JPH02141564A - Production of hot dip sn coated wire - Google Patents

Production of hot dip sn coated wire

Info

Publication number
JPH02141564A
JPH02141564A JP29436788A JP29436788A JPH02141564A JP H02141564 A JPH02141564 A JP H02141564A JP 29436788 A JP29436788 A JP 29436788A JP 29436788 A JP29436788 A JP 29436788A JP H02141564 A JPH02141564 A JP H02141564A
Authority
JP
Japan
Prior art keywords
wire
plating
molten
flow
hot dip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29436788A
Other languages
Japanese (ja)
Inventor
Seiichi Doi
土井 誠一
Michio Okuno
奥野 道雄
Hideo Kaneko
秀雄 金子
Koichi Kawaguchi
好一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP29436788A priority Critical patent/JPH02141564A/en
Publication of JPH02141564A publication Critical patent/JPH02141564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To stably produce the hot dip Sn coated wire having excellent surface quality by passing molten Sn to an Sn plating section provided with an angle and running the wire in the direction opposite to this flow, thereby plating the wire. CONSTITUTION:The angle alpha is provided to the Sn plating section in a plating cell 1. This angle alpha is adequately about 5 to 30 deg. with horizontal. The molten Sn 2 is allowed to flow in a hollow groove 6 formed along this Sn plating section to generate the flow thereof. The wire 4 is run in the direction opposite to the flow of this molten Sn and is thereby plated; thereafter, the wire is passed through a die 5 to adjust the plating thickness. Since the generation of the flow of the molten Sn in the same direction as the progressing direction of the wire 4 is obviated in this way, the generation of the fluctuation in the plating thickness in the longitudinal direction is suppressed and the hot dip Sn plate wire having high quality is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、長手方向のメッキ厚のバラツキの少ない高品
質のメッキ線が得られる溶融Snメッキ線の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a hot-dip Sn-plated wire, which provides a high-quality plated wire with little variation in longitudinal plating thickness.

〔従来の技術とその課H] 銅線等に連続的にSnメッキを施す場合、伸線機により
線引きした線を通電アニーラ−またはトンネル炉アニー
ラ−で焼鈍した後、熔融Snメッキ槽、冷却槽、巻取機
などを順次経由させてSnメンキ線が製造される。Sn
メッキ槽を通過させる前の線材表面処理は、アニーラ−
の前か後で行なわれている。そしてSnメンキは一般的
に第4図および第5図に示す方法により行なわれている
[Conventional technology and its section H] When continuously applying Sn plating to copper wire, etc., the wire drawn by a wire drawing machine is annealed in an energizing annealer or a tunnel furnace annealer, and then transferred to a molten Sn plating tank or a cooling tank. , a winding machine, etc., to produce Sn coated wire. Sn
The wire surface is treated with an annealer before passing through the plating bath.
It is done before or after. Sn coating is generally carried out by the method shown in FIGS. 4 and 5.

すなわち第1図(a)のようにメッキ槽(1)内の溶融
5n(2)内に設けられたターンロール(3)を介して
線(4)を溶融Sn中を通過させ上方に設けられた絞り
ダイス(5)を通して垂直に引き上げてメッキを行なう
ものである。また(b)に示すように線を斜めに弓出す
方法があり、さらに第2図に示すように水平に線を引出
す方法もある。これらのメッキ方法においては線の進行
方向と同じ方向の溶融Snの流れが起こり、線の前処理
の良し悪しにより、メンキ線の品質が変わってしまうこ
とがある。また線の長手方向にもメッキ厚のバラツキが
生じ、Snを厚目に付ける必要があり、コスト高の要因
ともなっている。このメッキ厚の調整は絞りダイスのク
リアランスにより決定されるが、前処理条(’l、メッ
キ速度、溶融Snの温度などを良好に調整しないと所望
のメッキ厚が得られない。
That is, as shown in FIG. 1(a), the wire (4) is passed through the molten Sn via the turn roll (3) provided in the molten Sn (2) in the plating bath (1), and Plating is performed by vertically pulling the material through a drawing die (5). There is also a method of drawing the line diagonally as shown in (b), and there is also a method of drawing the line horizontally as shown in FIG. In these plating methods, a flow of molten Sn occurs in the same direction as the direction in which the wire travels, and the quality of the coated wire may change depending on the quality of the pretreatment of the wire. Further, variations in plating thickness occur in the longitudinal direction of the wire, and it is necessary to apply Sn thickly, which is also a factor in increasing costs. Adjustment of this plating thickness is determined by the clearance of the drawing die, but the desired plating thickness cannot be obtained unless the pretreatment conditions, plating speed, temperature of molten Sn, etc. are properly adjusted.

