JPH0214413Y2 - - Google Patents
Info
- Publication number
- JPH0214413Y2 JPH0214413Y2 JP1983175637U JP17563783U JPH0214413Y2 JP H0214413 Y2 JPH0214413 Y2 JP H0214413Y2 JP 1983175637 U JP1983175637 U JP 1983175637U JP 17563783 U JP17563783 U JP 17563783U JP H0214413 Y2 JPH0214413 Y2 JP H0214413Y2
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- conductive film
- transparent
- film
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010408 film Substances 0.000 claims description 47
- 239000005357 flat glass Substances 0.000 claims description 17
- 239000010409 thin film Substances 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Window Of Vehicle (AREA)
- Laminated Bodies (AREA)
- Surface Treatment Of Glass (AREA)
Description
〔産業上の利用分野〕
本考案は表面に光の干渉効果を利用し、反射防
止処理を施した自動車用窓ガラスに関する。
本考案の自動車用窓ガラスにおいて施した上記
反射防止処理は、該窓ガラス表面に防曇あるいは
電磁シールドを目的として形成した透明導電膜に
よる反射を防止するものである。
〔従来技術〕
従来、防曇あるいは電磁シールドを目的として
表面に透明導電膜を形成した自動車用窓ガラスが
知られている。この窓ガラスは該透明導電膜を通
電加熱して窓ガラス表面の結露、結氷を除去した
り、あるいは該透明導電膜を高周波接地し、外界
と内界とを電磁的に孤立させ、電波雑音を防止す
るものである。
しかし、上記透明導電膜として一般に用いられ
ているインジウム・テインオキサイド(ITO)の
屈折率nはn=1.8〜2.0と高い。このため該透明
導電膜での反射が発生し、可視光の反射率が透明
導電膜の形成されていない窓ガラスよりも一般に
高くなる。故に、該防曇あるいは電磁シールドガ
ラスを自動車用窓ガラスとして用いると、透過光
が減少して外部視認性が低下したり、あるいは反
射光によつて対向車の搭乗者を幻惑させたりする
という欠点があつた。
〔考案の目的〕
本考案は上記事情に鑑み案出されたものであ
り、多層膜による光の干渉効果を利用することに
よつて、上記透明導電膜での反射を防止し、以て
可視光の反射率を低減した窓部材を提供すること
を目的とする。
〔考案の構成〕
本考案は、透明基板と、該透明基板上に形成さ
れた透明な導電性酸化物からなる透明導電膜と、
該透明導電膜上に形成され、該透明導電膜よりも
低屈折率な酸化珪素(SiO2)、フツ化マグネシウ
ム(MgF2)、アルミナ(Al2O3)の一種からな
り、膜厚が700Å〜1100Åである透明薄膜と、か
らなることを特徴とする自動車用窓ガラスであ
る。
透明基板は自動車用窓ガラスの本体を成し、ガ
ラス、透明プラスチツク等通常用いられている板
状の透明部材を用いることができる。
透明導電膜は、防曇あるいは電磁シールドを目
的として、上記透明基板上にスパツタリング法、
イオンプレーテイング法、真空蒸着法等の真空成
膜法、あるいは、その他の方法によつて形成す
る。防曇効果はジユール熱を利用するものであ
り、最適な発熱量を得るためには透明導電膜のシ
ート抵抗は20Ω/ロ〜0.5Ω/ロ程度、膜厚は0.5
〜1.5μ程度が適当である。又、電磁シールド効果
は透明導電膜での電磁波の吸収及び反射を利用す
るものであり、この目的に最適なシート抵抗は
10Ω/ロ〜100Ω/ロ程度である。又この場合は
高周波接地を行ない、外界と内界を電磁的に孤立
させる必要がある。ここでΩ/ロはシート抵抗で
あり、縦横各1cmのシートの1cmの間隔を隔てて
相背向する側端面間の抵抗Rを意味する。すなわ
ち、物質の抵抗R(Ω)は物質固有の比抵抗ρ(Ω
cm)と断面積S(cm2)と長さL(cm)で次のように
表わされる。
R(Ω)=ρ(Ωcm)L(cm)S(cm2)
ここで縦横各1cm、厚さbcmのシートを考える
と、
R(Ω)=ρ1b(Ωcm・cmcm2)=ρ1b(Ω)
となり、厚みの関数となる。このR(Ω)を
Ω/ロとして規定したものがシート抵抗である。
なおΩ/ロは1983年、日本学術振興会薄膜第131
委員会発行の「薄膜ハンドブツク」の第494貢等
に一般的に使用されている。透明導電膜としては
インジウム・テインオキサイド(ITO)、錫酸化
物(SnO2)、インジウム・オキサイド(In2O3)
等の透明な導電性酸化物を用いることができる。
なお、透明導電膜を防曇を目的として用いる場合
は該透明導電膜に電力を供給する端子が必要であ
るが、該端子電極は、例えば銀(Ag)、ニツケル
(Ni)等で形成することができる。
透明薄膜は、光の干渉効果によつて上記透明導
電膜での可視光の多重反射を防止する機能を有す
る。透明薄膜としては、上記透明導電膜よりも低
屈折率の物質である二酸化珪素(SiO2)、フツ化
マグネシウム(MgF2)、アルミナ(Al2O3)等を
用いることができる。又、透明薄膜の膜厚は上記
目的で用いられる透明導電膜の上記膜厚に対し、
700〜1100Å程度が最適である。
〔実施例〕
本考案の実施例として表に示すサンプルC1〜
C5、及びE1〜E5の自動車用窓ガラス(第1
図及び第2図に図示)を製造し、それぞれの可視
光の反射率を測定した。又、比較例としてサンプ
ルA,BおよびDの自動車用窓ガラスを製造し、
同様に可視光の反射率を測定した。
サンプルC1〜C5は透明導電膜であるITO
(屈折率1.9)の膜厚を5000Åとし、透明薄膜であ
るSiO2(屈折率1.45)の膜厚を700Å〜1100Åまで
100Å間隔で変えたものである。なお、透明基板
であるガラス基板の屈折率はいずれも1.53であ
る。サンプルC1〜C5の可視光反射率は、最大
でも3.4%(C1)であり、これは透明薄膜を形
成しないサンプルBの反射率10.9%よりもはるか
に低いばかりでなく、透明導電膜も透明薄膜も形
成しないサンプルAの可視光反射率4.3%と比較
しても低い値となつている。しかし、透明薄膜
も、その膜厚を厚くしすぎるとサンプルDよりわ
かるように反射率は増加する。
サンプルE1〜E5は、透明薄膜の膜厚を900
Åと一定し、透明導電膜の膜厚を変えた場合であ
る。サンプルE1〜E5よりわかるように、透明
導電膜であるITOの膜厚を、防曇効果、あるいは
