JPH05122813A - Gas insulated transmission line - Google Patents

Gas insulated transmission line

Info

Publication number
JPH05122813A
JPH05122813A JP3281157A JP28115791A JPH05122813A JP H05122813 A JPH05122813 A JP H05122813A JP 3281157 A JP3281157 A JP 3281157A JP 28115791 A JP28115791 A JP 28115791A JP H05122813 A JPH05122813 A JP H05122813A
Authority
JP
Japan
Prior art keywords
phase
transmission line
line
power transmission
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3281157A
Other languages
Japanese (ja)
Inventor
Akira Tsuchie
瑛 土江
Yoshinobu Numa
芳伸 沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3281157A priority Critical patent/JPH05122813A/en
Publication of JPH05122813A publication Critical patent/JPH05122813A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a three-phase two-line phase isolated gas insulated transmission line in which steady operation can be sustained by recovering the system quickly upon occurrence of internal fault. CONSTITUTION:A normal operating phase isolated gas insulated transmission lines 4a, 4b are provided, at the ends thereof, with apparatus 6a, 6b for disconnecting faulty phase and disconnectors 9a, 9b for connecting a single phase stand-by transmission line 5, laid along the gas insulated transmission lines 4a, 4b, with the faulty phase. Upon occurrence of fault, the disconnecting apparatus 6a, 6b and the disconnectors 9a, 9b are operated to switch the faulty phase to the single phase stand-by transmission line 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、相分離形ガス絶縁送
電線路(以下、GIBと称す。)を適用してなるガス絶
縁送電線路に関し、特にGIBの事故対応の予備回線を
保有するGIB構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated power transmission line to which a phase-separated gas-insulated power transmission line (hereinafter referred to as GIB) is applied, and particularly to a GIB structure having a spare line for GIB accident response. It is about.

【0002】[0002]

【従来の技術】近年、電力送電線路は、電力輸送路のル
ート断防止の観点から主要系統にあっては、2回線送電
が行われており、1回線が事故により送電不能になって
も他の1回線により送電し、事故による停電を防止する
配慮がなされている。
2. Description of the Related Art In recent years, two lines of power transmission lines have been used in the main system from the viewpoint of preventing disconnection of the route of the power transportation route. The power is transmitted through one line to prevent power failure due to an accident.

【0003】一方、近年の電力需要の増大や、都心部へ
の超高圧、超々高圧系統の導入が図られている中で送電
線路にGIBを適用し、送電線路を洞道内に布設する例
が増加している。
On the other hand, there is an example in which GIB is applied to a transmission line and the transmission line is laid in a cave while a demand for electric power is increasing in recent years and an ultra-high voltage and ultra-high voltage system is being introduced into the city center. It has increased.

【0004】図5、及び図6は、従来のこの種送電線路
を示したもので、図5は2回線送電時の単線結線図、図
6は図5に示す回路の機器配置構成を示し、aは平面
図、bは正面図を示す。
FIGS. 5 and 6 show a conventional power transmission line of this type. FIG. 5 shows a single-line connection diagram during two-line power transmission, and FIG. 6 shows a device layout of the circuit shown in FIG. a is a plan view and b is a front view.

【0005】図において、1は開閉機器ヤードで、以下
に説明する機器が設けられている。即ち、11a,11
bは後述するGIB4a,4bと外部送電線路との接続
を開閉する線路側遮断器、12a,12bは線路側接地
開閉器、13a,13bは避雷装置である。
In the drawing, reference numeral 1 denotes a switchgear yard, which is provided with the devices described below. That is, 11a, 11
Reference numeral b is a line side circuit breaker that opens and closes the connection between the GIBs 4a and 4b, which will be described later, and the external power transmission line, 12a and 12b are line side grounding switches, and 13a and 13b are lightning protection devices.

【0006】2は送電線路用GIBで、洞道3、及び三
相2回線でなるGIB4a,4bから構成されている。
GIB4a,4bは高絶縁耐力ガスが封入された金属容
器内に絶縁支持大(図示せず。)を用いて敷設されてい
る。
Reference numeral 2 denotes a GIB for a power transmission line, which is composed of a cave 3 and GIBs 4a and 4b having three-phase two lines.
The GIBs 4a and 4b are laid using a large insulating support (not shown) in a metal container filled with a high dielectric strength gas.

