JPH02143137A - Method for evaluating life of heat resisting steel - Google Patents

Method for evaluating life of heat resisting steel

Info

Publication number
JPH02143137A
JPH02143137A JP29604488A JP29604488A JPH02143137A JP H02143137 A JPH02143137 A JP H02143137A JP 29604488 A JP29604488 A JP 29604488A JP 29604488 A JP29604488 A JP 29604488A JP H02143137 A JPH02143137 A JP H02143137A
Authority
JP
Japan
Prior art keywords
holes
life
grain boundaries
point
master curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29604488A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fukuda
清 福田
Isao Izumi
泉 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29604488A priority Critical patent/JPH02143137A/en
Publication of JPH02143137A publication Critical patent/JPH02143137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To easily decide whether the holes formed between the grain boundaries of the metal of an object to be inspected exceed a life consumption region or not with high accuracy by measuring the above-mentioned holes with lapse of the service time and previously collating the holes with a predetermined master curve when the formed holes expand. CONSTITUTION:The ordinate of the master curve for predicting the material life in the case of evaluating the life of a heat resisting steel, such as CrMoV steel, indicates the peripheral length of the holes formed between the grain boundaries of the metal and the grain boundary width and the absissa indicates the life consumption, respectively. The results of the analyses to make image processing of the holes formed between the grain boundaries of the object to be inspected are drawn by a replica method in this detection method and are plotted. The holes gather at a point A and a point B if the service time is relatively short. The holes transfer and progress to a point C and a point D beyond the material life threshold line (the broken line of a vertical line) when the service life is long. The sizes of the holes 1a, 1b, 1c grow as the service time passes by in the beginning of the measurement. The holes connect to each other between the grain boundaries and expand like the width W.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、例えばCrMOV鋼等の耐熱鋼の府命評価
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for evaluating the fate of heat-resistant steel such as CrMOV steel.

(従来の技術) 例えば、蒸気タービン装置に適用されるケーシングや蒸
気弁等は、高温・高圧の蒸気にさらされて長時間運転さ
れているため、その品質保証を十分にチエツクしておく
必要がある。ケーシング等は、高温・高圧の蒸気にざら
されることを考慮して耐熱鋼、例えばCrMOV鋼が選
ばれているが、それでも長時間運転によるその材質強度
の劣化はいなめない。
(Prior art) For example, casings, steam valves, etc. applied to steam turbine equipment are exposed to high-temperature, high-pressure steam and operated for long periods of time, so it is necessary to thoroughly check their quality assurance. be. For the casing and the like, heat-resistant steel, such as CrMOV steel, is selected in consideration of the fact that it will be exposed to high-temperature and high-pressure steam, but even so, the strength of the material deteriorates due to long-term operation.

かにうな品質保証のチエツク法として、従来は、定期検
査時、変形・変色部位にカラーチエツタ、ta扮探傷、
超音波探In等の非破壊検査法を適用し、事前に材質欠
陥を検出している。
Conventionally, as a check method for quality assurance, color checkers, TA-type flaw detectors, and
Non-destructive testing methods such as ultrasonic inspection are applied to detect material defects in advance.

しかし、かかる従来法では、材質劣化の細い点までは検
知できず、このため最近は測定部位に電圧を印加し、そ
の変化値から材質のR命を予測する分極測定手法や、測
定部位にアイルムを転写し、その転写源にあられれた金
属組織変化から材質の寿命を予測するいわゆるレプリカ
測定手法の出現を見ている。
However, with such conventional methods, it is not possible to detect minute points of material deterioration, and for this reason, recently, a polarization measurement method that applies a voltage to the measurement site and predicts the R life of the material from the change value, and a method that applies an image to the measurement site. We are seeing the emergence of a so-called replica measurement method that predicts the lifespan of a material from changes in the metallographic structure that occur in the transferred source.