電磁シールド効果を損なわない範囲内で若干増減
しても透明薄膜であるSiO2の膜厚が本考案で限
定される膜厚の範囲内である900Å程度であれば、
可視光の反射率は低く押えることができる。即
ち、透明導電膜の膜厚変化の影響は、あまり受け
ない。
又、表に示すサンプルB〜E5のおのおのにつ
いて、防曇効果及び電磁シールド効果を測定した
が、それらに差は認められなかつた。すなわち透
明薄膜を形成したことによる上記効果の減少は認
められなかつた。
又、サンプルB、AおよびC3(E3)につい
て、反射スペクトルを測定したが、その結果は第
3図に示すように可視光の全波長域に渡つて前記
表に示す傾向が認められた。すなわち、透明導電
膜のみを形成したサンプルBの反射率は可視光の
[Industrial Application Field] The present invention relates to an automobile window glass whose surface is subjected to anti-reflection treatment by utilizing the interference effect of light. The above-mentioned antireflection treatment applied to the automobile window glass of the present invention is intended to prevent reflection from a transparent conductive film formed on the surface of the window glass for the purpose of antifogging or electromagnetic shielding. [Prior Art] Automotive window glasses having a transparent conductive film formed on the surface for the purpose of anti-fogging or electromagnetic shielding are conventionally known. This window glass is made by heating the transparent conductive film with electricity to remove condensation and ice on the surface of the window glass, or by grounding the transparent conductive film at high frequency to electromagnetically isolate the outside world and the inside world, thereby reducing radio noise. It is intended to prevent However, the refractive index n of indium tein oxide (ITO), which is generally used as the transparent conductive film, is as high as n=1.8 to 2.0. Therefore, reflection occurs on the transparent conductive film, and the reflectance of visible light is generally higher than that of a window glass without a transparent conductive film. Therefore, when such anti-fog or electromagnetic shielding glass is used as window glass for automobiles, it has the disadvantage that transmitted light decreases, resulting in poor external visibility, or reflected light dazzles passengers in oncoming vehicles. It was hot. [Purpose of the invention] The present invention was devised in view of the above circumstances, and by utilizing the light interference effect of the multilayer film, it prevents reflection on the transparent conductive film, thereby reducing visible light. An object of the present invention is to provide a window member with reduced reflectance. [Structure of the invention] The invention comprises a transparent substrate, a transparent conductive film formed on the transparent substrate and made of a transparent conductive oxide,
The film is formed on the transparent conductive film and is made of silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), or alumina (Al 2 O 3 ), which has a lower refractive index than the transparent conductive film, and has a thickness of 700 Å. This is an automobile window glass characterized by comprising a transparent thin film having a thickness of ~1100 Å. The transparent substrate forms the main body of the automobile window glass, and may be a commonly used plate-shaped transparent member such as glass or transparent plastic. A transparent conductive film is formed by sputtering or sputtering on the transparent substrate for the purpose of anti-fogging or electromagnetic shielding.
