JPH02142307A - Gas insulated electrical equipment - Google Patents

Gas insulated electrical equipment

Info

Publication number
JPH02142307A
JPH02142307A JP63293360A JP29336088A JPH02142307A JP H02142307 A JPH02142307 A JP H02142307A JP 63293360 A JP63293360 A JP 63293360A JP 29336088 A JP29336088 A JP 29336088A JP H02142307 A JPH02142307 A JP H02142307A
Authority
JP
Japan
Prior art keywords
gas
internal pressure
gas compartment
inner pressure
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63293360A
Other languages
Japanese (ja)
Inventor
Takanori Tsunoda
孝典 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63293360A priority Critical patent/JPH02142307A/en
Publication of JPH02142307A publication Critical patent/JPH02142307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To detect abnormality and locate fault points reliably by providing inner pressure detectors for a plurality of gas sections and a means for operating inner pressure rise then determining that a fault point exists in the section having minimum deviation between measured inner pressure and operated inner pressure. CONSTITUTION:A metering potential transformer PT for detecting the bus voltage, metering current transformers CT1-CTk for a plurality of I/O lines, inner pressure detectors S1-Sn for a plurality of gas sections and a CPU1 for performing various operations are provided. Energy and pressure rise are operated for all sections, then it is determined that a fault point exists in the section having minimum difference between measured inner pressure and operated inner pressure thus detecting abnormality and locating fault point reliably.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガス絶縁式開閉装置などのガス絶縁式電気
設備に関し、詳しくは短絡や地絡などの事故が発生した
ときに、この事故点を標定するための構成に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to gas-insulated electrical equipment such as gas-insulated switchgear, and more specifically, when an accident such as a short circuit or ground fault occurs, This relates to a configuration for locating.

〔従来の技術〕[Conventional technology]

従来より用いられている通常のガス絶縁式開閉装置の構
成は、第3図に示されている。図において、30は遮断
器、31は直線形断路器、32は線路用接地装置、33
はケーブル接続装置、CTはケーブル分割貫通形計器用
変流器、35は母線、36は点検用接地装置、37は直
角形断路器、3Bは充電部である。
The configuration of a conventional gas insulated switchgear is shown in FIG. In the figure, 30 is a circuit breaker, 31 is a linear disconnector, 32 is a line grounding device, and 33
1 is a cable connection device, CT is a cable splitting through type current transformer, 35 is a bus bar, 36 is a grounding device for inspection, 37 is a right-angled disconnector, and 3B is a charging part.

充電部38は三相分を一括して絶縁スペーサ39により
絶縁支持のうえ、接地金属容器40内に収納し、内部に
数気圧のS F aガスを密封している。
The charging unit 38 includes three phases that are collectively insulated and supported by an insulating spacer 39, housed in a grounded metal container 40, and S Fa gas of several atmospheres is sealed inside.

二のSF、ガスは絶縁および消弧媒体として機能する。In the second SF, the gas acts as an insulating and arc-extinguishing medium.

また前記絶縁スペーサ39は充電部38の支持とともに
、接地金属容器40内の空間を、上記各エレメント毎に
区分して複数の独立したガス区画室A1〜A、を形成し
、前記SF、の充・排気は必要な部分のみ行うようにな
っている。
The insulating spacer 39 not only supports the charging part 38 but also divides the space inside the grounded metal container 40 for each element to form a plurality of independent gas compartments A1 to A, and fills the SF. - Exhaust is only carried out where necessary.

上述のようなガス絶縁式開閉装置において、使用条件な
どによる不測の要因や、耐久寿命などにより、内部で相
間の短絡や各相の地絡などの異常が生じるときには、こ
れを検出して可及的に速やかに補修作業が実施されるこ
とが望ましい、このため、従来では前記各ガス区画室A
1〜へ〇毎に内圧検出器(図示せず)を配置し、短絡時
および地絡時に放出されるアークエネルギーに起因して
、事故の生じたガス区画室の内圧が上昇することを利用
して、短絡および地絡を検出し、またその事故点を標定
するようにしている。
In the gas-insulated switchgear mentioned above, if an abnormality such as a short circuit between phases or a ground fault of each phase occurs internally due to unforeseen factors such as usage conditions or due to durability life, etc., this can be detected and corrected. It is desirable to carry out repair work as quickly as possible.For this reason, in the past, each gas compartment A
Internal pressure detectors (not shown) are placed at each of ○ from 1 to ○ to take advantage of the fact that the internal pressure of the gas compartment where the accident occurred increases due to the arc energy released during short circuits and ground faults. It is designed to detect short circuits and ground faults, and to locate the fault point.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記複数のガス区画室A1〜へ〇は、一般に相互に異な
る容積を有している。このため、一定のアークエネルギ
ーに対する前記ガス区画室A1〜へ〇の内圧の各上昇値
は、容積の大きなガス区画室程小さくなる。また地絡電
流は小さいので、地絡が生じたガス区画室が比較的大き
な容積を有している場合には、これを検出することがで
きないことがある。特に、非有効接地系における地絡電
流は非常に小さく、したがって地絡時の標定は極めて困
難である。
The plurality of gas compartments A1 to A1 generally have different volumes. For this reason, each increase value of the internal pressure of the gas compartments A1 to A1 to A with respect to a constant arc energy becomes smaller as the volume of the gas compartment becomes larger. Furthermore, since the ground fault current is small, it may not be possible to detect it if the gas compartment in which the ground fault has occurred has a relatively large volume. In particular, the ground fault current in an ineffective grounding system is very small, and therefore location during a ground fault is extremely difficult.

