JPH02143580A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH02143580A
JPH02143580A JP29793988A JP29793988A JPH02143580A JP H02143580 A JPH02143580 A JP H02143580A JP 29793988 A JP29793988 A JP 29793988A JP 29793988 A JP29793988 A JP 29793988A JP H02143580 A JPH02143580 A JP H02143580A
Authority
JP
Japan
Prior art keywords
layer
grating
quantum well
semiconductor laser
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29793988A
Other languages
Japanese (ja)
Other versions
JP2713445B2 (en
Inventor
Toshihiko Makino
俊彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29793988A priority Critical patent/JP2713445B2/en
Publication of JPH02143580A publication Critical patent/JPH02143580A/en
Application granted granted Critical
Publication of JP2713445B2 publication Critical patent/JP2713445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a DFB type semiconductor laser element whose threshold current is small and oscillation spectrum is narrow by a method wherein a quantum well structure locally grown is provided to at least either the crest or the trough of a grating in an active region. CONSTITUTION:An n-InP layer 12 and a GaxIn1-xAsyP1-y layer 13 are successively formed on an n-InP substrate 11 to form a first clad layer, a grating 15 is provided to the GaxIn1-xAsyP1-y layer 13 through an interference exposure method and an etching, a quantum well line 14 of Gax.In1-x.As is grown on the crests and the troughs of the grating 15, furthermore a Gax'In1x'Asy'P1-y' layer 16, a p-InP layer 17, and a p-GaInAsP contact layer 20 are successively grown to form a second clad layer, and a p-electrode 18 and an n-electrode 19 are evaporated. The thickness of the quantum well line 14 is made equal to or less than 200Angstrom in the direction of X, and the line 14 is localized at the crests and the troughs of the grating 15 in the direction of Z, so that the quantum well line 14 is made to have a carrier trapping effect in two-dimensions X-Y.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、闇値電流が小さく、かつスペクトラルライン
巾の狭い量子井戸構造を有する分布帰還型半導体レーザ
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distributed feedback semiconductor laser device having a quantum well structure with a small dark value current and a narrow spectral line width.

〔従来の技術〕[Conventional technology]

回折格子で構成した反射器をレーザ結晶内につくりつけ
た分布帰還型(D F B : Distribute
d Feedback )の半導体レーザ素子は、特定
の単一纒モード発振が得られるため、高速光通信の光源
として利用される。従来のDFB型半導体レーザ素子は
、例えば第3図に示すように、n−1nP基板(])の
上にn−1nP層(2)、1.55−発振組成のGa1
nAsP活性層(3)および1,3匁発振組成のGa1
nAsPアンチメルトバック層(4)を順次エピタキシ
ャル成長させた後、周期Δをもつグレーティング(5)
を干渉露光法およびエツチングによって形成し、さらに
、p−1nP層(6)およびp−GaInAsPコンタ
クト層(7)を再成長させ、最後にp電極(8)とn電
極(9)を蒸着により形成する。このようにして製作さ
れたDFB型半導体レーザ素子は周期Δで決まるブラッ
グ波長近傍でレーザ発振を行う。発振のスレッシュホー
ルドゲイン8thはグレーティングの結合係数にと素子
長しの関数であり、gいはKLの単31少関数となって
いることはよく知られている。したがって、スレッシュ
ホールド電流を小さくするためには、KまたはLを大き
くすることが必要になる。
Distributed feedback type (DFB) in which a reflector composed of a diffraction grating is built inside the laser crystal.
The semiconductor laser device (Feedback) is used as a light source for high-speed optical communication because it can produce a specific single-mode oscillation. A conventional DFB type semiconductor laser device, for example, as shown in FIG.
nAsP active layer (3) and Ga1 with 1,3 momme oscillation composition
After sequentially epitaxially growing the nAsP anti-meltback layer (4), a grating (5) with a period Δ is formed.
is formed by interference exposure method and etching, further, the p-1nP layer (6) and the p-GaInAsP contact layer (7) are regrown, and finally the p-electrode (8) and the n-electrode (9) are formed by vapor deposition. do. The DFB semiconductor laser device manufactured in this manner oscillates near the Bragg wavelength determined by the period Δ. It is well known that the oscillation threshold gain 8th is a function of the coupling coefficient of the grating and the element length, and that g is a small function of KL. Therefore, in order to reduce the threshold current, it is necessary to increase K or L.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のDFB型半導体レーザ素子では、結合係数にの値
には限度があるため、素子長りを一定にすると、最小ス
レッシュホールド電流に限界が生ずる。また、発振スペ
クトラシライン中は、高速変調時に屈折率のゆらぎによ
り広くなり、狭線巾化にも限界がある。
In a conventional DFB semiconductor laser device, there is a limit to the value of the coupling coefficient, so if the device length is kept constant, there is a limit to the minimum threshold current. Furthermore, the oscillation spectrum line becomes wider due to fluctuations in the refractive index during high-speed modulation, and there is a limit to the narrowing of the line width.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、スレッシュホールド電流が低
く、発振スペクトル中が狭いDFB型半導体レーザ素子
を提供することにあり、その要旨は、半導体基板上に、
第1クラッド層、活性領域および第2クラッド層が順次
積層され、第1クラッド層にグレーティングが形成され
ている半導体レーザ素子において、活性領域が前記グレ
ーティングの山または谷の少なくとも一方に局所的に成
長させた量子井戸構造よりなることを特徴とする半導体
レーザ素子を第1発明とし、活性領域が前記量子井戸構
造と該量子井戸構造に近接する層状の活性層とよりなる
ことを特徴とする請求項1記載の半導体レーザ素子を第
2発明とするものである。
The present invention has been made in view of the above points.
The purpose is to provide a DFB type semiconductor laser device with a low threshold current and a narrow oscillation spectrum.
In a semiconductor laser device in which a first cladding layer, an active region, and a second cladding layer are sequentially laminated, and a grating is formed in the first cladding layer, the active region grows locally on at least one of the peaks or valleys of the grating. A first aspect of the present invention is a semiconductor laser device characterized in that the semiconductor laser device is formed of a quantum well structure, and an active region is formed of the quantum well structure and a layered active layer adjacent to the quantum well structure. The semiconductor laser device described in 1 is a second invention.

