cans,
Although the seam welding performance is within a practical range, it is not sufficient, and the paint corrosion resistance is also insufficient for highly corrosive contents such as strongly acidic foods. There is a demand for superior surface-treated steel sheets for can manufacturing. [Problems to be solved by the invention] In order to solve this problem, the present inventor invented a method in JP-A-60-75586 etc. in which a small amount of Ni plating is applied to a steel plate and then Sn plating is applied, and the method is such that the coating is formed during heating. Fe−Sn
It was discovered that corrosion resistance was improved because the alloy layer was densified by a small amount of Ni, and seam weldability was also improved by suppressing the Fe-Sn alloying reaction during heating. Furthermore, the present inventor has found that the characteristics of these materials for seam welded cans are affected by the distribution state of metal Sn present on the surface, and that the characteristics are better when the distribution state of metal Sn is uneven and uneven than when the distribution state is uniform. It was also found that the condition was good, and a patent application was filed in 1983.
An application has already been filed under No. 16471. These certainly have an effect on seam weldability, etc. compared to conventional simple thin Sn-plated steel sheets, but
Because the properties obtained are not constant and vary,
A material with stable and good properties such as seam weldability and corrosion resistance was desired. For this reason, the inventor of the present invention conducted a thorough study of the details of the manufacturing conditions in order to further improve the characteristics of the steel plate, which is coated with a small amount of Ni plating and then coated with Sn plating, and arrived at the present invention. . [Means and effects for solving the problems] The surface-treated steel sheet of the present invention has a surface-treated steel sheet with a
After coating 100 mg/m 2 of Ni in the form of discontinuous islands, Sn plating of 200 to 2000 mg/m 2 per side was applied, and after heat treatment at a temperature above the melting point of the Sn plating layer, electrolysis was performed. Chromate treatment is performed, and the key point of the present invention is to form a Ni layer of 2 to 100 mg/m 2 on each side of the steel plate in a non-uniform island shape. As described above, the present invention provides an optimal manufacturing method for thin Sn-plated steel sheets with Ni underplating, and has improved seam weldability compared to the case of coating the same amount of Ni as a continuous uniform layer as in the present invention. , properties such as corrosion resistance become stable and good. The present invention will be explained in more detail. 200~ per side used as material for welded cans
The most important properties required for a 2000 mg/m 2 Sn-plated steel sheet are seam weldability and corrosion resistance such as under-coating rust. These properties include Fe/Sn
It is known that the structure, form, and distribution of the Fe-Sn alloy layer or metal Sn layer formed at the interface have a large influence. For this reason, a method was devised to apply Ni plating treatment at a concentration of 2 to 100 mg/ m2 per side before applying Sn plating, and this Ni plating pretreatment makes the Fe-Sn alloy layer formed at the Fe/Sn interface dense. Fe-Sn
By suppressing the alloying reaction, it is easier to secure the metal Sn, which contributes to improving seam weldability, when the same Sn plating layer is used. Thin for welding cans like this
The properties of Sn-plated steel sheets are certainly improved by Ni-plating pretreatment, and furthermore, the inventor of the present invention
As already filed in No. 24749 and Japanese Patent Application No. 61-16471, the characteristics can be further improved by making the Sn plating layer have a non-uniform uneven distribution. In order to stably obtain such a uneven distribution state of the Sn plating layer, Fujimoto et al. (Vol. 72. No. 5S445) found that it was necessary to perform anodization in an alkaline bath before Ni plating with iron and copper. Furthermore, it is generally known that the flux treatment conditions after Sn deposition have a large influence. However, even with such measures, it was not possible to obtain stable characteristics, and the present inventor conducted research focusing on a small amount of Ni plating treatment applied to steel sheets, and the inventors conducted research focusing on the Ni plating treatment performed on steel plates, and changed the distribution state of Ni to discontinuous islands. It was discovered that by making the material into a shape, the properties as a material for welded cans could be stably satisfied. The properties required for thin Sn-plated steel sheets for seam-welded cans are seam weldability and corrosion resistance, but as mentioned above, these properties include denseness and excellent corrosion resistance.