またメッキ槽内のSnが減少した場合は、固体のSnを
直接槽内に供給するか、別の溶融5nlfiを設け、こ
の槽から溶湯を供給し、この熔融Sn槽へ固体のSnを
補給する循環方式のどちらかが採用されている。しかし
上記の方法においてはいずれもメッキを行なっているう
ちにメッキ槽内にドロスや酸化Snが増加してくるため
長時間メッキを行なうとメッキ品質が著しく悪くなる問
題があった。
In addition, if the Sn in the plating tank decreases, either solid Sn is supplied directly into the tank, or another molten 5nlfi is provided and molten metal is supplied from this tank to replenish solid Sn to this molten Sn tank. Either circulation method is used. However, in all of the above methods, dross and Sn oxide increase in the plating tank while plating is being performed, so that plating quality deteriorates significantly if plating is performed for a long time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の問題について検討の結果、表面品質の
優れたメッキ線を安定して製造できる方法を開発したも
のである。
The present invention has been developed as a result of studies on the above-mentioned problems, and a method for stably manufacturing plated wires with excellent surface quality.

〔課題を解決するための手段および作用〕本発明は、S
nメッキ部に角度を付は溶融Snの流れをつくり、この
溶融Snの流れと反対方向に線を走行させてメッキを行
なうことを特徴とする溶融Snメッキ線の製造方法であ
る。
[Means and effects for solving the problem] The present invention provides S
This method of manufacturing a molten Sn-plated wire is characterized in that the n-plated portion is angled to create a flow of molten Sn, and plating is performed by running the wire in the opposite direction to the flow of the molten Sn.

すなわち本発明は、例えば第1図に示すように、メッキ
槽(1)内のSnメッキ部に相当するところに角度(α
)を付けて溶融Snの流れをつくり、この溶融Snの流
れと反対方向に線(4)を走行させて、メッキを行ない
、絞りダイス(5)でメッキ厚を調整し、Snメッキ線
を製造するものである。また別の例として絞りダイス(
5)をSnメッキ部の直後に配置してメッキ厚を調整す
る方法もある。
That is, in the present invention, as shown in FIG. 1, for example, an angle (α
) to create a flow of molten Sn, run the wire (4) in the opposite direction to the flow of molten Sn, perform plating, adjust the plating thickness with a drawing die (5), and manufacture Sn-plated wire. It is something to do. Another example is a drawing die (
There is also a method of adjusting the plating thickness by arranging 5) immediately after the Sn plating part.

上記の方法において、溶融Snは別に設+jだ溶融Sn
槽(図示せず)からポンプなどの移送装置により、濾過
されて、メッキ槽(1)の上部に供給され、所定の角度
(α)を有する第2図に示すような凹溝(6)を流下す
るものである。
In the above method, the molten Sn is set separately.
It is filtered from a tank (not shown) by a transfer device such as a pump, and is supplied to the upper part of the plating tank (1), forming a concave groove (6) having a predetermined angle (α) as shown in FIG. It flows downhill.

しかして上記のSnメッキ部の角度は、メンキ線の長手
方向のメッキ厚のバラツキに影響を与えるもので、水平
に対して5°〜30°の角度を付けた方がメッキ厚のバ
ラツキが小さく、メッキ厚の調整も容易である。
However, the angle of the Sn plating part mentioned above affects the variation in the plating thickness in the longitudinal direction of the coating wire, and the variation in the plating thickness will be smaller if it is at an angle of 5° to 30° with respect to the horizontal. It is also easy to adjust the plating thickness.

また線径、線速、溶融Snの温度なども、メッキ厚のバ
ラツキ、メッキ厚の調整に若干の影響を与えるが、線径
としては0.3閣〜0.03mn+、線速300m/分
〜1500m/分、溶融Sn温度250°C〜350°
Cの条件の適当な組み合ね一ロで行なうと好結果が得ら
れる。
In addition, the wire diameter, wire speed, temperature of molten Sn, etc. have a slight effect on variations in plating thickness and adjustment of plating thickness, but the wire diameter is 0.3 mm to 0.03 mn+, and the wire speed is 300 m/min. 1500m/min, molten Sn temperature 250°C to 350°
Good results can be obtained by appropriately combining conditions C.