〔作用〕[Effect]

DFBレーザの理論によると、DFB発振には屈折率ま
たは光ゲインに周期構造が必要である。
According to the theory of DFB lasers, DFB oscillation requires a periodic structure in the refractive index or optical gain.

また、光ゲインに周期構造がある場合のスレッシュホー
ルド電流は、光ゲインが一様である場合よりも低下する
ことが知られている。従来のDFB型半導体レーザ素子
では、光ゲインは一様であり、グレーティングの誘起す
る屈折率の周期的変化によるDFB発振を利用している
が、本発明では、屈折率の周期変化に加えて、光ゲイン
の周期的変化をも利用している。すなわち、グレーティ
ングの山または谷の少なくとも一方に局所的に量子井戸
構造を形成し、グレーティングと同し周期をもつ光ゲイ
ンの周期構造を得ている。
Furthermore, it is known that the threshold current when the optical gain has a periodic structure is lower than when the optical gain is uniform. In conventional DFB type semiconductor laser devices, the optical gain is uniform and DFB oscillation is utilized due to periodic changes in the refractive index induced by the grating, but in the present invention, in addition to periodic changes in the refractive index, It also makes use of periodic changes in optical gain. That is, a quantum well structure is locally formed in at least one of the peaks or valleys of the grating, thereby obtaining a periodic structure of optical gain having the same period as the grating.

〔実施−例〕[Implementation - Examples]

以下図面に示した実施例に基づいて本発明の詳細な説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図は本発明にがかる一実施例の要部断面図であり、
n−1nP基板OD上に、n−1nP層(+21とG 
、a z I n 1−xA S yP I−y層0り
を順次成長させて第1クラッド層を形成し、G a X
 I n I−XA S yP、層側に干渉露光法およ
びエツチングによりグレーティング05)を形成し、グ
レーティングの山と谷にGaxr  rn+−x’ A
sの量子井戸線側を成長させ、さらに、GaXp r 
n+−x’ Asy# P、−、s層0ω、p−InP
層07)およびp−GaInAsPコンタクト層Q0を
順次成長させて第2クラッド層を形成し、最後に、p電
極00およびn電極09)を蒸着したものである。量子
井戸線04)はX方向の厚みを200Å以下にし、X方
向についてはグレーティングcつの山と谷に局在化して
いるため、X−Zの2次元においてキャリア閉じ込め効
果を有する量子井戸線となっている。G a * I 
n 1−XA S y P、層側とG az#I n、
−、#A Sy#P +−y’ Oωは、x、y、x“
、y#を適当に選ぶことにより、エネルギーギャップを
n−1nP層(12)、 07)と量子井戸線041の
エネルギーギャップの中間にし、屈折率をInP層aの
、0ηより高くする。そうすることにより光波をG a
 x I n 1−XA S yP +−yNQTIと
GaXpInk−++・As、・P1□・層0ωの間に
効率よく閉じ込めることができる。
FIG. 1 is a sectional view of a main part of an embodiment according to the present invention,
n-1nP layer (+21 and G
, az I n 1-xA S yP I-y layers are sequentially grown to form a first cladding layer, and G a
A grating 05) is formed on the layer side by interference exposure method and etching, and Gaxr rn+-x'A is formed on the peaks and valleys of the grating.
The quantum well line side of s is grown, and further GaXp r
n+-x'Asy# P, -, s layer 0ω, p-InP
Layer 07) and p-GaInAsP contact layer Q0 are sequentially grown to form a second cladding layer, and finally p-electrode 00 and n-electrode 09) are deposited. The quantum well line 04) has a thickness of 200 Å or less in the X direction, and is localized in the c peaks and valleys of the grating in the X direction, so it becomes a quantum well line that has a carrier confinement effect in the two dimensions of X-Z. ing. G a * I
n 1-XA S y P, layer side and G az#I n,
-, #A Sy#P +-y' Oω is x, y, x"
. By doing so, the light wave becomes Ga
It can be efficiently confined between x I n 1−XA SyP +−yNQTI and GaXpInk−++·As,·P1□·layer 0ω.