Formation of Fe-Sn alloy layer and patent application filed by the present inventor in 1983
It has an uneven distribution as already found in No. 16471.
The present inventors have found that the form of the Sn plating layer has a large influence, and this is greatly influenced by the state of Ni distribution during the Ni plating process. 2~ per side on steel plate
When coating with 100 mg/m 2 of Ni, the formation status of the Fe-Sn alloy layer formed at the Fe/Sn interface is determined when the Ni is coated uniformly and continuously and when it is coated in a non-uniform island shape. The distribution of the Sn plating layer is greatly different, and when Ni is distributed in a non-uniform island shape, a dense Fe-Sn alloy layer with excellent corrosion resistance and a Sn plating layer with an uneven distribution are formed. Even if there are slight variations in processing conditions, melting heat treatment conditions after Sn plating, etc., it is stably formed, and as a result, the properties as a material for seam welded cans are stable and excellent. Next, the reason why the nonuniform island-like distribution state of the Ni plating layer and the Ni distribution state greatly affect the unevenness distribution of the Sn plating layer will be explained in more detail. The Ni plating layer has a non-uniform island-like distribution, but there are various distribution situations, examples of which are shown in Figure 1.
Shown in Figure 2. Figure 1 shows a continuous line on the base steel plate 1.
This is a case where the Ni layer has an uneven distribution that is uneven, and in this case, the minimum thickness of the Ni layer recesses is
When h nio and the maximum thickness of the convex part are h nax , h nax ≧2h nio
It is essential to have the relationship h nax ≧0.002μm
It is necessary to satisfy the range of Furthermore, it is a requirement of the present invention that the area where the Ni plating thickness is 0.001 μm or more is at least 90% or less in terms of area ratio of the steel sheet surface, and although the lower limit is not particularly specified, it is preferably 10% or more. This is because unless this range is satisfied, the meaning of the present invention will be lost and, for example, it will be difficult to obtain an optimal Sn plating layer unevenness distribution. Next, in Figure 2, the Ni layer becomes completely discontinuous, and the Ni layer becomes completely discontinuous.
This is a case where the surface of the base steel plate 1 is partially exposed without adhesion, and in this case, an Fe oxide film may be present on the exposed portion of the base steel plate 1. like this
Even when the Ni layer has a completely discontinuous island shape, the maximum Ni thickness h nax of the part where Ni is attached must be 0.002 μm or more, and the Ni coating rate on the steel plate surface is expressed as the steel plate surface area ratio. Preferably, it is at least 90% or less. Although the lower limit is not particularly limited, it is preferably 10% or more. The reason for the limitation is exactly the same as in the case of FIG. Here, the above two examples of uneven island-like distribution of the Ni plating layer were described, but various distribution states are possible, such as the case where the example in Figure 1 and the example in Figure 2 are mixed, and the general All cases having the concept of a non-uniform island-like Ni plating distribution are included in the scope of the present invention. Note that this non-uniform island-like distribution state of Ni is called EPMA (Electron
Probed Micro Analyzer or AES (Auger
This can be confirmed using techniques such as electron spectroscopy. By creating such a non-uniform island-like Ni plating distribution, it is possible to create a thin material for seam welded cans.
The reason why the properties of the Sn-plated steel sheet are improved is thought to be as follows. That is, considering the manufacturing process of a thin Sn-plated steel sheet having such a Ni-plated pre-treatment layer, the changes in the plating cross-sectional structure accompanying this process are shown in a model diagram as shown in FIG. Figure 3 shows a comparison between a case where the Ni plating layer exhibits a non-uniform island-like distribution according to the present invention (in this case, the example shown in Figure 2) and a case where the Ni plating layer has a conventional continuous uniform distribution. When Ni exists in a non-uniform island shape as in the invention, Ni
The formation behavior of the Fe-Sn alloy layer (in this case, it becomes a Fe-Ni-Sn ternary alloy) in the Sn plating layer melting process is different in areas where Ni is thick and in areas where Ni is small or absent. In areas where Ni is thick, the alloying speed is fast, Fe-Sn alloy formation is fast, and the amount of alloy is large.