この発明の目的は、異常の検出および事故点の標定か確
実に行われるようにしたガス絶縁式電気設備を堤供する
ことである。
The object of the invention is to provide a gas-insulated electrical installation in which abnormality detection and fault location can be reliably carried out.

〔課題を解決するための手段〕[Means to solve the problem]

この発明のガス絶縁式電気設備は、母線電圧を検出する
計器用変圧器と、 母線に接続した入出力回線に流れる電流をそれぞれ計測
する計器用変流器と、 複数のガス区画室の各内圧を検出する内圧検出器と、 前記計器用変圧器からの出力の合計信号と、前記計器用
変圧器からの母線電圧信号とから、前記複数のガス区画
室内で消費される全アークエネルギーを演算する手段と
、 この全アークエネルギーと各ガス区画室の容積とから、
前記演算された全アークエネルギーの全てが各ガス区画
室のそれぞれにおいて独立に消費されたものと仮定して
、各ガス区画室の内圧上昇の各推定値を演算する手段と
、 各ガス区画室毎の前記各推定値に対する、前記内圧検出
器出力から得られる各ガス区画室における内圧上昇の実
測値の偏差を演算し、前記偏差が最小となるガス区画室
を事故点として標定する手段とを備えたものである。
The gas-insulated electric equipment of the present invention includes an instrument transformer that detects bus voltage, an instrument current transformer that measures the current flowing through each input/output line connected to the bus, and internal pressures in each of a plurality of gas compartments. calculating the total arc energy consumed within the plurality of gas compartments from the sum signal of the outputs from the potential transformer and the bus voltage signal from the potential transformer; From this total arc energy and the volume of each gas compartment,
means for calculating each estimated value of the internal pressure rise of each gas compartment, assuming that all of the calculated total arc energy is independently consumed in each of the gas compartments; and for each gas compartment. means for calculating the deviation of the actual measured value of internal pressure rise in each gas compartment obtained from the output of the internal pressure detector with respect to each of the estimated values, and locating the gas compartment where the deviation is the minimum as the accident point. It is something that

〔作用〕[Effect]

母線に接続した複数の入出力回線に流れる全電流は通常
は零であるが、相間の短絡や母線の地絡によって、複数
のガス区画室の少な(とも一つでアークが生じるときに
は、前記全電流が変化し、この全電流と母線電圧とによ
ってアークエネルギーを演算することが可能である。こ
の発明においては、前記複数の入出力回線毎に計器用変
流器を設け、また母線電圧は計器用変圧器で検出される
The total current flowing through the multiple input/output circuits connected to the busbar is normally zero, but due to a short circuit between phases or a ground fault in the busbar, if an arc occurs in one of the gas compartments, The current changes, and it is possible to calculate the arc energy based on this total current and the bus voltage.In this invention, a meter current transformer is provided for each of the plurality of input/output lines, and the bus voltage is detected by the transformer.

前記計器用変流器からの出力の合計信号は、前記全電流
に対応し、したがってこの合計信号と前記計器用変圧器
で得られる母線電圧信号とから、複数のガス区画室内で
消費される全アークエネルギーを演算することができる
The sum signal of the outputs from said potential transformers corresponds to said total current, and therefore from this sum signal and the bus voltage signal obtained at said potential transformers, the total amount consumed in the plurality of gas compartments. Arc energy can be calculated.