【0007】図5、及び図6に示す構成の送電線路は、
三相2回線でなるGIB4a,4bを有しており、通常
は2回線とも送電運用されている。そして、万一1回
線、例えばGIB4aが事故を起こし、送電不能になっ
た場合でも、健全なGIB4bのみで送電し、停電事故
に至らないような運用がなされる。
The transmission line having the structure shown in FIGS. 5 and 6 is
It has GIBs 4a and 4b consisting of three-phase two lines, and normally, both lines are used for power transmission. Even if one line, for example, the GIB 4a causes an accident and the power transmission becomes impossible, the power is transmitted only by the sound GIB 4b, and operation is performed so as not to cause a power failure accident.

【0008】[0008]

【発明が解決しようとする課題】従来のガス絶縁送電線
路は、上記のように構成されており、主回路部が金属容
器内に収納されるので、事故時に事故点を標定するのが
困難であり、事故復旧に時間を要し、その間、系統信頼
度が大幅に低下する1回線運用をせざるを得ない問題点
があった。この対策として、さらにGIBを1回線増設
して、三相3回の構成とし、1回線を予備回線とする方
策も考えられるが、極めて低い事故確率であるため設備
投資することによる経済的メリットが少ない。
The conventional gas-insulated transmission line is constructed as described above, and since the main circuit part is housed in the metal container, it is difficult to locate the accident point in the event of an accident. However, there was a problem that it took time to recover from the accident, and during that period, the system reliability had to be greatly reduced, and one line operation had to be performed. One possible solution is to add one additional GIB line, three-phase three-times configuration, and use one line as a standby line, but the economic probability of investing in equipment is extremely low because of the extremely low accident probability. Few.

【0009】この発明は、上記のような問題点に鑑みて
なされたものであり、相分離形GIBでの内部事故で
は、事故相を除く、他相、他回線への影響が無いことに
着目し、内部事故が発生しても、速やかに事故相を1相
予備送電線路に切り換えることにより、定常運転が可能
で機器コストも安価なガス絶縁送電線路を得ることを目
的とする。
The present invention has been made in view of the above problems, and pays attention to the fact that an internal accident in a phase-separated GIB has no influence on other phases and lines except for the accident phase. However, even if an internal accident occurs, it is an object of the present invention to obtain a gas-insulated transmission line that can be operated in a steady state and has low equipment cost by promptly switching the accident phase to the one-phase backup transmission line.

【0010】この発明の他の目的は、事故相を検出し、
事故相の1相予備送電線路への切り換えを遠隔操作によ
り行うことにより、より迅速な切り換え操作が行えるガ
ス絶縁送電線路を得ることを目的とする。
Another object of the present invention is to detect an accident phase,
An object of the present invention is to obtain a gas-insulated transmission line capable of performing a quicker switching operation by remotely switching the accident phase to the one-phase backup transmission line.

【0011】[0011]

【課題を解決するための手段】この発明に係るガス絶縁
送電線路は三相2回線送電線路端部の各相に事故相を切
り離すための第1の開閉器を設けるとともに、三相2回
線送電線路と併設した1相予備送電線路を事故相と切り
換える第2の開閉器を設けたものである。また、他の発
明に係るガス絶縁送電線路は三相2回線送電線路端部の
各相に事故相を切り離すための第1の開閉器を設けると
ともに、三相2回線送電線路と併設した1相予備送電線
路を事故相と切り換える第2の開閉器を設け、さらに、
事故相を検出する検出装置の検出出力により、上記第
1、及び第2の開閉器を遠隔操作するようにしたもので
ある。
A gas-insulated transmission line according to the present invention is provided with a first switch for disconnecting an accident phase at each end of a three-phase two-line transmission line, and a three-phase two-line transmission line. The second switch is provided for switching the one-phase standby transmission line provided with the line to the fault phase. In addition, a gas-insulated transmission line according to another invention is provided with a first switch for separating an accident phase at each end of a three-phase two-line transmission line, and a one-phase side-by-side connection with a three-phase two-line transmission line. A second switch is provided to switch the standby transmission line to the accident phase.
According to the detection output of the detection device for detecting the accident phase, the first and second switches are remotely operated.