Fe in areas where Ni is low or absent
-Sn alloy formation is delayed and the amount of alloy is reduced, so that the distribution state of the resulting Fe-Sn alloy layer has an uneven distribution corresponding to the distribution state where Ni was initially present in the form of islands. As is generally known in academic societies, melting occurs between the top of the Fe-Sn alloy and the part where the Fe-Sn alloy layer is thin or absent.
Because the wettability of Sn is different, at the initial stage of the Sn plating layer melting heat treatment, Ni was initially present in the form of islands in the Sn plating layer, as shown in Figure 3. This results in a stable unevenness distribution that corresponds to the distribution situation. On the other hand, when Ni is coated with a continuous and uniform distribution, Fe-Sn alloy forms and grows uniformly on the surface of the steel sheet, resulting in localized melting on the surface of the steel sheet.
Because the difference in Sn wettability is small, the distribution state of the Sn plating layer after the Sn plating layer melting heat treatment basically exhibits a uniform distribution as shown in Figure 3. , the Sn plating layer has an uneven distribution as shown in Fig. 3, or the situation shown in Fig. 3 coexists.
As a result, properties such as seam weldability and corrosion resistance become unstable. The inventor's research has revealed that the distribution state of the Ni plating layer greatly affects the structure of the Fe-Sn alloy layer and the Sn plating layer as the final product. For the first time, it became possible to stably improve the properties of thin Sn-plated steel sheets as materials for welded cans by creating a uniform distribution. Subsequently, the manufacturing method of the present invention will be further explained along with the reasons for the limitations. In the present invention, a steel plate whose surface has been cleaned by a conventional method is used as the plating stock solution, but there are no limitations on the base plate used or the surface cleaning treatment. It also includes a method of anodic electrolysis in a degreasing treatment bath such as caustic soda. Continue to use 2~ per side
100 mg/m 2 of Ni is coated in a non-uniform island shape as described above, but a general sulfuric acid bath such as Watts bath can be used as the Ni plating treatment bath, and electrolytic conditions such as treatment bath composition and electrolytic current density etc. By adjusting the above, it is possible to obtain a non-uniform island-like Ni plating distribution, which is the key point of the present invention. Note that the present invention naturally includes methods such as electroless plating, not electroplating, as long as such a Ni plating distribution can be obtained, and also includes anodic electrolytic treatment after Ni plating. This also includes cases where it is applied. Alternatively, it may be diffused into steel by heat treatment after Ni plating. averaged here
The reason why the amount of Ni plating was limited to 2 to 100 mg/m 2 per side is because if the amount of Ni increases more than this, it becomes difficult to make the Ni plating distribution into an uneven island shape, and the characteristics deteriorate. The lower limit of the amount of Ni is 2 mg/m 2 per side as an average coating amount. This is in order to maintain the corrosion resistance improvement effect such as densification of the Fe-Sn alloy layer due to Ni plating pre-treatment, and it is 5mg/
m 2 or more is preferable. Furthermore, Zn, Fe, P, and B are present in Ni.
The present invention also includes cases where one or more of the following are contained in an amount of 20% or less by weight. Next, a Sn plating coating is applied, but the most rational method is electroplating, and the usual Sn plating method can be applied as is. The amount of Sn plating was limited to 200 to 2000 mg/m 2 per side.