It is formed by a vacuum film forming method such as an ion plating method or a vacuum evaporation method, or other methods. The anti-fogging effect utilizes Joule heat, and in order to obtain the optimal amount of heat generation, the sheet resistance of the transparent conductive film should be around 20Ω/Ro to 0.5Ω/Ro, and the film thickness should be 0.5
~1.5μ is appropriate. In addition, the electromagnetic shielding effect utilizes the absorption and reflection of electromagnetic waves in a transparent conductive film, and the optimal sheet resistance for this purpose is
It is about 10Ω/lo to 100Ω/lo. Also, in this case, it is necessary to perform high-frequency grounding to electromagnetically isolate the outside world and the inside world. Here, Ω/R is the sheet resistance, and means the resistance R between the side end faces of a sheet measuring 1 cm in length and width, which face each other with a 1 cm interval between them. In other words, the resistance R (Ω) of a material is the specific resistance ρ (Ω
cm), cross-sectional area S (cm 2 ), and length L (cm) as follows. R (Ω) = ρ (Ωcm) L (cm) S (cm 2 ) Now, considering a sheet with length and width of 1 cm and thickness bcm, R (Ω) = ρ1b (Ωcm・cm cm 2 ) = ρ1b (Ω) It becomes a function of thickness. The sheet resistance is defined as R (Ω) as Ω/R.
In addition, Ω/ro was published in 1983 by Japan Society for the Promotion of Science Thin Film No. 131.
It is commonly used in the 494th edition of the "Thin Film Handbook" published by the committee. Transparent conductive films include indium oxide (ITO), tin oxide (SnO 2 ), and indium oxide (In 2 O 3 ).
Transparent conductive oxides such as can be used.
Note that when using a transparent conductive film for the purpose of antifogging, a terminal is required to supply power to the transparent conductive film, and the terminal electrode may be formed of, for example, silver (Ag), nickel (Ni), etc. Can be done. The transparent thin film has a function of preventing multiple reflections of visible light on the transparent conductive film due to the interference effect of light. As the transparent thin film, silicon dioxide (SiO 2 ), magnesium fluoride (MgF 2 ), alumina (Al 2 O 3 ), etc., which are substances with a lower refractive index than the above-mentioned transparent conductive film, can be used. In addition, the thickness of the transparent thin film is the same as the thickness of the transparent conductive film used for the above purpose.
Approximately 700 to 1100 Å is optimal. [Example] Samples C1~ shown in the table as examples of the present invention
C5, and E1 to E5 automobile window glass (first
2) were manufactured, and the visible light reflectance of each was measured. In addition, as a comparative example, samples A, B, and D of automobile window glass were manufactured,
Similarly, the reflectance of visible light was measured. Samples C1 to C5 are ITO, which is a transparent conductive film.