例えば1.=’=0.281.=   =0.6.8・
=0.471.・−1、グレーティングの周期を230
nmとすると、スペクトラシライン中がIMHz以下で
ある1、5−の発振を得ることができた。
For example 1. ='=0.281. = =0.6.8・
=0.471. -1, the period of the grating is 230
nm, it was possible to obtain 1,5- oscillation in the spectral line below IMHz.

第2図は本発明の他の実施例を示し、n−1nP基板Q
Il上に第1クラッド層としてn−1nP層(社)、−
様な厚みをもつGa1nAsP活性層(至)およびG 
a M I n +−HA S 、p +−yiiaを
順次積層し、活性層(至)に近接してG a x I 
n 1−xA S yP +−y層(2)上にグレーテ
ィング(5)を形成し、該グレーティング(5)の谷部
にG a g’  r n トX’ A S y’ P
 l−y’の量子井戸線(社)を形成する0次に、G 
a H−T n +−x・A S y#P 1−y’層
(至)、p−1nP層(5)およびP−Gal−nAs
Pコンタクト層(至)を順次成長させて第2クラッド層
とし、最後に、p電極(至)およびn電極(至)を蒸着
させることは前記実施例と同様である0本実施例では、
活性N(至)から一定の光ゲインを得、グレーティング
(2)の谷に成長させた量子井戸線(社)からは光ゲイ
ンの周期的変化分を得る。
FIG. 2 shows another embodiment of the present invention, in which an n-1nP substrate Q
An n-1nP layer (Co., Ltd.) as a first cladding layer on Il, -
Ga1nAsP active layer (to) with various thicknesses and G
aM I n +-HA S and p +-yiia are sequentially stacked, and G a
A grating (5) is formed on the n 1-xA S yP +-y layer (2), and G a g' r n t X' A S y' P
The zero-order G
a H-T n +-x・A S y#P 1-y' layer (to), p-1nP layer (5) and P-Gal-nAs
The steps of sequentially growing a P contact layer to form a second cladding layer and finally depositing a p electrode and an n electrode are the same as in the previous example. In this example,
A constant optical gain is obtained from the active N, and periodic changes in optical gain are obtained from the quantum well lines grown in the valleys of the grating (2).

〔発明の効果] 以上説明したように本発明によれば、活性領域がグレー
ティングの山または谷の少なくとも一方に局所的に成長
させた量子井戸構造を有するため、スレッシュホールド
電流が低下し、量子効果により発振スペクトルライン巾
が減少するという優れた効果がある。
[Effects of the Invention] As explained above, according to the present invention, since the active region has a quantum well structure grown locally on at least one of the peaks or valleys of the grating, the threshold current is reduced and the quantum effect is reduced. This has the excellent effect of reducing the oscillation spectrum line width.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかる一実施例の要部断面図、第2図
は本発明にかかる他の実施例の要部断面図、第3図は一
従来例の要部断面図である。 1、LL、2l−n−InP基板、 2,12゜22−
 n −I n P層、 3.33−Ga InAsP
活性層、  4・・・Ga1nAsPアンチメルトバッ
ク層、  5,15.25・・・グレーティング、6.
17.27−=p−1nP11.  7,20゜0−p
−Ga I nAs Plンタクト層、  88.28
・・・p電極、 9,19.29・・・n電極、3.2
3・・’Gaxln+−xAs、P+−y層、  14
4・・・量子井戸線、  16.26・・・GaX・T
nA 5 F #  P +−y #層。
FIG. 1 is a sectional view of a main part of an embodiment according to the present invention, FIG. 2 is a sectional view of a main part of another embodiment according to the present invention, and FIG. 3 is a sectional view of a main part of a conventional example. 1, LL, 2l-n-InP substrate, 2, 12° 22-
n-I n P layer, 3.33-Ga InAsP
Active layer, 4...Ga1nAsP anti-meltback layer, 5,15.25...Grating, 6.
17.27-=p-1nP11. 7,20°0-p
-GaInAs Pl contact layer, 88.28
...p electrode, 9,19.29...n electrode, 3.2
3...'Gaxln+-xAs, P+-y layer, 14
4...Quantum well line, 16.26...GaX・T
nA5F#P+-y#layer.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、第1クラッド層、活性領域、お
よび第2クラッド層が順次積層され、第1クラッド層に
グレーティングが形成されている半導体レーザ素子にお
いて、活性領域が前記グレーティングの山または谷の少
なくとも一方に局所的に成長させた量子井戸構造よりな
ることを特徴とする半導体レーザ素子。
(1) In a semiconductor laser device in which a first cladding layer, an active region, and a second cladding layer are sequentially laminated on a semiconductor substrate, and a grating is formed in the first cladding layer, the active region is a peak of the grating or a second cladding layer. A semiconductor laser device comprising a quantum well structure grown locally in at least one of the valleys.
(2)活性領域が前記量子井戸構造と該量子井戸構造に
近接する層状の活性層とよりなることを特徴とする請求
項1記載の半導体レーザ素子。
(2) The semiconductor laser device according to claim 1, wherein the active region comprises the quantum well structure and a layered active layer adjacent to the quantum well structure.
JP29793988A 1988-11-25 1988-11-25 Semiconductor laser device Expired - Lifetime JP2713445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29793988A JP2713445B2 (en) 1988-11-25 1988-11-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29793988A JP2713445B2 (en) 1988-11-25 1988-11-25 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH02143580A true JPH02143580A (en) 1990-06-01
JP2713445B2 JP2713445B2 (en) 1998-02-16