本発明は上記したようにSnメッキ部に角度を付け、溶
融Snの流れつくり、この溶融Snの流れと反対方向に
線を走行させてメッキを行なうことにより、線の進行方
向と同じ方向の溶融Snの流れがないため、長手方向メ
ッキ厚のバラツキの少ないメッキ線が得られるものであ
る。
As described above, the present invention angles the Sn plating part, creates a flow of molten Sn, and performs plating by running a wire in the opposite direction to the flow of the molten Sn. Since there is no flow of Sn, a plated wire with little variation in longitudinal plating thickness can be obtained.

また本発明は常にフィルターを通ったSnが供給される
完全循環方式なので長時間メッキを行なっても品質の良
いメッキ線を製造できる。
Furthermore, since the present invention uses a complete circulation method in which Sn that has passed through a filter is always supplied, high-quality plated wire can be manufactured even if plating is performed for a long time.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

実施例1 第1図に示すような装置を用い、水平に対して10’、
20°、30°の角度を付けて、線径が0.16.0.
10.0.05maφの3種類の線について、線速50
0m/分、溶融Sn温度270″CとしてSnメッキを
行なった。
Example 1 Using an apparatus as shown in FIG.
With angles of 20° and 30°, the wire diameter is 0.16.0.
10. Line speed 50 for three types of wires of 0.05maφ
Sn plating was performed at a speed of 0 m/min and a molten Sn temperature of 270''C.

実施例2 第3図に示すような装置を用い、水平に対してlOo、
20°、30°の角度を付けて、線径が0.16.0.
10.0.05+mφの3種類の線について、線速50
0m/分、溶融Sn温度270°CとしてSnメッキを
行なった。
Example 2 Using an apparatus as shown in Fig. 3, lOo relative to the horizontal
With angles of 20° and 30°, the wire diameter is 0.16.0.
10. Line speed 50 for three types of wires of 0.05 + mφ
Sn plating was performed at a speed of 0 m/min and a molten Sn temperature of 270°C.

このようにして作製したSnメッキ線と従来の方法によ
り作製したSnメッキ線のメンキ厚さ均一性、5000
m間隔でメッキ厚さを測定したときのバラツキおよび1
断線当たりのメッキ量について比較を行なった結果を第
1表に示した。なおメッキ厚は定電流アノード溶解法に
より測定し、メッキの均一性は過硫酸アンモン法により
測定を行なった。この均一性は点の小さい方が良好なこ
とを示す。
The coating thickness uniformity of the Sn-plated wire produced in this way and the Sn-plated wire produced by the conventional method was 5000.
Variation when measuring plating thickness at m intervals and 1
Table 1 shows the results of a comparison regarding the amount of plating per wire breakage. The plating thickness was measured by a constant current anodic dissolution method, and the uniformity of plating was measured by an ammonium persulfate method. The smaller the dots, the better the uniformity.

?EE2)メッキ厚のバラツキ:5000mおきに1点
測定の計10点第1表から明らかなように、Na 1−
k 1 Bの本発明によるものは、Snのメッキ厚が薄
く、しかも均一性をそこねることなくメッキすることが
できる。また長手方向のメッキ厚の変動もNo、 19
〜Na24の従来方法によるものに比べ優れており、さ
らに1断線当たりのメッキ量についても本発明によるも
のが優れていることが判る。
? EE2) Variation in plating thickness: 10 points in total, measured once every 5000 m As is clear from Table 1, Na 1-
The k 1 B according to the present invention has a thin Sn plating thickness and can be plated without impairing uniformity. Also, there was no variation in the plating thickness in the longitudinal direction.19
It can be seen that the results are superior to those obtained by the conventional method of ~Na24, and the amount of plating per wire breakage is also superior to that of the present invention.

〔効果〕〔effect〕

以上に説明したように本発明によれば高品質で長手方向
の品質の変動の小さいSnメッキ線が得られるものであ
り工業上顕著な効果を奏するものである。
As explained above, according to the present invention, it is possible to obtain a Sn-plated wire of high quality and with small fluctuations in quality in the longitudinal direction, and it has a significant industrial effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は本発明の一実施例を示す正面図、
第2図は第1図の側面図、第4図および第5図は従来の
溶融Snメッキ方法を示す正面図である。 1・・・メッキ槽、2・・・溶融Sn、   3・・・
ターンロール、 4・・・線、 5・・・絞りダイス、
 6・・・凹溝。
FIG. 1 and FIG. 3 are front views showing one embodiment of the present invention;
FIG. 2 is a side view of FIG. 1, and FIGS. 4 and 5 are front views showing a conventional hot-dip Sn plating method. 1... Plating tank, 2... Molten Sn, 3...
Turn roll, 4... wire, 5... drawing die,
6...concave groove.

