JPH0214398B2 - - Google Patents

Info

Publication number
JPH0214398B2
JPH0214398B2 JP59208073A JP20807384A JPH0214398B2 JP H0214398 B2 JPH0214398 B2 JP H0214398B2 JP 59208073 A JP59208073 A JP 59208073A JP 20807384 A JP20807384 A JP 20807384A JP H0214398 B2 JPH0214398 B2 JP H0214398B2
Authority
JP
Japan
Prior art keywords
coal
solidification temperature
coke
coke oven
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59208073A
Other languages
Japanese (ja)
Other versions
JPS6187787A (en
Inventor
Toshihiro Aramaki
Mitsuhiro Sakawa
Yoshihisa Sakurai
Hidehiro Katahira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP20807384A priority Critical patent/JPS6187787A/en
Publication of JPS6187787A publication Critical patent/JPS6187787A/en
Publication of JPH0214398B2 publication Critical patent/JPH0214398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、コークス炉装入炭を乾留して所定
強度のコークスを製造する際にこのコークス炉装
入炭を構成する複数の原料石炭の種類及び/又は
配合比率を管理するための方法に関する。 〔従来の技術〕 高炉用コークスとしてはコークス強度、粒度、
気孔率等において安定した品質が要求されるが、
安定した品質のコークスを製造するためには複数
の原料石炭からなるコークス炉装入炭の品質が一
定の基準を満足するように配合管理を行うことが
必要である。 ところで、我が国においては、多種多様の原料
石炭を輸入し、これらを適当に配合してコークス
炉装入炭を調製している。そして、このコークス
炉装入炭の調製は、通常、20〜30種類にも及ぶ銘
柄の原料石炭を確保しておき、10〜20種類に及ぶ
銘柄の石炭を混合してコークス炉装入炭を調製し
ており、また、2〜3日に1回程度その内の数銘
柄の原料石炭について配合の変更をする作業を行
つている。 しかしながら、石炭の性質はその産出国、炭
鉱、炭層等により異なつており、また、品質の安
定したコークスを製造するためには原料石炭の配
合技術を駆使し、常時品質の一定なコークスを製
造し得るようなコークス炉装入炭を調製すること
が必須の条件になり、従来においてもこの石炭配
合の最適条件を見い出すための方法として、幾つ
かの手法が提案されている。 このような従来の方法としては、例えば、石炭
の主成分であるビトリニツトの反射率分布を求め
ると共に石炭組織分析を行つてその結果から各銘
柄原料石炭の最適配合比率を求める方法、原料石
炭の最高流動度とそのビトリニツトの反射率分布
とを求めてその結果から各銘柄原料石炭の最適配
合比率を求める方法、原料石炭の全膨脹率を求め
ると共に工業分析を行つてその結果から各銘柄原
料石炭の最適配合比率を求める方法等が提案され
ている。 〔発明が解決しようとする問題点〕 しかしながら、ビトリニツトの反射率分布と石
炭組織分析とを使用して行う第1の方法において
は、顕微鏡による石炭の反射率測定や組織の判定
が必要になつて作業が面倒であるほか、単一の石
炭の分類評価としては有効であつても複数の原料
石炭が配合されたコークス炉装入炭の測定には問
題があり、また、計算や解析が複雑であるという
問題もある。 また、最高流動度とビトリニツトの反射率分布
とを利用して行う第2の方法においては、上記第
1の方法と同様に、顕微鏡による石炭の反射率測
定や組織の判定が必要になつて作業が面倒である
という問題があり、コークス炉装入炭の測定には
問題があるほか、計算や解析が複雑であつて日常
の石炭配合管理には不向きであるという問題があ
る。 さらに、全膨脹率と工業分析とを使用して行う
第3の方法においては、その指数を求める試験が
比較的容易であるという長所を有する反面、全膨
脹率に加成性がなく、他種類の原料石炭を配合し
て調製されるコークス炉装入炭の配合管理には不
適当であるという問題がある。 従つて、従来の方法においては、そのいずれの
方法においても一長一短があり、いずれかの方法
を採用したとしてもそれは参考にする程度であ
り、実際には経験と勘に頼つているのが現状であ
る。 〔問題点を解決するための手段及び作用〕 本発明は、かかる観点に鑑み、石炭配合管理を
できるだけ能率良く行うことができ、しかも、真
の最適石炭配合条件を見出すことができる方法を
提供するもので、複数の原料石炭の種類及び/又
はその配合比率を決定してコークス炉装入炭を調
製するに際し、予め各原料石炭の固化温度と最高
流動度とを測定し、コークス炉装入炭の配合比率
を考慮して各原料石炭の固化温度の平均値と固化
温度のばらつきと最高流動度の平均値とをそれぞ
れ算出し、これら固化温度の平均値、固化温度の
ばらつき及び最高流動度の平均値とコークス品質
との相関関係を予め求めておき、この相関関係に
基づいてコークス炉装入炭のコークス化性を評価
するコークス製造用石炭の配合管理法である。 本発明が適用される原料石炭としては、コーク
ス化性を評価するのに必要な指数を算出する際に
使用される固化温度と最高流動度とを測定するこ
とができるものであればよく、また、直接測定で
きない場合であつても、従来公知の推定法で固化
温度と最高流動度とを推定できる石炭、あるいは
試験条件を変えることによつて固化温度と最高流
動度とを測定し得る石炭等も包含される。 本発明者等がコークス炉装入炭のコークス化性
を評価する指標として上記3つの指標を採用する
に至つた根拠を以下に説明する。 石炭粒子が相互に融着して塊コークスを形成す
ることから、コークス強度の発現メカニズムを解
明するためには、異炭種間の境界面の乾留後の接
着状態が相互の石炭の性状と如何なる関係を有す
るかを先ず明らかにする必要がある。そこで、コ
ークス炉装入炭を調製するのに使用される上記各
原料石炭について、通常よく使用される石炭を基
準炭とし他の配合炭を試験炭として定め、この基
準炭と試験炭とを基準灰が炉壁側に位置するよう
に試験炉に層別充填して乾留し、得られたコーク
スにおける基準炭と試験炭との間の接着状態を顕
微鏡等で観察して評価する。 2種の石炭、すなわち基準炭と試験炭との間の
接着状態はそのどちらが炉壁側に位置するかによ
つて異なるので、好ましくは2種以上の複数の石
炭を基準炭に選定して行う。 上記基準炭と試験炭との間の接着状態の評価
は、例えば、得られたコークスの境界面の状態を
顕微鏡で観察すると、基準炭や試験炭の部分に観
察される空隙とほぼ同じ状態で境界面に空隙が分
布して両者が強固に接着している「接着状態」、
境界面に空隙がより多く分布して接着が不十分な
「空隙状態」及び境界面に破断が見られて接着が
不十分な「破断状態」の3段階等に分類される。 これを具体例を使用して説明すれば、例えば、
9種の銘柄の原料石炭a〜iを使用し、各原料石
炭についてその最高流動度(MF)と固化温度
(S)とをギーゼラープラストメーターを使用す
る方法(JIS M8801)で測定し、上記原料石炭の