【0012】[0012]

【作用】この発明においては、第1、及び第2の開閉器
を操作することにより、速やかに事故相を1相予備送電
線路に切り換え、定常運転を可能にする。また、他の発
明においては、第1、及び第2の開閉器を遠隔操作する
ことにより、さらに速やかに事故相を1相予備送電線路
に切り換え、定常運転を可能にする。
In the present invention, by operating the first and second switches, the accident phase can be promptly switched to the one-phase standby transmission line to enable steady operation. Further, in another invention, by remotely operating the first and second switches, the accident phase is switched to the one-phase standby power transmission line more quickly, and the steady operation is enabled.

【0013】[0013]

【実施例】実施例1.以下、この発明の実施例を図につ
いて説明する。図1は、この発明の実施例1を示す単線
結線図、図2は図1に対応した機器の配置構成を示し、
aは平面図、bは正面図を示す。また、図3は、洞道内
へのGIB配置例を示す構成図である。図1において、
太線で示す配線部は機器三相分を、細線で示す配線部は
機器単相分を示し、1は開閉機器ヤード、2は送電線路
用GIBを示す。
EXAMPLES Example 1. Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a single line connection diagram showing a first embodiment of the present invention, and FIG. 2 shows an arrangement configuration of equipment corresponding to FIG.
a is a plan view and b is a front view. Further, FIG. 3 is a configuration diagram showing an example of GIB arrangement in the cave. In FIG.
The wiring part indicated by a thick line indicates a device three-phase portion, the wiring part indicated by a thin line indicates a device single-phase portion, 1 is a switchgear yard, and 2 is a transmission line GIB.

【0014】主要機器構成は図5、及び図6に示す従来
装置と同様であるが、この発明における送電線路用GI
B2は常用運転用GIB4a,4bに併設して設けられ
た1相予備送電線路5を追設している。このため、常用
運転用GIB4a,4b端部の各相にそれぞれ切離装置
6を設置する。そして、事故時1相予備送電線路5の接
続は避雷装置13a,13bと線路側接地開閉器12
a,12bとの間に設けた相分離形断路器9a,9bを
介して行う。
The main equipment structure is the same as that of the conventional apparatus shown in FIGS. 5 and 6, but the GI for the power transmission line in the present invention.
B2 additionally includes a one-phase backup power transmission line 5 provided in parallel with the GIBs 4a and 4b for normal operation. Therefore, the disconnecting device 6 is installed in each of the phases at the end portions of the GIBs 4a and 4b for normal operation. The connection of the 1-phase backup power transmission line 5 at the time of the accident is performed by the lightning arresters 13a and 13b and the line-side grounding switch 12
It is carried out via the phase separation type disconnectors 9a and 9b provided between the a and 12b.

【0015】今、仮に常用運転用GIB4a中の1相に
内部事故が発生すると、図示しない保護装置が作動して
線路側遮断機11aが開路される。そこで、事故相を判
定し、切離装置6aにより、事故相の線路を切離した
後、事故相に対応する相分離形断路器9aを閉路操作
し、その後に線路側遮断機11aを閉路し系統復旧を図
る。
Now, if an internal accident occurs in one phase of the GIB 4a for normal operation, a protection device (not shown) is activated to open the line side circuit breaker 11a. Therefore, after determining the accident phase and disconnecting the line of the accident phase by the disconnecting device 6a, the phase separation type disconnector 9a corresponding to the accident phase is closed, and then the line side circuit breaker 11a is closed. Try to recover.

【0016】図3は、図2に示す洞道3内にGIBを設
置した場合の配置例を示し、常用運転用GIB4a,4
bを洞道下方に、また1相予備送電線路5、及び冷却用
水管10を洞道上方に設置する。このように配置するこ
とにより、機器の引出しスペース11、保守点検スペー
ス12を妨げることなく、かつ洞道径を増加することな
く1相予備送電線路5が設置可能である。
FIG. 3 shows an example of arrangement of GIBs installed in the cave 3 shown in FIG.
b is installed in the lower part of the cave, and the one-phase backup power transmission line 5 and the cooling water pipe 10 are installed in the upper part of the cave. By arranging in this way, the one-phase backup power transmission line 5 can be installed without hindering the equipment drawing space 11 and the maintenance / inspection space 12, and without increasing the diameter of the cavern.