このようにして得られた全アークエネルギーを基に、こ
の全アークエネルギーが前記複数のガス区画室のそれぞ
れで独立に消費された場合を想定し、各ガス区画室の容
積に基づいて、そのときの各ガス区画室における内圧上
昇値の各推定値が演算される。前記複数のガス区画室の
それぞれにはまた、各内圧を検出する内圧検出器が設け
られており、この内圧検出器からの出力から得られる各
ガス区画室の内圧上昇値の実測値の、前記推定値からの
偏差が演算される。そして、この偏差が最小となるガス
区画室が事故点として標定される。
Based on the total arc energy obtained in this way, assuming that this total arc energy is consumed independently in each of the plurality of gas compartments, then based on the volume of each gas compartment, Each estimated value of the internal pressure increase value in each gas compartment is calculated. Each of the plurality of gas compartments is also provided with an internal pressure detector that detects each internal pressure, and the actual value of the increase in internal pressure of each gas compartment obtained from the output from the internal pressure detector is The deviation from the estimated value is calculated. Then, the gas compartment where this deviation is the minimum is determined as the accident point.

このようにこの発明では、各ガス区画室の内圧上昇の推
定値を、各ガス区画室の容積を勘案して演算し、この推
定値に最も近い内圧上昇が観測されるガス区画室が事故
点とされるので、容積の大きなガス区画室でアークが生
した場合や、地絡時などのアークエネルギーが小さい場
合においても、前記アークが生じたガス区画室を確実に
事故点として標定することができる。
In this way, in this invention, the estimated value of the internal pressure rise in each gas compartment is calculated by taking into account the volume of each gas compartment, and the gas compartment in which the internal pressure rise closest to this estimated value is observed is designated as the accident point. Therefore, even if an arc occurs in a gas compartment with a large volume or the arc energy is small such as during a ground fault, it is possible to reliably locate the gas compartment where the arc occurred as the accident point. can.

〔実施例〕〔Example〕

第1図にはこの発明の一実施例に係るガス絶縁式開閉装
置の電気的な構成が示されており、短絡や地絡などの事
故が生じたときに、この事故点を標定するための構成が
示されている。なおこの実施例の説明において、前述の
第3図を再び参照する。このガス絶縁式開閉装置は、母
線35の電圧を検出する計器用変圧器PTと、母線35
に接続された複数の入出力回線(図示せず)に流れる電
流をそれぞれ計測する計器用変流器CT、−CTk(第
3図の計器用変流器CTはこれらのうちの一つである。
FIG. 1 shows the electrical configuration of a gas insulated switchgear according to an embodiment of the present invention, and is used to locate the accident point when an accident such as a short circuit or ground fault occurs. The configuration is shown. In the description of this embodiment, reference will again be made to the above-mentioned FIG. 3. This gas insulated switchgear includes an instrument transformer PT that detects the voltage of the bus bar 35, and a voltage transformer PT that detects the voltage of the bus bar 35.
Instrument current transformers CT, -CTk (the instrument current transformer CT in Fig. 3 is one of these .

)と、複数のガス区画室A1〜A7毎に設けられ各ガス
区画室の内圧を検出する内圧検出器S、−SRと、これ
らからの出力を受けて各種の演算を行う中央処理装置l
とを備えている。
), internal pressure detectors S and -SR provided for each of the plurality of gas compartments A1 to A7 to detect the internal pressure of each gas compartment, and a central processing unit l that receives outputs from these and performs various calculations.
It is equipped with

前記内圧検出器S、−S、の各出力は、ガス区画室A、
−A、の定格時の内圧検出器81〜s7出力に対応して
各基準電圧が定められこの各基準電圧と内圧検出器31
〜S、、出力とを減算する減算器2に入力され、この減
算器2の出力は、マルチプレクサ3から、サンプルホー
ルド回路4およびアナログ/デジタル変換器5を経て、
前記中央処理装置1が接続されているデータバス6に入
力される。前記減算器2出力はガス区画室A I−A 
The respective outputs of the internal pressure detectors S, -S, are connected to the gas compartment A,
-A, each reference voltage is determined corresponding to the internal pressure detector 81 to s7 output at the rated time, and each reference voltage and the internal pressure detector 31
~S,, the output is input to a subtracter 2 which subtracts the output, and the output of this subtracter 2 is passed from a multiplexer 3 to a sample hold circuit 4 and an analog/digital converter 5,
The signal is input to the data bus 6 to which the central processing unit 1 is connected. The output of the subtractor 2 is the gas compartment A I-A
.

の各内圧の変化量に対応する。前記マルチプレクサ3の
前段には、内圧検出器S、−S、、出力と減算器2の前
記基準電圧との差が小さいときに、減算器2出力を増幅
して感度を増加するための増幅器7が設けられる。
corresponds to the amount of change in each internal pressure. At the stage before the multiplexer 3, there is an amplifier 7 for amplifying the output of the subtracter 2 to increase sensitivity when the difference between the output of the internal pressure detectors S, -S, and the reference voltage of the subtracter 2 is small. is provided.