内の2種、例えばa及びbを基準炭とし、各基準
炭a又はbに対して他の原料石炭を試験炭とする
基準炭と試験炭の組合せを16組つくり、これら各
組について上記基準炭が炉壁側に位置するように
試験炉に層別充填して乾留し、得られたコークス
における基準炭と試験炭との間の接着状態を顕微
鏡等で観察して「接着状態」、「空隙状態」及び
「破断状態」の3つの状態に評価し、第1図に示
すように、これら基準炭と試験炭との間の接着状
態を基準炭と試験炭との間の固化温度(S)の差
(ΔS)を横軸とし試験炭の最高流動度(MF)を
縦軸とするグラフ上に表示すれば、ΔSとMFと
の相互関係によつて接着が十分で強固な領域と接
着が不十分で脆弱な領域とに区分される。 すなわち、基準炭と試験炭との間の接着状態
は、試験炭の最高流動度(MF)が一定であれば
固化温度(S)の差(ΔS)については値0を中
心にΔSの絶対値が大きくなればなるほど脆弱に
なり、又、固化温度(S)の差(ΔS)が一定で
あれば試験炭の最高流動度(MF)が小さくなれ
ばなるほど脆弱になる。 このように石炭粒子どうしの物理的な接着状態
が十分か不十分かは、ΔSとMFの2つの指標で
説明することができる。しかし、接着面の強度が
大きいか小さいかは別問題であり、石炭化度のパ
ラメーターの導入が必要であるが、一般に、石炭
化度と固化温度とは相関関係があるため、接着面
の強度因子としてSを採用する。 以上の結果は、2種の石炭の組合せの場合であ
るが、多種類の石炭の混合物である実際のコーク
ス炉装入炭の場合にも上記理論の適用が可能であ
る。 すなわち、2種の石炭の組合せの場合に得られ
た基準炭と試験炭との間の固化温度(S)の差
(ΔS)については、コークス炉装入炭においては
各原料石炭の固化温度(S)のばらつき(VST)
の値で評価し、その際にコークス炉装入炭におけ
る各原料石炭の配合比率を寄与率として考慮し、
また、2種の石炭の組合せの場合に使用した各試
験炭の最高流動度(MF)については、混合系の
場合いずれが炉壁側になるかは等確率と考えられ
るため、コークス炉装入炭においては各原料石炭
の最高流動度(MF)の平均値(MF)で評価
し、その際にコークス炉装入炭における各原料石
炭の配合比率を寄与率として考慮する。さらに、
各原料石炭の間の接着強度を定量的に評価するに
は、石炭化度の評価指数を必要とするが、その指
数として通常よく使用されているビトリニツトの
平均反射率は上記固化温度(S)と密接な関係を
有し、しかも、固化温度(S)がコークス強度の
実態をよく反映するので、コークス炉装入炭にお
いては石炭化度の評価指数として各原料石炭の固
化温度(S)の平均値(ST)で評価し、その
際にコークス炉装入炭における各原料石炭の配合
比率を寄与率として考慮する。 固化温度の平均値(STI)及びそのばらつき
(VST)と最高流動度の平均値(MF)の算出
は、下記の各式による。 STI=ΣSχ/100 ……(1) S:各原料石炭の固化温度 χ:各原料石炭の配合比率(%) VST=√ ……(2) Y=〔ΣS2χ−(ΣSχ)2/100〕/100 MFI=ΣFχ/100 ……(3) F:MF(logDDPM) χ:各原料石炭の配合比率(%) 指数の最高流動度の平均値(MFI)について
は、石炭粒子間が互いに接着するためにMFIが
大きいことが必要であるが、コークス強度の点か
らは最適値がある。 また、指数としての固化温度の平均値(STI)
及びそのばらつき(VST)は石炭粒子間の接着
強度に対する関係が互いに逆の関係にあり、固化
温度のばらつき(VST)についてはその値が小
さい程石炭粒子間の接着状態は良好となり、ま
た、固化温度の平均値(STI)についてはその値
が大きい程石炭粒子が接着した場合の接着強度が
向上する。従つて、上記固化温度のばらつき
(VST)を固化温度の平均値(STI)で割つた値
(VST/STI=VSTI)と石炭粒子間の接着強度
との関係は上記VSTIの値が小さくなる程石炭粒
子間の接着強度が向上するという関係にある。 このように、本発明によるSTI、VST及び
MFIの3つの指標を使うことにより原料石炭ど
うしの接着強度の評価が可能であり、石炭配合管
理指標として優れているばかりでなく、これらの
指標は全て単一の装置、例えばギーゼラープラス
トメーターにより簡単に測定される特性値を用い
て算出することができ、極めて有利な管理指標と
言える。 次に、本発明方法を使用して石炭配合管理を実
施する工程の一例につき、手順を追つて説明す
る。 コークス製造の際に使用される全ての原料石
炭について、予め最高流動度(MF:
logDDPM)と固化温度(S:℃)とを求め
る。 この最高流動度(MF:logDDPM)と固化
温度(S:℃)の測定は、通常行なわれている
ギーゼラープラストメーターを使用する方法
(JIS M8801)でよく、また、従来公知の他の
方法であつてもよい。 複数の配合炭について、上記3つの指標を算
出すると共に一定乾留条件下でそれぞれのコー
クス化試験を行い、コークス強度、例えば
DI150/15と3つの指標との相関関係を数式化
するか、等コークス強度線を引く等して図式化
する。 コークス炉装入炭についてその一部の炭種を
変更する場合が生じた場合、どのような配合管
理を行うかについては、以下の手順で行う。 先ず、変更されて新たに配合される原料石炭
の最高流動度(MF)と固化温度(S)とを測
定し、各原料石炭の配合比率を変更することな
く炭種のみを変更した新たなコークス炉装入炭
を調製し、この新たなコークス炉装入炭の
MFI、STI及びVSTの値を算出して上記で
求められた各指数とコークス化性との関係に当
はめてプロツトし、各指数とコークス化性との
関係で示された等コークス強度線においてどの
ような位置にあるかを読取る。 変更後のコークス強度の値が変更前の位置か
ら上記等コークス強度線に沿つて移動している
場合にはコークス強度の変化はあまりないこと
を意味する。また、等コークス強度線の対して
直角の方向に移動している場合にはコークス強
度が向上する方向かあるいは低下する方向かを
読取れば、配合を変更しようとしている石炭の
コークス化性が評価され、配合の変更が適切か
否か判定される。 このようにして新たなコークス炉装入炭が目
的とするMFI、STI及びVSTの値を使用し、
各原料石炭の最高流動度(MF)と固化温度
(S)とから上記MFI、STI及びVSTの値を満
足する各原料石炭の種類及び/又は配合割合を
決定する。 〔実施例〕 以下、実施例に基づいて、本発明方法を具体的
に説明する。 (1) VSTI−MFIの2次元座標の作成 7種の銘柄の原料石炭A〜Gを使用し、第1
表に示すように、各原料石炭についてその最高
流動度(MF)と固化温度(S)とをギーゼラ
ープラストメーターを使用する方法(JIS
M8801)で測定し、また、上記各原料石炭の配
合比率を変えた5種のコークス炉装入炭〜
を調製し、各コークス炉装入炭についてその
MFI、STI及びVST並びにVSTIの値を算出す
ると共に、各コークス炉装入炭についてそのコ
ークス強度(DI150/15、JIS K2152)を測定
した。 次ぎに、原料石炭A〜GのMFとS及び配合
率から〜の装入炭の種類毎にMFI及び
VSTIを算出し、VSTIを横軸としMFIを縦軸
とするグラフ上にプロツトする。 さらに、この実施例においては、VSTIを横
軸としMFIを縦軸とするグラフ上に、上記各
原料石炭の配合比率を変えた5種のコークス炉
装入炭について測定した各コークス炉装入炭の
コークス強度を表示し、等コークス強度線を引
き、VSTI−MFIとコークス強度との関係を示
す2次元座標を作成した。この場合の等コーク
ス強度線が右上りの勾配となることは、前述の
ように、石炭の接着強度評価指数の特性から明
らかである。結果を第2図に示す。