Family

ID=17853051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29793988A Expired - Lifetime JP2713445B2 (en) 1988-11-25 1988-11-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2713445B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494766A2 (en) * 1991-01-08 1992-07-15 Xerox Corporation Semiconductor lasers
EP0513745A2 (en) * 1991-05-13 1992-11-19 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. A gain-coupled distributed-feed-back semiconductor laser
EP0614254A1 (en) * 1993-03-01 1994-09-07 Canon Kabushiki Kaisha Gain-coupling distributed feedback semiconductor laser and method of producing the same
EP0706243A2 (en) * 1994-09-28 1996-04-10 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0494766A2 (en) * 1991-01-08 1992-07-15 Xerox Corporation Semiconductor lasers
EP0513745A2 (en) * 1991-05-13 1992-11-19 CSELT Centro Studi e Laboratori Telecomunicazioni S.p.A. A gain-coupled distributed-feed-back semiconductor laser
US5276702A (en) * 1991-05-13 1994-01-04 Cselt-Centro Studi E Laboratori Telecommunicazioni S.P.A. Gain-coupled distributed-feedback semiconductor laser
EP0614254A1 (en) * 1993-03-01 1994-09-07 Canon Kabushiki Kaisha Gain-coupling distributed feedback semiconductor laser and method of producing the same
EP0706243A2 (en) * 1994-09-28 1996-04-10 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for producing the same
EP0706243A3 (en) * 1994-09-28 1996-11-13 Matsushita Electric Ind Co Ltd Distributed feedback semiconductor laser and method for producing the same
US6107112A (en) * 1994-09-28 2000-08-22 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for producing the same
US6151351A (en) * 1994-09-28 2000-11-21 Matsushita Electric Industrial Co., Ltd. Distributed feedback semiconductor laser and method for producing the same

Also Published As

Publication number Publication date
JP2713445B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US6107112A (en) Distributed feedback semiconductor laser and method for producing the same
EP0507956B1 (en) Distributed feedback semiconductor laser
US5143864A (en) Method of producing a semiconductor laser
US4782035A (en) Method of forming a waveguide for a DFB laser using photo-assisted epitaxy
JPS62189785A (en) Semiconductor device with distributed bragg reflector
US5889294A (en) Edge emitting LED having a selective-area growth optical absorption region
JPH02143580A (en) Semiconductor laser element
US5007107A (en) Semiconductor laser device
US5352919A (en) Optical integrated semiconductor device
US6084901A (en) Semiconductor laser device
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
JP2669335B2 (en) Semiconductor light source and manufacturing method thereof
JPH10308553A (en) Semiconductor laser device
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
US6026106A (en) Composite optical device
JP3191669B2 (en) Semiconductor distributed feedback laser device and method of manufacturing the same
JP2894285B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser
JP3159914B2 (en) Selectively grown waveguide type optical control element and method of manufacturing the same
JPH06283802A (en) Semiconductor laser device and fabrication thereof
JPH08330665A (en) Manufacture of optical semiconductor laser
JP2687404B2 (en) Distributed feedback semiconductor laser
JPH0744316B2 (en) Semiconductor distributed feedback laser device and manufacturing method thereof
JP3139774B2 (en) Semiconductor laser device
JPH04155986A (en) Semiconductor distribution feedback type laser device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 12