また、前記計器用変流器CT、〜CT、出力および計器
用変圧器PT比出力演算回路17に与えられている。こ
の演算回路17では、複数のガス区画室A1〜Aにおけ
る内部損失の瞬時エネルギーW(t)が演算され、その
演算結果はマルチプレクサ3からサンプルホールド回路
4およびアナログ/デジタル変換器5を介して、データ
バス6に入力される。
It is also provided to the voltage transformers CT, -CT, output and voltage transformer PT ratio output calculation circuit 17. This calculation circuit 17 calculates the instantaneous internal loss energy W(t) in the plurality of gas compartments A1 to A, and the calculation results are transmitted from the multiplexer 3 to the sample hold circuit 4 and analog/digital converter 5. It is input to the data bus 6.

前記データバス6には、中央処理装置lのワークエリア
などとしてその記憶領域が用いられるメモリ8.操作パ
ネル9からの信号を読み取るインクフェイス回路10、
データバス6に導出される制御信号を受けて表示パネル
11に表示制御信号を与えるインクフェイス回路12.
印刷装置13とデータバス6との間を接続するインタフ
ェイス回路14などが接続される。このデータバス6に
はまた、各種継電器などを制御するためのインクフェイ
ス回路15が接続され、母線35に短絡や地絡が生じた
ことを検出するために母線保護用差動継電器からの信号
がインクフェイス回路16を介して入力される。
The data bus 6 includes a memory 8. whose storage area is used as a work area for the central processing unit l. an ink face circuit 10 that reads signals from the operation panel 9;
An ink face circuit 12 which receives a control signal derived to the data bus 6 and provides a display control signal to the display panel 11.
An interface circuit 14 connecting between the printing device 13 and the data bus 6 is connected. The data bus 6 is also connected to an ink face circuit 15 for controlling various relays, etc., and a signal from a differential relay for protecting the bus bar is transmitted to detect a short circuit or a ground fault on the bus bar 35. It is input via the ink face circuit 16.

第2図は、この実施例における事故点(短絡または地絡
が生じたガス区画室)の標定の原理を説明するための図
である。母線35には複数の入出力回線1.−4.が接
続され、これらの入出力回線L−1,のそれぞれに関連
して、前述の計器用変流器CT、〜CTkが設けられて
いる。また母線35にはこの母線35の電圧を測定する
計器用変圧器PTが接続されている。
FIG. 2 is a diagram for explaining the principle of locating the accident point (the gas compartment where a short circuit or ground fault has occurred) in this embodiment. The busbar 35 has a plurality of input/output lines 1. -4. are connected, and the aforementioned instrument current transformers CT, to CTk are provided in association with each of these input/output lines L-1, respectively. Further, a voltage transformer PT for measuring the voltage of the bus bar 35 is connected to the bus bar 35 .

入出力回線11〜!、に流れるトータルの各相電faI
a 、Ib 、l(は、各入出力回線1+ 〜Ehに流
れる各相電流1.11.、、!c、(j=1. 2・・
・、k)によって、 1、=ΣI0            ・・・ (1)
1、=ΣI hJ             ・・・ 
(2)1、−Σt Cj             ・
・・ (3)と表される。なお、通常、すなわち相間の
短絡や地絡によるアークが生じていないときには、+a
 J、=IC−0・・・ (4) である。また内部損失の瞬時エネルギーW(t)は、各
相電圧をt11文52文、として、 W(t)−?、I、+tblb+?c1.  −(5)
となり、事故時に放出されるアークエネルギーEは、 ΔP=C,x−・・・ (8) と表現できる(ただし、t′は故障継続時間である。)
Input/output line 11~! , the total power faI of each phase flowing to
a, Ib, l( are each phase current 1.11.,,!c, (j=1.2...
・, k), 1,=ΣI0... (1)
1,=ΣI hJ...
(2) 1, -Σt Cj ・
... It is expressed as (3). Note that normally, when no arc occurs due to a short circuit between phases or a ground fault, +a
J,=IC-0... (4) It is. Also, the instantaneous energy W(t) of internal loss is calculated as W(t)-?, assuming each phase voltage is t11 and 52. , I, +tblb+? c1. -(5)
Therefore, the arc energy E released at the time of an accident can be expressed as ΔP=C,x-... (8) (where t' is the failure duration time.)
.