[Industrial Field of Application] This invention provides a method for controlling the types and/or blending ratios of a plurality of coking coals constituting the coke oven coal when carbonizing the coke oven coal to produce coke of a predetermined strength. Regarding methods for managing. [Conventional technology] For blast furnace coke, coke strength, particle size,
Stable quality is required in terms of porosity, etc.
In order to produce coke of stable quality, it is necessary to manage the mixture so that the quality of the coke oven charging coal made of a plurality of raw coals satisfies a certain standard. By the way, in Japan, a wide variety of raw material coals are imported and these are appropriately blended to prepare coke oven charging coal. To prepare this coke oven charging coal, usually 20 to 30 brands of coking coal are secured, and 10 to 20 brands of coal are mixed to prepare the coke oven charging coal. In addition, the composition of several brands of raw coal is changed about once every two to three days. However, the properties of coal vary depending on the country of origin, coal mine, coal seam, etc., and in order to produce coke of stable quality, it is necessary to make full use of raw material coal blending technology to produce coke of constant quality. It has become an essential condition to prepare the coal charged in a coke oven in such a way that it can be used in a coke oven, and several methods have been proposed in the past to find the optimum conditions for this coal blend. Such conventional methods include, for example, determining the reflectance distribution of vitrinite, which is the main component of coal, analyzing the coal structure, and determining the optimal blending ratio of each brand of coking coal from the results; The flow rate and its vitrinite reflectance distribution are determined, and the optimal blending ratio of each brand of coking coal is determined from the results.The total expansion rate of the coking coal is determined, and an industrial analysis is performed, and the results are used to determine the optimum blending ratio of each brand of coking coal. Methods for determining the optimal blending ratio have been proposed. [Problems to be Solved by the Invention] However, in the first method using the reflectance distribution of vitrinite and the coal structure analysis, it is necessary to measure the reflectance of the coal and judge the structure using a microscope. In addition to being laborious, although it is effective for classifying and evaluating a single piece of coal, there are problems when measuring coal charged in a coke oven that contains multiple coking coals, and calculations and analyzes are complicated. There is also the problem that there is. In addition, in the second method, which uses the maximum fluidity and the reflectance distribution of vitrinite, as in the first method, it is necessary to measure the reflectance of the coal and judge the structure using a microscope. There is a problem in that it is troublesome, and there is a problem in measuring the coal charged in a coke oven, and the calculation and analysis are complicated, making it unsuitable for daily coal blend management. Furthermore, the third method, which uses the total expansion rate and industrial analysis, has the advantage that the test to determine the index is relatively easy; however, it has no additivity to the total expansion rate, and other There is a problem in