【0017】以上のように、送電線路を相分離形GIB
で構成した系統において、万一の事故時対応用として常
用運転用GIB4a,4bに併設して1相予備送電線路
5を設置することで、事故時の系統切換えが速やかに達
成される。洞道内機器設置スペースも従来の2回線GI
B設置と大差なく、従って、洞道径の増大とならない。
コスト面でも予備に1回線を増設する場合の約1/3に
低減できる。等の効果を有し、結果的には、1相予備送
電線路5のみの設置で三相分の予備回線を設置した場合
に匹敵する効果が得られる。
As described above, the transmission line is a phase-separated GIB.
In the system configured as described above, by installing the one-phase backup power transmission line 5 in parallel with the GIBs 4a and 4b for normal operation for emergency response, system switching in the event of an accident can be quickly achieved. The equipment installation space in the cave is the same as the conventional 2-line GI
There is not much difference from the B installation, and therefore the diameter of the sinus is not increased.
In terms of cost, it can be reduced to about 1/3 of the case where one line is added as a spare. Etc., and as a result, an effect comparable to the case where three-phase protection lines are installed by installing only one-phase protection transmission line 5 is obtained.

【0018】実施例2.他の実施例2として、上記実施
例1では常用運転用GIB4a,4b内事故を確定した
後に1相予備送電線路5へ切り換えて系統復旧を図って
いるが、GIB内事故標定用CTを主保護用CTとは別
に設置し、系統の自動復旧を図る手段を設けた実施例を
図4に示す。
Example 2. As another embodiment 2, in the above-mentioned embodiment 1, after the accident in the GIBs 4a, 4b for normal operation is confirmed, the system is restored by switching to the one-phase backup transmission line 5, but the CT for accident localization in the GIB is mainly protected. FIG. 4 shows an embodiment in which a means for automatically restoring the system is provided separately from the CT for use.

【0019】図4において、130a,130bは主保
護用CT,14a,14bはGIB内事故点標定用C
T、15a,15bは遠方動力操作により操作されるG
IB切離し用断路機、16a16bは同様に遠方動力操
作される1相予備送電線路5への切換用断路器を示す。
今、常用運転用GIB4aで内部事故が発生し、単相再
閉路を失敗した場合、遠方動力操作により速やかに断路
器15aを開路、断路器16aを閉路して事故相と1相
予備送電線路5と切り換え、再度の再閉路を可能とす
る。
In FIG. 4, 130a and 130b are CTs for main protection, 14a and 14b are Cs for locating an accident point in the GIB.
T, 15a and 15b are operated by a distant power operation G
The IB disconnecting disconnecting device, 16a16b, also represents a disconnecting disconnecting switch for switching to the one-phase backup transmission line 5 which is also remotely operated.
If an internal accident occurs in the normal operation GIB 4a and the single-phase reclosing fails, the disconnecting switch 15a is quickly opened and the disconnecting switch 16a is closed by the distant power operation, and the accident phase and the 1-phase standby transmission line 5 are connected. , And reclosing is possible again.

【0020】即ち、1相予備送電線路と、GIB故障点
標定用CTと、常用運転用GIB切離し用断路器と、1
相予備送電線路切換用断路器とを設置することにより、
線路事故が発生した場合でも1回線を予備保有している
のと同様の効果が得られる。
That is, a 1-phase standby transmission line, a GIB fault point locating CT, a GIB disconnecting disconnecting switch for normal operation, and 1
By installing the disconnector for switching the phase standby transmission line,
Even if a line accident occurs, the same effect as having one circuit in reserve can be obtained.