一方、成るガス区画室において、短絡や地絡などの事故
が発生すると、この事故時のアークエネルギーによって
SF、ガスの温度が上昇する。この温度上昇によってS
F、ガスは膨張しこれによって当該ガス区画室の内圧が
上昇する。たとえばこのガス区画室の初期圧がPであっ
て、前記事故時の温度上昇によって内圧がP+ΔPに上
昇したとすれば、 ! ・ t′ ΔP−CI  X                ・
・・ (7)■ ただし、CI・・・係数 ■ ・・・故障電流 ■ ・・・ガス区画室の容積 となる、この式は、当該ガス区画室内で消費されるエネ
ルギーをEとすれば、 ■ ただし、C2は係数である。
On the other hand, if an accident such as a short circuit or ground fault occurs in the gas compartment, the temperature of the SF and gas will rise due to the arc energy at the time of the accident. This temperature rise causes S
F. The gas expands, thereby increasing the internal pressure of the gas compartment. For example, if the initial pressure of this gas compartment is P, and the internal pressure rises to P+ΔP due to the temperature rise at the time of the accident, then!・ t' ΔP−CI X ・
... (7) ■ However, CI... coefficient ■ ... Fault current ■ ... Volume of the gas compartment. This formula is expressed as follows: If the energy consumed in the gas compartment is E, ■ However, C2 is a coefficient.

と書き直すことができる。このエネルギーEは、事故に
よって放出されるアークエネルギーとみなすことができ
る。
It can be rewritten as This energy E can be considered as arc energy released due to an accident.

したがって、各ガス区画室A1〜A、、の容積をVr 
、  Vz 、・・・・、voとした場合、ガス区画室
A、(ただし1≦m≦n)で事故が発生したと仮定する
と、ガス区画室A、における内圧上昇値の理論推定値Δ
PM′は、 Δp、’ =C,・E/Vm     −(9)となる
Therefore, the volume of each gas compartment A1 to A, , is Vr
, Vz , ..., vo, and assuming that an accident occurs in gas compartment A (where 1≦m≦n), the theoretical estimated value of the internal pressure increase value in gas compartment A, Δ
PM' is Δp,' = C, ·E/Vm - (9).

さらにこの理論推定値ΔP、′からの、ガス区画室A、
における実際の内圧上昇値ΔP1の偏差ε、(%)は、 ΔP、′ となる、このような偏差と、を任意のmに関して求める
ことにより、ガス区画室A1〜A、、に関する上記偏差
ε0.C2,・・・・、C1が得られる。
Furthermore, from this theoretical estimate ΔP,', the gas compartment A,
The deviation ε, (%) of the actual internal pressure increase value ΔP1 at is ΔP,′.By determining such a deviation for any m, the above deviation ε0. C2,..., C1 are obtained.

次にこれらの最小値 Min (εI IEl + ””r  C1) ・・
・ C1)を求め、この最小の偏差が得られたガス区画
室がが事故点として標定される。すなわち各ガス区画室
A I”” A−の容積を勘案して算出した前記内圧上
昇値の理論推定値ΔP1′〜ΔPo′に最も近い内圧上
昇が観測されたガス区画室において、アークが生じたも
のと判定されることになる。
Next, these minimum values Min (εI IEl + ""r C1)...
・C1) is determined, and the gas compartment where the minimum deviation is obtained is designated as the accident point. In other words, an arc occurred in the gas compartment in which the internal pressure increase closest to the theoretically estimated value ΔP1' to ΔPo' of the internal pressure increase calculated by taking into account the volume of each gas compartment A I"" A- was observed. It will be judged as such.

再び第1図を参照してこの実施例の動作を説明する。相
間の短絡や各相の地絡が生じると、短絡、地絡の各事故
時に動作して母線35を保護するための各継電器からの
信号が、インタフェイス回路16を介してデータバス6
から、中央処理装置1に入力される。これによって中央
処理装置1は減算器2または増幅器7から、各ガス区画
室A1〜A、、における全ての内圧上昇値の実測値ΔP
、〜ΔP、1を得る。
The operation of this embodiment will be explained with reference to FIG. 1 again. When a short circuit between phases or a ground fault occurs in each phase, signals from each relay that operates in the event of a short circuit or ground fault to protect the bus bar 35 are transferred to the data bus 6 via the interface circuit 16.
, and is input to the central processing unit 1. As a result, the central processing unit 1 receives from the subtractor 2 or the amplifier 7 all the actual measured values ΔP of internal pressure increases in each gas compartment A1 to A.
, ~ΔP, 1 is obtained.