that it is inappropriate for blending control of coke oven charging coal prepared by blending raw material coal. Therefore, each of the conventional methods has its advantages and disadvantages, and even if one method is adopted, it is only for reference; in reality, the current situation is that we rely on experience and intuition. be. [Means and effects for solving the problems] In view of this point of view, the present invention provides a method that allows coal blending management to be performed as efficiently as possible, and also allows finding truly optimal coal blending conditions. When preparing coke oven charging coal by determining the types and/or blending ratios of multiple raw material coals, the solidification temperature and maximum fluidity of each raw material coal are measured in advance, and the coke oven charging coal is The average value of the solidification temperature, the variation in solidification temperature, and the average value of the maximum fluidity of each raw material coal are calculated by considering the blending ratio of This is a blending control method for coal for coke production in which the correlation between the average value and coke quality is determined in advance and the coking ability of coal charged in a coke oven is evaluated based on this correlation. The raw material coal to which the present invention is applied may be any coal that can measure the solidification temperature and maximum fluidity used in calculating the index required to evaluate coking property, and Coal, etc. whose solidification temperature and maximum fluidity can be estimated by conventionally known estimation methods even if they cannot be directly measured, or coal whose solidification temperature and maximum fluidity can be measured by changing test conditions. is also included. The basis on which the present inventors adopted the above three indicators as indicators for evaluating the coking property of coal charged in a coke oven will be explained below. Since coal particles fuse together to form lump coke, in order to elucidate the mechanism of coke strength development, it is important to understand how the adhesion state after carbonization at the interface between different types of coal differs from the properties of the mutual coal. It is first necessary to clarify whether there is a relationship. Therefore, for each of the above-mentioned raw material coals used to prepare coke oven charging coal, commonly used coal is defined as the reference coal and other blended coals are defined as the test coal, and this reference coal and test coal are used as the reference coal. The test furnace is charged in layers so that the ash is located on the furnace wall side and carbonized, and the state of adhesion between the reference coal and the test coal in the obtained coke is observed and evaluated using a microscope. Since the adhesion state between the two types of coal, that is, the reference coal and the test coal, differs depending on which of them is located on the furnace wall side, it is preferable to select two or more types of coal as the reference coal. . To evaluate the adhesion state between the reference coal and test coal, for example, when observing the state of the interface of the obtained coke under a microscope, it is found that the state is almost the same as the voids observed in the reference coal and test coal. "Adhesive state" where voids are distributed on the interface and the two are firmly adhered,