This is because even if the amount of Sn increases beyond the limit value, the effect of the present invention will be saturated and the cost will increase, and the lower limit is 500mg/side from the viewpoint of seam weldability and corrosion resistance.
m2 or more. Note that the amount of Sn plating may be different thickness plating on the front and back sides of the steel sheet. In the present invention, after Sn plating, the Sn plating layer is washed with water and then immersed in a generally used flux mainly composed of phenolsulfonic acid or a flux mainly composed of chlorides such as aluminum chloride, dried, and then subjected to heat treatment to melt the Sn plating layer. be done. Depending on the situation, it is possible to choose whether to apply flux treatment or directly apply heat treatment to melt the Sn plating layer without applying flux treatment, and the flux bath concentration can be set to 1/2 to 1/3 of the concentration used in normal tinplate manufacturing. It can also be adjusted and implemented. A general resistance heating method or a high frequency induction heating method can be used as a method for melting and heating the Sn plating layer, and it can also be carried out in an inert gas atmosphere. Further, it is desirable that the average coating amount of the Fe-Sn alloy formed at the Fe/Sn interface during melting and heating of the Sn plating layer is suppressed to about 1/3 or less of the total amount of Sn coated as the amount of Sn in the alloy. By applying the non-uniform island-shaped Ni plating according to the present invention, followed by Sn plating treatment and Sn plating layer melting heat treatment, it is possible to control the plating layer state of the thin Sn plating steel sheet to the most preferable state as a material for welded cans. This makes it possible to easily and stably maintain the state shown in Japanese Patent Application No. 61-16471, which the present inventor has already filed. The present invention is often used after painting, and chromate treatment is applied to the outermost surface as passivation treatment.
The industrially practiced method for chromate treatment of TFS-CT is sufficient for this, and is generally carried out in an anhydrous chromic acid bath without the addition of anions, or in an anhydrous chromic acid bath to which a small amount of sulfate ions, fluoride ions, etc. are added. Can be applied to cathode reduction treatment at medium temperature. It goes without saying that various methods for reducing and removing eutectoid anions in the chromate coating layer, which are known in academic societies, can also be applied to the present invention. That is, the chromate coating of the present invention may be composed only of chromium hydrated oxide, or may be composed of metallic chromium and chromium hydrated oxide. The amount of chromate covered is 3 to 3 in terms of metallic chromium.
A range of 30 mg/m 2 is preferred. The reason is 3mg/m 2
Corrosion resistance and paint adhesion are insufficient below.
Moreover, if it exceeds 30 mg/m 2 , weldability deteriorates. [Example] Next, an example of the present invention will be described. Example 1 Both sides of a steel plate whose surface had been surface cleaned under normal conditions were subjected to Ni plating treatment at an average amount of 2 to 120 mg/m 2 per side under various conditions in the treatment bath shown below.
By changing the electrolytic conditions such as the treatment bath composition, pH, and electrolytic current density, the Ni plating layer state was divided into a nonuniform island-like distribution according to the present invention and a continuous uniform distribution as a comparative example. This Ni plating layer state is AES,
The investigation was conducted using EPMA, and the Ni distribution state is classified into non-uniform island distribution and continuous uniform distribution in Table 1.
It is expressed as the maximum thickness of the plating layer and the area ratio of the area where the Ni plating thickness is 0.001 μm or more. The requirement of the present invention is that the area where the maximum thickness of the Ni plating layer is 0.002 μm or more and the area where the Ni plating thickness is 0.001 μm or more is 90% or less of the steel sheet surface. The coating amount per side was 800 and
After Sn plating treatment at 1000 mg/m 2 , it was immersed in the flux solution shown above, dried, and subjected to a heat treatment for melting the Sn plating layer in an air atmosphere using a resistance heating method.
The Sn plating layer melt heat treatment conditions are as follows: Sn in the Fe-Sn alloy formed at the Fe/Sn interface during the melt heat treatment.