(発明が解決しようとする課題) ところが、前者の手法にしろ、後者の手法にしろ、材質
の品質保証をチエツクする上で、従来法よりも格段と精
度が向上しているものの、使用環境条件いかんによって
はデータ的にバラツキが散見されて、今一つ品質保証の
l認、つまり材料寿命を予測する上で不安を抱えするこ
とがある。というのは、この種分野では、金属結晶の粒
界が長年の使用の結果、空孔を見ることがわかっており
、そのための評価法が考えミれているものの、その評価
法が材質寿命を予測する上でトレンドを見るにとどまり
、定量的に材質寿命を把握するものではなかったからで
ある。
(Problem to be solved by the invention) However, although the former method and the latter method are much more accurate than conventional methods in checking the quality assurance of materials, Depending on the situation, there may be some discrepancies in the data, which may cause concerns about quality assurance, or in other words, predicting material life. This is because, in this type of field, it is known that the grain boundaries of metal crystals show vacancies as a result of long-term use. This is because predictions were only made by looking at trends, and were not meant to quantitatively grasp material life.

この発明は、従来の材質寿命予測が目安的位置付にとど
まっているという問題点に鑑み、材質の劣化を定量的に
把み、正しく材質寿命予測ができるようにする耐熱鋼の
寿命評価方法を開示することを目的とする。
In view of the problem that conventional material life prediction is only a guideline, this invention provides a life evaluation method for heat-resistant steel that quantitatively understands material deterioration and enables accurate material life prediction. The purpose is to disclose.

〔発明の構成〕[Structure of the invention]

(a1題を解決するだめの手段) この発明は、上記目的達成のために、被検体の金属結晶
粒界間で生成される空孔を、使用時間の経過とともに測
定し、その金属結晶粒界間で生成される空孔が拡大した
場合、予じめ定められたマスタカーブと照合し、マスタ
カーブによって定められた寿命消費領域を越えているか
の有無を確認することを特徴にする。
(Means for Solving Problem A1) In order to achieve the above-mentioned object, the present invention measures the vacancies generated between the metal grain boundaries of the specimen as time passes, and If the pores generated between the holes expand, they are compared with a predetermined master curve to confirm whether or not they exceed the life consumption region determined by the master curve.

(作 用〉 この発明にかかる発明者は、高温・高圧の蒸気にさらさ
れて使用されている耐熱鋼が、使用時間の長短によって
被検体の金属結晶粒界間で生成される空孔が大小にわか
れていることに着目し、しかもその大小が材質寿命消費
と密接な相関関係があることを見出し、その大小関係か
ら耐熱鋼の寿命を予測するものである。りなわら、子じ
かめ経験的に作成されたマスタカーブに、測定された被
検体の金属結晶粒界間で生成される空孔の大小を照合し
、その大小が材質寿命消費領域を越えた場合、その寿命
は終ったと認定するものである。こうすることによって
、今以上の材質寿命予測の精度が高くなる。
(Function) The inventor of this invention discovered that heat-resistant steel, which is exposed to high-temperature and high-pressure steam, has pores that are generated between metal grain boundaries in the specimen depending on the length of use. We focused on the fact that the difference between The size of the pores generated between the metal grain boundaries of the measured object is compared with the master curve created in By doing this, the accuracy of material life prediction will be increased.

(実施例) この発明にかかる耐熱鋼の寿命評価につき、図面を参照
しながら説明する。
(Example) Life evaluation of heat-resistant steel according to the present invention will be explained with reference to the drawings.

以下に説明する実施例は、蒸気タービン装置適用の蒸気
弁に使用されるCrM○■鋼の例である。
The embodiment described below is an example of CrM○■ steel used for a steam valve applied to a steam turbine device.

第1図は、材質寿命を予測する上でのマスタカーブで、
縦軸に金属結晶粒界間で生成される空孔の周囲長さおよ
び結晶粒界幅を、また横軸は寿命消費刊をそれぞれ示す
。そして、その検出方法は、例えばレプリカ法を用いて
採取している。
Figure 1 is a master curve for predicting material life.
The vertical axis shows the circumferential length and grain boundary width of pores generated between metal grain boundaries, and the horizontal axis shows the life consumption. The detection method is, for example, a replica method.