It is classified into three stages: a "void state" in which more voids are distributed on the interface and insufficient adhesion, and a "broken state" in which there are breaks in the interface and insufficient adhesion. To explain this using a concrete example, for example,
Nine brands of raw material coal a to i were used, and the maximum fluidity (MF) and solidification temperature (S) of each raw material coal were measured by a method using a Gieseler plastometer (JIS M8801). Two types of coal, for example, a and b, are used as the reference coal, and for each reference coal a or b, another coking coal is used as the test coal, creating 16 sets of reference coal and test coal, and for each of these sets. The above-mentioned reference coal is packed in layers in a test furnace so that it is located on the furnace wall side, and carbonized, and the adhesion state between the reference coal and test coal in the obtained coke is observed with a microscope, etc., and the "adhesion state" is determined. As shown in Figure 1, the adhesion state between the reference coal and the test coal is determined by the solidification temperature between the reference coal and the test coal. If the graph is plotted on a graph with the horizontal axis representing the difference (ΔS) and the vertical axis representing the maximum fluidity (MF) of the test coal, it can be seen that the mutual relationship between ΔS and MF indicates a region where the adhesion is sufficient and strong. and weak areas with insufficient adhesion. In other words, if the maximum fluidity (MF) of the test coal is constant, the adhesion state between the reference coal and the test coal is determined by the absolute value of the solidification temperature (S) difference (ΔS) centered on the value 0. The larger the coal becomes, the more brittle it becomes, and if the difference (ΔS) in solidification temperature (S) is constant, the smaller the maximum fluidity (MF) of the test coal, the more brittle it becomes. In this way, whether the physical adhesion between coal particles is sufficient or insufficient can be explained using two indicators, ΔS and MF. However, whether the strength of the bonding surface is large or small is a different matter, and it is necessary to introduce the parameter of the degree of coalification, but in general, there is a correlation between the degree of coalification and the solidification temperature, so the strength of the bonding surface S is adopted as a factor. Although the above results are for a combination of two types of coal, the above theory can also be applied to the case of actual coal charged in a coke oven, which is a mixture of many types of coal. In other words, the difference (ΔS) in solidification temperature (S) between the reference coal and the test coal obtained in the case of a combination of two types of coal is determined by the solidification temperature (ΔS) of each raw material coal in the coke oven charging coal. S) variation (VST)
At that time, the blending ratio of each coking coal in the coke oven charging coal is considered as the contribution rate,