【0021】[0021]

【発明の効果】以上のように、この発明によれば、三相
2回線送電線路端部の各相に事故相を切り離すための第
1の開閉器を設けるとともに、三相2回線送電線路と併
設した1相予備送電線路を事故相と切り換える第2の開
閉器を設けるものとしたので、上記第1、及び第2の開
閉器を操作することにより、速やかに事故相を1相予備
送電線路に切り換え、定常運転を可能にする。また、こ
の発明によれば、さらに、事故相を検出する検出装置の
検出出力により、上記第1、及び第2の開閉器を遠隔操
作するようにしているので、さらに速やかに事故相を1
相予備送電線路に切り換え、定常運転を可能にする。
As described above, according to the present invention, the first switch for disconnecting the accident phase is provided at each phase of the end portion of the three-phase two-line power transmission line, and the three-phase two-line power transmission line is provided. Since the second switch for switching the attached 1-phase backup power transmission line to the fault phase is provided, by operating the first and second switches described above, the fault phase can be quickly switched to the 1-phase backup power transmission line. To enable steady operation. Further, according to the present invention, since the first and second switches are remotely operated by the detection output of the detection device for detecting the accident phase, the accident phase can be detected more quickly.
Switch to the phase backup transmission line to enable steady operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1によるガス絶縁送電線路の
単線結線図である。
FIG. 1 is a single wire connection diagram of a gas insulated transmission line according to a first embodiment of the present invention.

【図2】図1に対応した機器の配置構成を示した図で、
aは平面図、bは正面図である。
FIG. 2 is a diagram showing an arrangement configuration of devices corresponding to FIG.
a is a plan view and b is a front view.

【図3】この発明による洞道内への相分離形ガス絶縁送
電線路の配置例を示す構成図である。
FIG. 3 is a configuration diagram showing an arrangement example of a phase-separated gas-insulated transmission line in a cave according to the present invention.

【図4】この発明の実施例2によるガス絶縁送電線路の
単線結線図である。
FIG. 4 is a single wire connection diagram of a gas insulated transmission line according to a second embodiment of the present invention.

【図5】従来のガス絶縁送電線路の単線結線図である。FIG. 5 is a single wire connection diagram of a conventional gas insulated transmission line.

【図6】図5に対応した機器の配置構成を示した図で、
aは平面図、bは正面図である。
FIG. 6 is a diagram showing an arrangement configuration of devices corresponding to FIG.
a is a plan view and b is a front view.

【符号の説明】[Explanation of symbols]

11a,11b 線路側遮断器 3 洞道 4a,4b 相分離形ガス絶縁送電線路 5 1相予備送電線路 6a,6b 切離装置 9a,9b 相分離形断路器 11a, 11b Line-side circuit breaker 3 Cave 4a, 4b Phase-separated gas-insulated transmission line 5 1-phase auxiliary transmission line 6a, 6b Separation device 9a, 9b Phase-separated disconnector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高絶縁耐力ガスが封入された金属容器内
に敷設された三相2回線送電線路、この三相2回線送電
線路と外部送電線路との間に接続された線路側遮断器、
上記三相2回線送電線路端部の各相にそれぞれ設けられ
た第1の開閉器、上記金属容器内に三相2回線送電線路
と併設して設けられた1相予備送電線路、上記線路側遮
断器と第1の開閉器との間の各相の1つを選択的に上記
1相予備送電線路と接続する第2の開閉器を備えたこと
を特徴とするガス絶縁送電線路。
1. A three-phase two-line transmission line laid in a metal container in which a high dielectric strength gas is sealed, a line-side circuit breaker connected between the three-phase two-line transmission line and an external transmission line,
A first switch provided in each phase at the end of the three-phase two-line power transmission line, a one-phase standby power transmission line provided in the metal container together with the three-phase two-line power transmission line, the line side A gas-insulated transmission line, comprising: a second switch that selectively connects one of the phases between the circuit breaker and the first switch to the one-phase standby transmission line.
【請求項2】 高絶縁耐力ガスが封入された金属容器内
に敷設された三相2回線送電線路、この三相2回線送電
線路と外部送電線路との間に接続された線路側遮断器、
上記三相2回線送電線路端部の各相にそれぞれ設けられ
た第1の開閉器、上記金属容器内に三相2回線送電線路
と併設して設けられた1相予備送電線路、上記三相2回
線送電線路の電流を変成する変流器、上記線路側遮断器
と第1の開閉器との間の各相の1つを選択的に上記1相
予備送電線路と接続する第2の開閉器、上記変流器の変
成した電流を監視し、事故相を検出する検出装置、及び
該検出装置の検出出力により上記第1、及び第2の開閉
器を遠隔操作する操作手段を備えたことを特徴とするガ
ス絶縁送電線路。
2. A three-phase two-line transmission line laid in a metal container in which a high dielectric strength gas is sealed, a line-side circuit breaker connected between the three-phase two-line transmission line and an external transmission line,
A first switch provided in each phase at the end of the three-phase two-line power transmission line, a one-phase standby power transmission line provided in the metal container together with the three-phase two-line power transmission line, and the three-phase A current transformer that transforms the current of a two-line power transmission line, a second switch that selectively connects one of the phases between the line-side breaker and the first switch to the one-phase standby power transmission line A detector, a detector for monitoring the transformed current of the current transformer and detecting an accidental phase, and an operating means for remotely operating the first and second switches according to the detection output of the detector. Gas-insulated transmission line characterized by.
JP3281157A 1991-10-28 1991-10-28 Gas insulated transmission line Pending JPH05122813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281157A JPH05122813A (en) 1991-10-28 1991-10-28 Gas insulated transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281157A JPH05122813A (en) 1991-10-28 1991-10-28 Gas insulated transmission line