第1図では、被検体の結晶粒界間に生成される空孔を画
像処理による解析結果をプロットしたもので、比較的使
用時間が短いと空孔は点△1点Bに集まるが、使用時間
が長くなると材質寿命限界線(縦軸の破線)を越えて点
C1点りに移行して進むことが検出された。
In Figure 1, the analysis results of the vacancies generated between the grain boundaries of the specimen are plotted by image processing.If the usage time is relatively short, the vacancies will gather at point △1 point B; It was detected that as the time became longer, the material life limit line (broken line on the vertical axis) was exceeded and the process moved to point C1.

このようなプロット点が点Aから次順に点B、点C1点
りに移行するのは、第2図ないし第3図に示されるよう
に、測定頭初、第2図示の大きざであった空孔1a、 
lb、 lcが、使用時間の経過につれてその大きさが
生育し、ついては空孔相互が結晶粒界間で結びついて結
晶粒界間の幅Wが第3図示のようになると拡大していく
と考えられるからである。
As shown in Figures 2 and 3, the plot points shift from point A to point B and point C in order, as shown in Figures 2 and 3. Hole 1a,
It is thought that lb and lc grow in size as the usage time progresses, and the vacancies become connected between grain boundaries and the width W between the grain boundaries expands as shown in the third diagram. This is because it will be done.

このマスタカーブは、多くの経験データおよび実験デー
タをもとに、作成されたものであって、縦軸破線を境に
左側が寿命消費残余領域であり、その右側が寿命消費危
険域を示しており、その精度は従来法による材質寿命予
測よりも高い。
This master curve was created based on a lot of empirical data and experimental data, and the left side of the vertical axis broken line is the life consumption residual area, and the right side is the life consumption danger area. The accuracy is higher than that of the conventional method of predicting material life.

したがって、被検体の測定データを、マスタカーブにプ
ロットし、その位置が第1図示の点ハ、点Bの領域内に
あればまだ十分に使用できるし、逆に点C1点りの領域
内であれば材料自身を交換しなければならないことが容
易に判別できる。
Therefore, if the measured data of the object is plotted on a master curve and its position is within the area of points C and B shown in the first diagram, it can still be used sufficiently, and conversely, if it is within the area of point C1 shown in the first diagram, it can be used sufficiently. If so, it can be easily determined that the material itself must be replaced.

このように予じめ定められたマスタカーブに、実データ
を照合すれば、材質寿命の予測が容易に評価できるよう
になり、今後の実機運転時間も予測することができる。
By comparing the actual data with the predetermined master curve in this way, it becomes possible to easily evaluate the prediction of the material life, and it is also possible to predict the future operating time of the actual machine.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明にかかる耐熱
鋼の寿命評価方法では、マスタカーブに実データを照合
して材質寿命予測を行うもので、従来にくらべて材質寿
命予測を簡便にして、しかも精度高く行うことができる
効果がおる。
As is clear from the above explanation, the life evaluation method for heat-resistant steel according to the present invention predicts material life by comparing actual data with a master curve, making it easier to predict material life than in the past. Moreover, it has the effect of being able to perform the process with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は材料の寿命予測をするにあたり、空孔の周囲長
さおよび結晶粒界幅と材質寿命消費との相関関係を示す
マスタカーブで、−例としてCrMOV鋼の寿命カーブ
、を示す図、第2図は結晶粒界間に生成される空孔を示
す図、第3図は空孔の生育進行を示す空孔の挙動図であ
る。 la、 lb、 1cm・・空孔 W・・・結晶粒界幅 代理人 弁理士 則 近 想 佑 同  第子丸 釘 身介清★ (Vtr)
Fig. 1 is a master curve showing the correlation between the circumferential length of pores, the grain boundary width, and the material life consumption when predicting the life of a material; for example, the life curve of CrMOV steel; FIG. 2 is a diagram showing vacancies generated between grain boundaries, and FIG. 3 is a behavior diagram of vacancies showing the progress of vacancy growth. la, lb, 1cm...Vacancy W...Grain boundary width Agent Patent attorney Nori Chikaso Yudo Daishimaru Kugimi Kaisei★ (Vtr)