In addition, regarding the maximum fluidity (MF) of each test coal used in the case of a combination of two types of coal, it is considered that there is an equal probability of which side will be on the furnace wall side in the case of a mixed system. Coal is evaluated based on the average value (MF) of the maximum fluidity (MF) of each coking coal, and at that time, the blending ratio of each coking coal in the coal charged in the coke oven is considered as the contribution rate. moreover,
To quantitatively evaluate the adhesive strength between raw coals, an evaluation index of the degree of coalification is required, and the average reflectance of vitrinite, which is commonly used as an index, is determined by the solidification temperature (S). Furthermore, since the solidification temperature (S) reflects the actual coke strength well, the solidification temperature (S) of each raw material coal is used as an evaluation index of the degree of coalification in coke oven charging coal. The average value (ST) is used for evaluation, and at that time, the blending ratio of each coking coal in the coal charged in the coke oven is considered as the contribution rate. The average value of solidification temperature (STI) and its variation (VST) and the average value of maximum fluidity (MF) are calculated using the following formulas. STI=ΣSχ/100 ……(1) S: Solidification temperature of each raw material coal χ: Mixing ratio of each raw material coal (%) VST=√ ……(2) Y=[ΣS 2 χ−(ΣSχ) 2 /100 ] / 100 MFI = ΣFχ / 100 ... (3) F: MF (logDDPM) χ: Mixing ratio of each raw material coal (%) The average value of the maximum fluidity index (MFI) is based on the fact that coal particles adhere to each other. Although it is necessary to have a large MFI in order to achieve this, there is an optimal value in terms of coke strength. Also, the average value of solidification temperature (STI) as an index
and its variation (VST) have an inverse relationship to the adhesion strength between coal particles, and the smaller the value of the variation in solidification temperature (VST), the better the adhesion state between coal particles. Regarding the average temperature value (STI), the larger the value, the better the adhesive strength when coal particles adhere. Therefore, the relationship between the value obtained by dividing the above solidification temperature variation (VST) by the average solidification temperature value (STI) (VST/STI = VSTI) and the adhesive strength between coal particles becomes smaller as the above VSTI value becomes smaller. The relationship is such that the adhesive strength between coal particles is improved. Thus, STI, VST and
By using the three indicators of MFI, it is possible to evaluate the adhesive strength between coking coals, which is not only an excellent indicator for coal blend control, but also can be easily performed using a single device, such as a Gieseler plastometer. It can be calculated using characteristic values measured in , and can be said to be an extremely advantageous management index. Next, an example of the process of implementing coal blend management using the method of the present invention will be explained step by step. The highest flowability (MF:
logDDPM) and solidification temperature (S:°C) are determined. The maximum fluidity (MF: logDDPM) and solidification temperature (S: °C) may be measured by the commonly used method using a Gieseler plastometer (JIS M8801), or by other conventionally known methods. It's okay. For multiple coal blends, the above three indicators are calculated and each coking test is conducted under constant carbonization conditions, and the coke strength, e.g.