一方、演算回路17では上記第(1)弐〜第(5)式に
基づく演算が行われて内部損失の瞬時エネルギーW(t
)が演算されており、この瞬時エネルギーW(t)の値
もまた中央処理装置1に与えられ、中央処理装置1はこ
の瞬時エネルギーW(υから上記第(6)式に基づ(演
算を行い、前記事故時に複数のガス区画室A1〜へ〇で
消費される全アークエネルギーEを演算する。さらに中
央処理装置1は、この全アークエネルギーEと、ガス区
画室A1〜A、、の各容積V、−V、とに基づいて、上
記第(9)式に従う演算を行い、そのようにして前記全
アークエネルギーEが各ガス区画室A1〜A1で独立に
消費された場合における各ガス区画室A1〜A、、の内
圧の上昇値の各推定値ΔP、′〜ΔP9′を演算する。
On the other hand, the arithmetic circuit 17 performs arithmetic operations based on equations (1) to (5) above to obtain the instantaneous internal loss energy W(t
) is calculated, the value of this instantaneous energy W(t) is also given to the central processing unit 1, and the central processing unit 1 calculates (calculation) from this instantaneous energy W(υ) based on the above equation (6). and calculates the total arc energy E consumed by 〇 to the plurality of gas compartments A1 to A1 at the time of the accident.Furthermore, the central processing unit 1 calculates this total arc energy E and each of the gas compartments A1 to A, . Based on the volumes V, -V, calculation according to the above equation (9) is performed, and in this way, each gas compartment when the total arc energy E is independently consumed in each gas compartment A1 to A1. Estimated values ΔP,' to ΔP9' of the increase in internal pressure of the chambers A1 to A, , are calculated.

さらにまた、この推定値ΔP1′〜ΔP7′ と前記実
測値ΔP1〜ΔP7に基づいて、上記第00)式に従う
演算が中央処理装置l実行され、そのようにして実測値
ΔP1〜ΔP7の推定値ΔPl′〜ΔP1′からの各偏
差ε1〜ε7が演算される。
Furthermore, based on the estimated values ΔP1' to ΔP7' and the actual measured values ΔP1 to ΔP7, the central processing unit executes the calculation according to equation 00), and in this way the estimated value ΔPl of the actual measured values ΔP1 to ΔP7 The respective deviations ε1 to ε7 from ' to ΔP1' are calculated.

そしてこの偏差ε、〜ε7の最小値が求められ、この最
小の偏差が得られたガス区画室内で事故が発生したもの
と標定される。このことは、たとえば表示パネル11に
表示出力などされる。
Then, the minimum value of these deviations ε, to ε7 is determined, and it is determined that the accident occurred in the gas compartment where the minimum deviation was obtained. This information is displayed on the display panel 11, for example.

第3図に示されたガス絶縁式開閉装置の各ガス区画室A
1〜A8に関して、相関の短絡または地絡が生じたとき
の圧力上昇値ΔP゛を計算した結果が第1表に示されて
いる。ただし、ガス区画室A’r 、Asは母線35を
収納し、ガス区画室A。
Each gas compartment A of the gas insulated switchgear shown in Figure 3
Table 1 shows the results of calculating the pressure increase value ΔP' when a correlated short circuit or ground fault occurs for Nos. 1 to A8. However, the gas compartments A'r and As accommodate the bus bar 35, and the gas compartments A'r and As accommodate the bus bar 35.

に連なるガス区画室であって、第3図では図示が省略さ
れている。なお第1表に示された計算結果は、66にν
のガス絶縁式開閉装置を想定しており、事故電流は、 2相短絡電流 ・・・6700A 3相短絡電流 ・・・7730 A 1線地絡電流 ・・・ 200A である。
3, and is not shown in FIG. 3. The calculation results shown in Table 1 are ν in 66.
A gas-insulated switchgear is assumed, and the fault currents are: 2-phase short-circuit current: 6700 A 3-phase short-circuit current: 7730 A 1-wire ground fault current: 200 A.

(以下余白) 上述の偏差ε、〜ε0の演算には、このようなΔP′の
値が用いられる。またこの第1表に示された推定価ΔP
′から、地絡時の内圧上昇値は短絡時の内圧上昇値より
も1〜2桁小さいことが判る。この地絡時の内圧上昇値
の測定のために、この実施例ではマルチプレクサ3の前
段に、前述した感度増加用の増幅器7が設けられており
、この増幅器7または′成算器2からの信号が選択的に
サンプルホールド回路4に入力される。
(The following is a blank space.) Such a value of ΔP' is used in the calculation of the deviations ε and ε0 described above. Also, the estimated price ΔP shown in this Table 1
', it can be seen that the internal pressure increase value during a ground fault is one to two orders of magnitude smaller than the internal pressure increase value during a short circuit. In order to measure the internal pressure rise value at the time of this ground fault, in this embodiment, the aforementioned amplifier 7 for increasing the sensitivity is provided before the multiplexer 3. is selectively input to the sample and hold circuit 4.