Claims (1)

【特許請求の範囲】[Claims] 被検体の金属結晶粒界間で生成される空孔を、使用時間
の経過ととも測定し、その金属結晶粒界間で生成される
空孔が拡大した場合、予じめ定められたマスタカーブと
照合し、マスタカーブによって定められた寿命消費領域
を越えているかの有無を確認する耐熱鋼の寿命評価方法
The vacancies generated between the metal grain boundaries of the specimen are measured over time, and if the pores generated between the metal grain boundaries expand, a predetermined master curve is determined. A life evaluation method for heat-resistant steel that checks whether the life consumption range determined by the master curve is exceeded.
JP29604488A 1988-11-25 1988-11-25 Method for evaluating life of heat resisting steel Pending JPH02143137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29604488A JPH02143137A (en) 1988-11-25 1988-11-25 Method for evaluating life of heat resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29604488A JPH02143137A (en) 1988-11-25 1988-11-25 Method for evaluating life of heat resisting steel

Publications (1)

Publication Number Publication Date
JPH02143137A true JPH02143137A (en) 1990-06-01

Family

ID=17828377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29604488A Pending JPH02143137A (en) 1988-11-25 1988-11-25 Method for evaluating life of heat resisting steel

Country Status (1)

Country Link
JP (1) JPH02143137A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505045A2 (en) * 1991-03-19 1992-09-23 Hitachi, Ltd. Method and apparatus for detecting stainless steel sensitization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505045A2 (en) * 1991-03-19 1992-09-23 Hitachi, Ltd. Method and apparatus for detecting stainless steel sensitization
EP0505045A3 (en) * 1991-03-19 1995-02-15 Hitachi Ltd

Similar Documents

Publication Publication Date Title
CA2072029A1 (en) Turbine blade assessment system
KR0151852B1 (en) Non-destructive examination of a part
Dubov et al. Detection of local stress concentration zones in engineering products—The lacking link in the non-destructive testing system
JPH02143137A (en) Method for evaluating life of heat resisting steel
JPH05142203A (en) Method for diagnosing environmental stress cracking of high-strength material
JP3825378B2 (en) Life evaluation method of heat-resistant steel
JPH1123776A (en) Composite diagnostic system of reactor internal equipment
RU2210766C1 (en) Procedure to conduct acoustic emission test with use of single-channel equipment
JPH06222053A (en) Deterioration diagnostic method for ferrite based heat-resistant steel
RU2139515C1 (en) Method determining susceptibility of loaded material to injury and its service life
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
Chou et al. Characterization of low-cycle fatigue damage in Inconel 718 by laser light scanning
RU2585796C1 (en) Method for quality control of articles
JP4865741B2 (en) Damage evaluation method for bent part of steel pipe
Roskosz Capabilities and limitations of using the residual magnetic field in NDT
JPH02248860A (en) Evaluation of residual life of ferrite based heat resistant steel
JP2004144550A (en) Nondestructive detection method of creep void
Shannon et al. Assessing creep damage in cast material for reformer tubes utilizing multi-parameter approach
Shannon Assessing Creep Damage in Cast Materials for High Temperature Reformer Tube Applications
Lloyd et al. Crack growth monitoring in harsh environments by electrical potential measurements
JPS63235861A (en) Evaluation of remaining life of heat resistant steel
KR940002494B1 (en) Method for evaluating residual life of machine structure receiving repeated load and apparatus therefor
JPH06317500A (en) Method and equipment for evaluating damage on high temperature structural member
Dobmann Magnetic NDT Technology for Characterizing Materials œ A State of the Art Survey
JPH01250736A (en) Method for determining corrosion resistance of zirconium alloy for nuclear reactor