The correlation between DI150/15 and the three indicators can be expressed mathematically or graphically by drawing a line of equal coke strength. If it is necessary to change some of the types of coal charged in a coke oven, the following procedure will be used to determine how to manage the blend. First, we measured the maximum fluidity (MF) and solidification temperature (S) of the changed and newly blended coking coal, and created a new coke with only the coal type changed without changing the blending ratio of each coking coal. Prepare the furnace charging coal and test the new coke oven charging coal.
The values of MFI, STI, and VST are calculated and plotted by applying them to the relationship between each index and coking ability obtained above, and the isocoke intensity line shown by the relationship between each index and coking ability is calculated. Read the position. If the value of the coke strength after the change moves along the above-mentioned equal coke strength line from the position before the change, it means that there is not much change in the coke strength. In addition, if the coke strength is moving in a direction perpendicular to the equal coke strength line, you can evaluate whether the coke strength is increasing or decreasing, and you can evaluate the coking ability of the coal whose blend is being changed. It is then determined whether a change in the formulation is appropriate. In this way, using the target MFI, STI and VST values of the new coke oven charging coal,
The type and/or blending ratio of each raw material coal that satisfies the above MFI, STI, and VST values is determined from the maximum fluidity (MF) and solidification temperature (S) of each raw material coal. [Example] Hereinafter, the method of the present invention will be specifically explained based on Examples. (1) Creation of two-dimensional coordinates of VSTI-MFI Using seven brands of coking coal A to G,
As shown in the table, the maximum fluidity (MF) and solidification temperature (S) of each coking coal are measured using a Gieseler plastometer (JIS
M8801) and five types of coke oven charging coal with different blending ratios of each raw material coal listed above.
For each coke oven charging coal,
The values of MFI, STI, VST, and VSTI were calculated, and the coke strength (DI150/15, JIS K2152) of each coke oven charging coal was measured. Next, from the MF and S of coking coals A to G and the blending ratio, calculate the MFI and
Calculate VSTI and plot it on a graph with VSTI on the horizontal axis and MFI on the vertical axis. Furthermore, in this example, each coke oven charged coal measured for the five types of coke oven charged coal with different blending ratios of each coking coal is shown on a graph with VSTI as the horizontal axis and MFI as the vertical axis. The coke strength of VSTI-MFI was displayed, an equal coke strength line was drawn, and two-dimensional coordinates showing the relationship between VSTI-MFI and coke strength were created. As mentioned above, it is clear from the characteristics of the coal adhesive strength evaluation index that the isocoke strength line in this case has an upward slope to the right. The results are shown in Figure 2.

〔発明の効果〕〔Effect of the invention〕

本発明の石炭配合管理法は、石炭のコークス化
の際における接着理論に基づいており、原料石炭
の固化温度と最高流動度とを測定するだけで石炭
の配合管理をすることができ、また、これら固化
温度と最高流動度とは同じ測定装置で測定するこ
とができるだけでなく、計算も容易であり、面倒
な石炭配合管理を能率良く行うことができる。
The coal blending control method of the present invention is based on the adhesion theory during coking of coal, and the coal blending can be controlled simply by measuring the solidification temperature and maximum fluidity of raw coal. These solidification temperature and maximum fluidity can not only be measured with the same measuring device, but also easy to calculate, making it possible to perform troublesome coal blending management efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は9種の銘柄の原料石炭を使用して2種
の原料石炭、すなわち基準炭と試験炭との間の接
着状態を表示し、強固な接着領域と脆弱な接着領
域とを仕切る境界線を引いたグラフ、第2図は本
発明の実施例に係るVSTI−MFIとコークス強度
との関係を示す2次元座標のグラフである。
Figure 1 shows the state of adhesion between two types of coking coal, reference coal and test coal, using nine different brands of coking coal, and shows the boundary between strong bonding areas and weak bonding areas. The lined graph in FIG. 2 is a two-dimensional coordinate graph showing the relationship between VSTI-MFI and coke strength according to the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の原料石炭の種類及び/又はその配合比
率を決定してコークス炉装入炭を調製するに際
し、予め各原料石炭の固化温度と最高流動度とを
測定し、コークス炉装入炭の配合比率を考慮して
各原料石炭の固化温度の平均値と固化温度のばら
つきと最高流動度の平均値とをそれぞれ算出し、
これら固化温度の平均値、固化温度のばらつき及
び最高流動度の平均値とコークス品質との相関関
係を予め求めておき、この相関関係に基づいてコ
ークス炉装入炭のコークス化性を評価することを
特徴とするコークス製造用石炭配合管理法。