(refractive index 1.9) film thickness is set to 5000 Å, and transparent thin film SiO 2 (refractive index 1.45) film thickness is set to 700 Å to 1100 Å.
It was changed at intervals of 100 Å. Note that the refractive index of the glass substrate, which is a transparent substrate, is 1.53. The maximum visible light reflectance of Samples C1 to C5 is 3.4% (C1), which is not only much lower than the 10.9% reflectance of Sample B, which does not form a transparent thin film, but also the transparent conductive film is a transparent thin film. This value is lower than the visible light reflectance of 4.3% for Sample A, which does not have any visible light. However, as can be seen from sample D, the reflectance of a transparent thin film increases if the film thickness is made too thick. For samples E1 to E5, the thickness of the transparent thin film was 900 mm.
This is a case where the film thickness of the transparent conductive film is changed while the film thickness is kept constant at Å. As can be seen from samples E1 to E5, even if the thickness of ITO, which is a transparent conductive film, is slightly increased or decreased within a range that does not impair the antifogging effect or electromagnetic shielding effect, the thickness of SiO 2 , which is a transparent thin film, remains the same. If it is around 900 Å, which is within the film thickness limited by the design,
The reflectance of visible light can be kept low. That is, it is not affected much by changes in the thickness of the transparent conductive film. Further, the antifogging effect and electromagnetic shielding effect were measured for each of Samples B to E5 shown in the table, but no difference was observed between them. In other words, no decrease in the above effects due to the formation of the transparent thin film was observed. In addition, the reflection spectra of Samples B, A, and C3 (E3) were measured, and as shown in FIG. 3, the trends shown in the table above were observed over the entire wavelength range of visible light. In other words, the reflectance of sample B with only a transparent conductive film formed is
【表】【table】
【表】
膜の膜厚を700〜1100Åの範囲とすると、可視光
の反射率を透明薄膜を形成しない窓ガラスよりも
はるかに低減できるばかりでなく、透明薄膜のみ
ならず透明導電膜をも形成しない通常の窓ガラス
よりも低減することができる。又、表のE1〜E
5のサンプルよりわかるように、本考案による反
射率の低減効果は、透明導電膜の膜厚の影響をあ
まり受けないため、任意の膜厚の透明導電膜を目
的に応じて形成することが可能である。[Table] When the thickness of the film is in the range of 700 to 1100 Å, not only can the reflectance of visible light be much lower than that of window glass that does not form a transparent thin film, but also a transparent conductive film can be formed as well as a transparent thin film. Not can be reduced more than ordinary window glass. Also, E1 to E in the table
As can be seen from the sample No. 5, the reflectance reduction effect of the present invention is not significantly affected by the thickness of the transparent conductive film, so it is possible to form a transparent conductive film of any thickness depending on the purpose. It is.
第1図は本考案の実施例の窓ガラスの正面図で
あり、第2図は第1図の矢視−線断面図であ
る。第3図は本考案の実施例のサンプルおよび比
較例のサンプルの反射スペクトルを表すグラフで
ある。
1……透明基板、2……透明導電膜、3……透
明薄膜。
FIG. 1 is a front view of a window glass according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line shown in FIG. FIG. 3 is a graph showing the reflection spectra of a sample of an example of the present invention and a sample of a comparative example. 1...Transparent substrate, 2...Transparent conductive film, 3...Transparent thin film.
Claims (1)
な導電性酸化物からなる透明導電膜と、該透明
導電膜上に形成され、該透明導電膜よりも低屈
折率な酸化珪素(SiO2)、フツ化マグネシウム
(MgF2)、アルミナ(Al2O3)の1種からなり
膜厚が700Å〜1100Åである透明薄膜と、から
なることを特徴とする自動車用窓ガラス。 (2) 前記透明導電膜には1対の電極が取着され、
該透明導電膜のシート抵抗は100□/ロ〜
0.5Ω/□である実用新案登録請求の範囲第1
項記載の自動車用窓ガラス。[Claims for Utility Model Registration] (1) A transparent substrate, a transparent conductive film made of a transparent conductive oxide formed on the transparent substrate, and a transparent conductive film formed on the transparent conductive film and made from the transparent conductive film. The transparent thin film is made of one of silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), and alumina (Al 2 O 3 ) with a low refractive index and has a thickness of 700 Å to 1100 Å. Automotive window glass. (2) a pair of electrodes is attached to the transparent conductive film;
The sheet resistance of the transparent conductive film is 100□/Ro~
The first claim for utility model registration is 0.5Ω/□.