Publications (1)

Publication Number Publication Date
JPH05122813A true JPH05122813A (en) 1993-05-18

Family

ID=17635152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281157A Pending JPH05122813A (en) 1991-10-28 1991-10-28 Gas insulated transmission line

Country Status (1)

Country Link
JP (1) JPH05122813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754382A (en) * 1995-08-30 1998-05-19 Hitachi, Ltd. Gas insulated switchgear and power transmission system using the switchgear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461653A (en) * 1977-10-25 1979-05-18 Toshiba Corp Protective current transformer for gas insulated electric facility
JPH0217808A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Gas insulated switchgear with single phase auxiliary bus bar
JPH02142307A (en) * 1988-11-18 1990-05-31 Nissin Electric Co Ltd Gas insulated electrical equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461653A (en) * 1977-10-25 1979-05-18 Toshiba Corp Protective current transformer for gas insulated electric facility
JPH0217808A (en) * 1988-07-06 1990-01-22 Hitachi Ltd Gas insulated switchgear with single phase auxiliary bus bar
JPH02142307A (en) * 1988-11-18 1990-05-31 Nissin Electric Co Ltd Gas insulated electrical equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754382A (en) * 1995-08-30 1998-05-19 Hitachi, Ltd. Gas insulated switchgear and power transmission system using the switchgear
CN1054005C (en) * 1995-08-30 2000-06-28 株式会社日立制作所 Gas insulation switch device and power transmission system by using said switch device

Similar Documents

Publication Publication Date Title
JPS61221520A (en) Gas insulated switchgear
JP3158986B2 (en) Gas insulated switchgear
JPH05122813A (en) Gas insulated transmission line
JP2008259327A (en) Reclosing method
CN110932244B (en) Relay protection method for no-switching of all-station protection outlet pressure plates of transformer substation
JP2002315183A (en) Power distribution system
KR101602060B1 (en) Apparatus and method for detecting fault point using protection relay
JPH0217808A (en) Gas insulated switchgear with single phase auxiliary bus bar
JPS6355297B2 (en)
JP3119125B2 (en) Gas insulated transmission line
JP2009022063A (en) Power transmission line protection system, and protection relay device
JP2000261917A (en) Apparatus for electric power
JPS608491Y2 (en) Vacuum breaker with terminal for voltage detection
JPS6223222Y2 (en)
JPS6151492B2 (en)
JPH05284645A (en) Fault section detecting system for substation
JPH0530617A (en) Gas insulated switchgear
JP2023072236A (en) Protection system for electric railroad dc substation
JPH05137249A (en) Faulty section detecting system for substation
JP2508391B2 (en) Gas insulation switchgear fault location method
JP2004072887A (en) Multiwinding transformer application substation
JPH0683527B2 (en) Gas insulated switchgear
JPS5818866B2 (en) Denryokukeito no Jikohakiyuuboshisouchi
JP2008278662A (en) Bus protective relaying device
JPH11264892A (en) Protection device of power source system in nuclear power plant