It was carried out under conditions such that the amount of Sn plating was 1/3 of the total amount of Sn plating. Then, electrolytic chromate treatment was performed under the conditions shown below to form a chromate coating layer of 12 to 17 mg/m 2 per side in terms of metallic chromium, and the sample was used as a sample. NiSO 4・7H 2 O: 200g/ NiCl 2・6H 2 O: 60g/ H 3 BO 3 : 50g/ Bath temperature 50℃ Bath PH: 1.8~4.0 Cathode current density: 5~50A/dm 2 Tin sulfate: 25g/ Phenolsulfonic acid: 30g/ Ethoxylated α-naphtholsulfonic acid: 2g/ Bath temperature: 40-50℃ Cathode current density: 20A/dm 2 [Phenolsulfonic acid: 1-2g/] Bath temperature 45℃ CrO 3 : 20-100g/ H 2 SO 4 : 0.1-1.0g/ Na 2 SiF 6 : 0-3g/ Bath temperature: 40-60°C Cathode current density: 5-90A/dm 2 Example 2 In Example 1 This is an example in which conditions were changed for the Sn plating treatment bath, the flux treatment after the Sn plating treatment was omitted, and only water washing was used, and other items were the same as Example 1.Stannic chloride: 75g/sodium fluoride : 25g/ Potassium hydrogen fluoride: 50g/ Sodium chloride: 45g/ Bath temperature: 40~50℃ Cathode current density: 20~40A/dm 2 Comparative example A comparative example in which the Ni plating part in Example 1 was completely omitted. Other items are the same as in Example 1. In order to confirm the range of variation in characteristics for each manufacturing chance, the present invention examples and comparative examples were manufactured twice under exactly the same manufacturing conditions, and the characteristics were evaluated in each of the same manufacturing steps. A comprehensive evaluation was made taking into consideration the variations in the two manufacturing runs. As a conventional example, the amount of Sn plating per one side is
#25 tinplate at 2800 mg/m 2 was evaluated at the same time. Evaluation tests were conducted for the following two items (A) and (B), and the results are shown in Table 1. (A) Seam weldability test After forming each specimen into a can body, a seam welding machine for can manufacturing was used to measure the lap width of the joint of the can body by 0.4 mm.
mm, pressurizing force 45Kgf, can making speed 45mpm,
The investigation was conducted by changing the welding secondary current. The evaluation was expressed in the welding secondary current range that allowed good welding. The lower limit of the appropriate secondary welding current was determined by the lower limit of the strength of the weld, and the upper limit was determined by the upper limit of splash generation.The strength of the weld was determined by an impact test and by inserting a V-shaped notch in the weld and pulling it with pliers. Judgment was made by a drag test, and the appearance of the seam weld was visually judged by the presence or absence of exfoliation. All specimens used in the seam weldability test were air-baked at 210°C for 20 minutes in an electric air oven. (B) Rust resistance test under coating film Each specimen was coated with 2 rolls of can-making epoxy-phenol paint at 55mg/dm per side, and heated at 205°C for 10 min.
It was baked for 1 minute, and then further baked at 190°C for 10 minutes. Then, a scratch was made on the coating film using a cutter knife, and a 5 mm Erichsen process was performed using an Erichsen tester to prepare a test sample. The test sample was sprayed with salt water using 5% NaCl for 1 hour and then kept in a constant temperature and humidity tester at 25°C and 85% relative humidity for 14 days, and the rusting state was visually evaluated from the scratched area. The evaluation was as follows: ◎ No thread rust, ○ Small occurrence, △ Slightly large, × Large. As is clear from Table 1, the above test results show that in the examples of the present invention that satisfy the limited range of the present invention, the characteristics obtained in both two manufacturing chances are stable, and the characteristics obtained in each manufacturing chance are stable. While excellent properties with less drasticness can be obtained, those that do not satisfy the limited range of the present invention and comparative examples have insufficient and inferior properties in at least one of the two manufacturing chances. I understand.