1. When preparing coke oven charging coal by determining the types and/or blending ratios of multiple raw material coals, the solidification temperature and maximum fluidity of each raw material coal are measured in advance, and the blending ratio of coke oven charging coal is determined. Calculate the average value of the solidification temperature, the variation in solidification temperature, and the average value of the maximum fluidity of each raw material coal, taking into account the ratio,
The correlation between the average value of solidification temperature, the variation in solidification temperature, and the average value of maximum fluidity and coke quality is determined in advance, and the coking ability of coal charged in a coke oven is evaluated based on this correlation. Coal blend control method for coke production characterized by:
JP20807384A 1984-10-05 1984-10-05 Method for controlling blend of coal for production of coke Granted JPS6187787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20807384A JPS6187787A (en) 1984-10-05 1984-10-05 Method for controlling blend of coal for production of coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20807384A JPS6187787A (en) 1984-10-05 1984-10-05 Method for controlling blend of coal for production of coke

Publications (2)

Publication Number Publication Date
JPS6187787A JPS6187787A (en) 1986-05-06
JPH0214398B2 true JPH0214398B2 (en) 1990-04-06

Family

ID=16550191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20807384A Granted JPS6187787A (en) 1984-10-05 1984-10-05 Method for controlling blend of coal for production of coke

Country Status (1)

Country Link
JP (1) JPS6187787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620486U (en) * 1992-06-02 1994-03-18 隆志 中川 String with curls

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297589A (en) * 1988-10-04 1990-04-10 Mitsubishi Kasei Corp Method for estimation of coke strength
CN104449778B (en) * 2014-10-24 2016-08-24 山西太钢不锈钢股份有限公司 A kind of method that integrated use coal petrography index carries out the exploitation of coal source
CN105131995B (en) * 2015-09-02 2018-01-23 武汉钢铁有限公司 Control the blending method of the wear-resisting intensity of coke
CN105567270B (en) * 2015-12-16 2018-03-20 武汉钢铁有限公司 Control the coal-blending coking method of as-fired coal degree of shrinkage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180583A (en) * 1982-04-16 1983-10-22 Nippon Steel Chem Co Ltd Controlling coal blending in the production of granulated coal-containing coke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180583A (en) * 1982-04-16 1983-10-22 Nippon Steel Chem Co Ltd Controlling coal blending in the production of granulated coal-containing coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620486U (en) * 1992-06-02 1994-03-18 隆志 中川 String with curls

Also Published As

Publication number Publication date
JPS6187787A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
WO2000006669A1 (en) Method for producing metallurgical coke
Flores et al. How coke optical texture became a relevant tool for understanding coal blending and coke quality
KR101300941B1 (en) Method of determining dilatation of coal, method of estimating specific volume of coal, method of determining degree of space filling, and method of coal blending
CN103952166B (en) Based on ature of coal classification and the blending method of coking coal coking property
KR20130081702A (en) Metallurgical coke production method
CN106133116A (en) Coal mixtures, the manufacture method of coal mixtures and the manufacture method of coke
EA014766B1 (en) Method for forming coal mixtures for producing coking burden and a composition of said mixtures
CA3131778C (en) Method for evaluating coal and coal blends
CN112521965A (en) Rapid coal blending method
JPH0214398B2 (en)
TWI608092B (en) Coal evaluation method and coke production method
CN106661458A (en) Metallurgical coke and method of manufacturing same
CN105073954B (en) Method for producing metallurgical coke
JP2018048297A (en) Estimation method of coke strength
JP3550862B2 (en) Estimation method of coke characteristics of blended coal
JP2018048262A (en) Estimation method of coke grain size
CN105073953A (en) Method for producing metallurgical coke
CN104678075A (en) Predicating method for abrasive resistance of coal-blending coking coke
JP3051193B2 (en) Manufacturing method of coke for metallurgy
JP2013053189A (en) Estimation method of highest flow rate of raw material for coke production, blending method of raw material for coke production, and raw material for coke production made by the blending method
JP4464835B2 (en) Coke production method
JPS6338664B2 (en)
KR20140119905A (en) Method for ash predicting of cokes
JP5716271B2 (en) Method for producing metallurgical coke
JPS6341423B2 (en)