この切り換えによって内圧の上昇値の検出スパンは、短
絡時には±2kgf/cm”程度となり、地絡時には±
0.1 kgr7cm”程度となる。これによってアナ
ログ/デジタル変換器5が、12ビツトのものであると
きには、それぞれ0.001 kgf/cJ0.000
05 kgf/cmz(D分解能カ得うレ、シタカッチ
地絡時の内圧の上昇値の検出が可能である。
By this switching, the detection span of the internal pressure increase value becomes approximately ±2 kgf/cm" in the case of a short circuit, and ±2 kgf/cm" in the case of a ground fault.
When the analog/digital converter 5 is a 12-bit one, it is approximately 0.001 kgf/cJ0.000.
05 kgf/cmz (D resolution is insufficient, it is possible to detect the increase in internal pressure at the time of a ground fault.

以上のようにこの実施例によれば、各ガス区画室A I
−A−毎に、各容積■1〜v7を勘案して内圧上昇値の
各推定値ΔP、′〜ΔP1′が演算され、この各推定値
ΔP、′〜ΔPa′からの実測値ΔP、〜ΔP、の偏差
ε1〜ε。が最小となるガス区画室が事故点として標定
されるので、ガス区画室A1〜A、の容積の差に依らず
に、事故点を正確に標定することできる。しかもこの実
施例では、前述のように比較的事故電流の小さい地絡時
には、減算器2出力がさらに増幅器7を介してマルチプ
レクサ3から取り込まれるので、検出感度が増大され、
したがって地絡の検出を確実に行うことができる。
As described above, according to this embodiment, each gas compartment A I
-A-, each estimated value ΔP, '~ΔP1' of the internal pressure increase value is calculated taking into consideration each volume ■1~v7, and the actual measured value ΔP, ~ ΔP, deviation ε1 to ε. Since the gas compartment with the minimum is located as the accident point, the accident point can be accurately located regardless of the difference in volume of the gas compartments A1 to A. Furthermore, in this embodiment, in the event of a ground fault with a relatively small fault current as described above, the output of the subtracter 2 is further taken in from the multiplexer 3 via the amplifier 7, so the detection sensitivity is increased.
Therefore, ground faults can be detected reliably.

前述の実施例では、ガス絶縁式開閉装置を例に採って説
明したが、この発明は他のガス絶縁式電器設備において
、内部で生じる短絡および地絡などの事故の検出および
、この事故が生じた事故点の標定を行おうとするものに
対して広〈実施することができる。
In the above embodiment, a gas insulated switchgear was taken as an example. However, the present invention is applicable to other gas insulated electrical equipment, and is applicable to detection of internal accidents such as short circuits and ground faults, and detection of accidents caused by such accidents. It can be widely used for those who wish to locate the accident point.

〔発明の効果〕〔Effect of the invention〕

この発明のガス絶縁式電気設備によれば、各ガス区画室
の内圧上昇の推定値を、各ガス区画室の容積を勘案して
演算し、この推定値に最も近い内圧上昇が観測されるガ
ス区画室が事故点とされるので、容積の大きなガス区画
室でアークが生じた場合や、地絡時などのアークエネル
ギーが小さい場合においても、前記アークが生じたこと
を確実に検出し、また前記アークが生したガス区画室を
確実に事故点として標定することができる。
According to the gas-insulated electric equipment of the present invention, an estimated value of the internal pressure rise in each gas compartment is calculated by taking into account the volume of each gas compartment, and the gas whose internal pressure rise is closest to this estimated value is calculated. Since the compartment is regarded as the accident point, even if an arc occurs in a gas compartment with a large volume or the arc energy is small such as during a ground fault, the occurrence of the arc can be reliably detected and The gas compartment where the arc occurred can be reliably located as the accident point.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係るガス絶縁式開閉装置
の電気的構成を示すブロック図、第2図は前記ガス絶縁
式開閉装置における事故点の標定の原理を説明するため
の図、第3図は一般的なガス絶縁式開閉装置の構成を示
す断面図である。 1・・・中央処理装置、2・・・減算器、7・・・増幅
器、17・・・演算回路、A1〜A、、・・・ガス区画
室、CT〜CT、・・・計器用変流器、PT・・・計器
用変圧器、S、−S、・・・内圧検出器
FIG. 1 is a block diagram showing the electrical configuration of a gas insulated switchgear according to an embodiment of the present invention, FIG. 2 is a diagram for explaining the principle of locating a fault point in the gas insulated switchgear, FIG. 3 is a sectional view showing the configuration of a general gas insulated switchgear. DESCRIPTION OF SYMBOLS 1...Central processing unit, 2...Subtractor, 7...Amplifier, 17...Arithmetic circuit, A1-A,... Gas compartment, CT-CT,... Instrument variable Fluid, PT...Instrument transformer, S, -S,...Internal pressure detector