【表】 *(2) シーム溶接性:溶接電流下限〜溶接電流上限
なし:溶接適正2次電流範囲なし
〔発明の効果〕 本発明は鋼板上にNiメツキ前処理を施した、
面当りのSnメツキ量が200〜2000mg/m2の薄Snメ
ツキ鋼板の特性を鋼板上のNiメツキ層を不均一
な島状分布となすよう施すことで安定かつ優れた
ものとする製造方法を提供するものである。そし
て本発明によつてシーム溶接性等特性を製造チヤ
ンスごとのバラツキがない安定して優れたものと
することができ、#25ぶりきに替る低コスト、高
性能な素材を市場に提供することができる。
[Table] *(2) Seam weldability: Lower limit of welding current to upper limit of welding current None: No suitable secondary current range for welding
We developed a manufacturing method that makes the characteristics of thin Sn-plated steel sheets with a Sn plating amount of 200 to 2000 mg/ m2 per surface stable and excellent by applying the Ni plating layer on the steel sheets to form a non-uniform island-like distribution. This is what we provide. Further, according to the present invention, properties such as seam weldability can be made stable and excellent without variations due to manufacturing steps, and a low-cost, high-performance material to replace #25 tin can be provided on the market. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明法による不均一Niメ
ツキ被覆分布を示す模写図、第3図は本発明及び
従来例のメツキ断面モデル図を示す。 1…素地鋼板。
FIGS. 1 and 2 are schematic diagrams showing the non-uniform Ni plating coverage distribution according to the method of the present invention, and FIG. 3 is a cross-sectional model diagram of the plating according to the present invention and the conventional example. 1...Base steel plate.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板表面に平均被覆量として片面当り2〜
100mg/m2で、かつ、不均一な島状のNiメツキ被
覆を施こし、引き続き片面当り200〜2000mg/m2
Snメツキ被覆を施こし、さらにSnメツキ層融点
以上での加熱処理を施こした後、電解クロメート
処理を施こすことを特徴としたシーム溶接性、耐
食性に優れた表面処理鋼板の製造方法。
1 The average coating amount on the steel plate surface is 2 to 2 per side.
100 mg/m 2 and a non-uniform island-like Ni plating coating, followed by a coating of 200 to 2000 mg/m 2 per side.
A method for producing a surface-treated steel sheet with excellent seam weldability and corrosion resistance, characterized by applying a Sn plating coating, further performing a heat treatment at a temperature above the melting point of the Sn plating layer, and then performing an electrolytic chromate treatment.
JP61220521A 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance Granted JPS6376896A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61220521A JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance
EP87104231A EP0260374B1 (en) 1986-09-18 1987-03-23 Process for producing a multilayer-coated strip having excellent corrosion resistance and weldability and useful for containers
DE87104231T DE3788178T2 (en) 1986-09-18 1987-03-23 Process for the production of a multi-coated steel strip with excellent corrosion resistance and weldability as well as usable for containers.