Automotive window glass described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17563783U JPS6082436U (en) | 1983-11-14 | 1983-11-14 | automotive window glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17563783U JPS6082436U (en) | 1983-11-14 | 1983-11-14 | automotive window glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6082436U JPS6082436U (en) | 1985-06-07 |
JPH0214413Y2 true JPH0214413Y2 (en) | 1990-04-19 |
Family
ID=30382065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17563783U Granted JPS6082436U (en) | 1983-11-14 | 1983-11-14 | automotive window glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6082436U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10208552B4 (en) * | 2002-02-27 | 2006-03-02 | Saint-Gobain Glass Deutschland Gmbh | Electrically heatable tempered glass pane |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4918446A (en) * | 1972-06-12 | 1974-02-18 | ||
JPS5428321A (en) * | 1977-08-03 | 1979-03-02 | Bfg Glassgroup | Window for vehicles |
JPS571500A (en) * | 1980-06-03 | 1982-01-06 | Ebara Infilco Co Ltd | Disposal of sludge |
JPS5869743A (en) * | 1981-10-21 | 1983-04-26 | Toyota Motor Corp | Electrically conductive glass and its production |
-
1983
- 1983-11-14 JP JP17563783U patent/JPS6082436U/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4918446A (en) * | 1972-06-12 | 1974-02-18 | ||
JPS5428321A (en) * | 1977-08-03 | 1979-03-02 | Bfg Glassgroup | Window for vehicles |
JPS571500A (en) * | 1980-06-03 | 1982-01-06 | Ebara Infilco Co Ltd | Disposal of sludge |
JPS5869743A (en) * | 1981-10-21 | 1983-04-26 | Toyota Motor Corp | Electrically conductive glass and its production |
Also Published As
Publication number | Publication date |
---|---|
JPS6082436U (en) | 1985-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0332717B1 (en) | Transparent laminated product | |
JP2887530B2 (en) | Rearview mirrors for vehicles, especially automobiles | |
US7223940B2 (en) | Heatable windshield | |
US5264286A (en) | Laminated glass structure | |
EP1923362A1 (en) | Infrared reflective glass plate and laminated glass for vehicle window | |
US20050074591A1 (en) | Transparent substrate with antiglare coating having abrasion-resistant properties | |
GB2121075A (en) | Heat-shielding lamination | |
CN102548923B (en) | Low emissivity glass comprising dielectric layer and method for producing the same | |
EA027187B1 (en) | Transparent pane with electrically conductive coating and method for producing the same | |
CA2150081A1 (en) | Electrically-conductive, contrast-selectable, contrast-improving filter | |
JPH0124095B2 (en) | ||
EP1216147A1 (en) | Glazing | |
CN114538791B (en) | Coated glass, preparation method thereof and automobile glass assembly | |
WO2024193454A1 (en) | Laminated heat-insulating glass having local high-infrared ray transmission, and vehicle comprising same | |
EP0386341B1 (en) | Laminated glass structure | |
EP0509050A1 (en) | Magnesium film reflectors. | |
KR20180088431A (en) | A substrate provided with a stack having thermal properties comprising at least one layer of nickel oxide | |
JPH0214413Y2 (en) | ||
JP3713774B2 (en) | Transparent electromagnetic shielding board | |
KR20000017060A (en) | Electromagnetic wave filter | |
JPS6027623A (en) | Window glass shielding electromagnetic radiation | |
US10746910B2 (en) | Transflective coatings for transparencies | |
JPH036015Y2 (en) | ||
JPH06177407A (en) | Transparent conductive film | |
JPS6115403A (en) | Window glass for automobile with antenna |