Claims (1)

【特許請求の範囲】 母線電圧を検出する計器用変圧器と、 母線に接続した入出力回線に流れる電流をそれぞれ計測
する計器用変流器と、 複数のガス区画室の各内圧を検出する内圧検出器と、 前記計器用変流器からの出力の合計信号と、前記計器用
変圧器からの母線電圧信号とから、前記複数のガス区画
室内で消費される全アークエネルギーを演算する手段と
、 この全アークエネルギーと各ガス区画室の容積とから、
前記演算された全アークエネルギーの全てが各ガス区画
室のそれぞれにおいて独立に消費されたものと仮定して
、各ガス区画室の内圧上昇の各推定値を演算する手段と
、 各ガス区画室毎の前記各推定値に対する、前記内圧検出
器出力から得られる各ガス区画室における内圧上昇の実
測値の偏差を演算し、前記偏差が最小となるガス区画室
を事故点として標定する手段とを備えたガス絶縁式電気
設備。
[Scope of Claims] An instrument transformer that detects the bus voltage, an instrument current transformer that measures the current flowing through each input/output line connected to the bus, and an internal pressure that detects the internal pressure of each of a plurality of gas compartments. a detector; means for calculating the total arc energy consumed within the plurality of gas compartments from a sum signal of the outputs from the potential transformer and a bus voltage signal from the potential transformer; From this total arc energy and the volume of each gas compartment,
means for calculating each estimate of the internal pressure rise of each gas compartment, assuming that all of the calculated total arc energy is consumed independently in each gas compartment; means for calculating the deviation of the actual measured value of internal pressure rise in each gas compartment obtained from the output of the internal pressure detector with respect to each of the estimated values, and locating the gas compartment where the deviation is the minimum as the accident point. gas insulated electrical equipment.
JP63293360A 1988-11-18 1988-11-18 Gas insulated electrical equipment Pending JPH02142307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293360A JPH02142307A (en) 1988-11-18 1988-11-18 Gas insulated electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293360A JPH02142307A (en) 1988-11-18 1988-11-18 Gas insulated electrical equipment

Publications (1)

Publication Number Publication Date
JPH02142307A true JPH02142307A (en) 1990-05-31

Family

ID=17793782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293360A Pending JPH02142307A (en) 1988-11-18 1988-11-18 Gas insulated electrical equipment

Country Status (1)

Country Link
JP (1) JPH02142307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122813A (en) * 1991-10-28 1993-05-18 Mitsubishi Electric Corp Gas insulated transmission line

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125908A (en) * 1980-03-07 1981-10-02 Tokyo Shibaura Electric Co Method of diagnosing internal malfunction in gas insulated switching unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125908A (en) * 1980-03-07 1981-10-02 Tokyo Shibaura Electric Co Method of diagnosing internal malfunction in gas insulated switching unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122813A (en) * 1991-10-28 1993-05-18 Mitsubishi Electric Corp Gas insulated transmission line

Similar Documents

Publication Publication Date Title
JPS59226615A (en) Offset compensator
KR20190110411A (en) Out of order discrimination apparatus and protective relay apparatus
JPH02142307A (en) Gas insulated electrical equipment
JPH02142308A (en) Gas insulated electrical equipment
EP0020073B1 (en) Common suspension multi-line grounding protective relay
JP3829614B2 (en) Digital type protective relay device
JP4406143B2 (en) Protective relay device for DC transmission system
EP0155367B1 (en) Short-circuit distance relay
JPS62173914A (en) Circuit breaker
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JP2581061B2 (en) Power system protection device
JPH08265957A (en) Matrix operation type system protector
JPH0413978A (en) Method and apparatus for measuring current and life diagnosing apparatus for breaking part of switch gear
RU2704628C1 (en) Method for differential protection of thyristor booster device for regulation and stabilization of voltage
JP3436775B2 (en) Discharger electrode wear rate measuring device
SU1737607A1 (en) Device for protection of stator of generator against short- circuit to ground
JP3198578B2 (en) Synchronous closing relay
JP2656635B2 (en) Closed switchboard with stationary protective relay
JPH07245832A (en) Gas-insulated switchgear
JPH02122276A (en) Measuring instrument for electrode consumption rate of disconnecting switch
JPH04117131A (en) Network relay device
JPH07283050A (en) Transformer for amplifying meter
JP2717320B2 (en) Predicted ground fault accident detection method for high voltage distribution line and predicted ground fault accident section detection method
JPH0378424A (en) Distribution-line ground protective device
JPH0546773B2 (en)