CA000532926A CA1331962C (en) 1986-09-18 1987-03-25 Process for producing a multilayer-coated steel strip having excellent corrosion resistance and weldability and useful for containers
AU70712/87A AU573122B2 (en) 1986-09-18 1987-03-27 Electroplated tin-nickel on steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220521A JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS6376896A JPS6376896A (en) 1988-04-07
JPH0214438B2 true JPH0214438B2 (en) 1990-04-09

Family

ID=16752317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220521A Granted JPS6376896A (en) 1986-09-18 1986-09-18 Production of surface-treated steel sheet having excellent seam weldability and corrosion resistance

Country Status (5)

Country Link
EP (1) EP0260374B1 (en)
JP (1) JPS6376896A (en)
AU (1) AU573122B2 (en)
CA (1) CA1331962C (en)
DE (1) DE3788178T2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660434B2 (en) * 1987-04-01 1994-08-10 日本鋼管株式会社 Method for manufacturing surface-treated steel sheet
JP2580923B2 (en) * 1991-12-27 1997-02-12 日本鋼管株式会社 Laminated steel sheet for welding can and method for producing the same
CN1090384C (en) * 1993-10-22 2002-09-04 东洋钢板株式会社 Surface-treated steel sheet for battery case and battery case
JP4742641B2 (en) * 2005-03-28 2011-08-10 Jfeスチール株式会社 Manufacturing method of tinned steel sheet for welding can
CN104790002B (en) * 2015-03-13 2017-04-12 武汉钢铁(集团)公司 Production method of wear-resistant double composite plated tie for packaging hardware products
CN105177641A (en) * 2015-10-27 2015-12-23 姜少群 Nickel-plated steel shell
CN115175466B (en) * 2022-07-04 2023-06-06 江苏富乐华半导体科技股份有限公司 Welding method for improving electroplated tin-nickel alloy on surface of ceramic copper-clad substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142135A (en) * 1978-04-28 1979-11-06 Nippon Kokan Kk <Nkk> Tin-plated steel plate and its manufacture
JPS56130487A (en) * 1980-03-18 1981-10-13 Toyo Kohan Co Ltd After-treatment for extra-thin tin-plated steel sheet for welding
SE451976B (en) * 1980-06-03 1987-11-09 Nippon Steel Corp STRABBAND WITH COATING LAYER AND CONTAINER MANUFACTURED FROM A CLEAR STALBAND
JPS5828356B2 (en) * 1980-12-29 1983-06-15 新日本製鐵株式会社 Chrome-plated steel sheet with excellent weldability
US4442181A (en) * 1981-04-23 1984-04-10 Nippon Steel Corporation Steel strip having differentiated multilayer coatings and being useful for manufacturing of cans
GB2157319A (en) * 1984-04-13 1985-10-23 Toyo Kohan Co Ltd Tin free steel and its production
JPS60258499A (en) * 1984-06-04 1985-12-20 Kawasaki Steel Corp Manufacture of surface-treated steel plate for resistance welding
JPS61130500A (en) * 1984-11-29 1986-06-18 Kawasaki Steel Corp Production of sn/cr two-layered plated steel plate

Also Published As

Publication number Publication date
DE3788178D1 (en) 1993-12-23
JPS6376896A (en) 1988-04-07
AU573122B2 (en) 1988-05-26
CA1331962C (en) 1994-09-13
EP0260374A2 (en) 1988-03-23
EP0260374A3 (en) 1989-09-06
EP0260374B1 (en) 1993-11-18
DE3788178T2 (en) 1994-03-10
AU7071287A (en) 1988-03-24

Similar Documents

Publication Publication Date Title
US4501802A (en) Hydrated chromium oxide-coated steel strip useful for welded cans and other containers
JP4818755B2 (en) Steel plate for welding can
EP0184115B1 (en) Surface-treated steel strip having improved weldability and process for making
JPH0216397B2 (en)
JPH0214438B2 (en)
JPH0246679B2 (en)
JPH0154437B2 (en)
JPS60258499A (en) Manufacture of surface-treated steel plate for resistance welding
JP2576570B2 (en) Pretreatment method for electrolytic chromate treated steel sheet
JPH0140118B2 (en)
JPS63277794A (en) Production of steel sheet coated with sn-based multilayered plating and having superior adhesion to paint
JPH0243835B2 (en)
JPH0434636B2 (en)
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH11106954A (en) Surface treated steel sheet for welded can excellent in weldability, corrosion resistance and appearance
JPH0368949B2 (en)
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion
JP2827709B2 (en) Surface treated steel sheet with multiple plating layers, excellent in filiform rust resistance, corrosion resistance and weldability
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH11117085A (en) Steel sheet for welded can, excellent in weldability, corrosion resistance, and adhesion
JPS63199896A (en) Production of surface treated steel sheet for welded can having superior weldability, adhesion of paint and corrosion resistance after painting
JPS6379994A (en) Production of steel sheet for welded can
JPS6330999B2 (en)
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term