Claims (1)

【特許請求の範囲】[Claims]  Snメッキ部に角度を付けて溶融Snの流れをつくり
、この溶融Snの流れと反対方向に線を走行させてメッ
キを行なうことを特徴とする溶融Snメッキ線の製造方
法。
A method for producing a molten Sn-plated wire, characterized in that the Sn-plated part is angled to create a flow of molten Sn, and the wire is plated by running in the opposite direction to the flow of the molten Sn.
JP29436788A 1988-11-21 1988-11-21 Production of hot dip sn coated wire Pending JPH02141564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29436788A JPH02141564A (en) 1988-11-21 1988-11-21 Production of hot dip sn coated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29436788A JPH02141564A (en) 1988-11-21 1988-11-21 Production of hot dip sn coated wire

Publications (1)

Publication Number Publication Date
JPH02141564A true JPH02141564A (en) 1990-05-30

Family

ID=17806794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29436788A Pending JPH02141564A (en) 1988-11-21 1988-11-21 Production of hot dip sn coated wire

Country Status (1)

Country Link
JP (1) JPH02141564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083969A1 (en) * 2001-04-03 2002-10-24 Centre De Recherches Metallurgiques, A.S.B.L. Method and device for dip coating a metal strip

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128540A (en) * 1977-04-18 1978-11-09 Kawasaki Steel Co Preparation of one side surface melting zinc plating steel plate
JPS53128541A (en) * 1977-04-18 1978-11-09 Kawasaki Steel Co Method of plating melted zinc on one side surface of steel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128540A (en) * 1977-04-18 1978-11-09 Kawasaki Steel Co Preparation of one side surface melting zinc plating steel plate
JPS53128541A (en) * 1977-04-18 1978-11-09 Kawasaki Steel Co Method of plating melted zinc on one side surface of steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002083969A1 (en) * 2001-04-03 2002-10-24 Centre De Recherches Metallurgiques, A.S.B.L. Method and device for dip coating a metal strip
BE1014093A3 (en) * 2001-04-03 2003-04-01 Ct Rech Metallurgiques Asbl PROCESS AND DISPSOTIVE FOR COATING A METAL STRIP WITH HARDENING.

Similar Documents

Publication Publication Date Title
EP2067560B1 (en) System for manufacturing a base wire for an electrode wire for wire electrodischarge machining
US5551981A (en) Apparatus to galvanize a ferrous substrate
JPH03100154A (en) Production of alloying hot dip galvanized steel strip
JPH02141564A (en) Production of hot dip sn coated wire
JP2644911B2 (en) Wire-type electrode for electric discharge machining and method of manufacturing the same
JPS63156023A (en) Process and apparatus for producing float glass
US2320129A (en) Metal coating
JPS6244563A (en) Manufacture of hot dip zinc-aluminum alloy coated steel wire
US3687105A (en) Apparatus for finishing metallic coating on a ferrous strand
JPH09256131A (en) Method for adjusting spangle of continuously hot dip galvanized steel strip
JP2602868B2 (en) Manufacturing method of alloyed galvanized steel sheet
JPH0362786B2 (en)
JP2967328B2 (en) Manufacturing method of hot-dip wire
JPH02259056A (en) Production of hot dip tinned wire
JPH05287491A (en) Method for producing hot dip coated wire and apparatus therefor
JP2002294421A (en) Method for manufacturing hot-dip metal plated steel sheet with alloyed layer having adequate sliding property
JP3465729B2 (en) Manufacturing method and manufacturing apparatus for hot-dip galvanized steel sheet
RU2130514C1 (en) Method of chromium plating of plungers and plunger pairs and device for its embodiment
JPH0293054A (en) Production of hot dip galvanized steel sheet
JP2000198027A (en) Electrode wire for electric discharge machining and manufacture of it
KR100494095B1 (en) Method for Manufacturing Zinc-Nickel Alloy Plating Steel Sheet Having Superior Low Temperature Chipping Resistance
JPH0726360A (en) Production of low surface roughness galvannealed steel sheet
JPH02228494A (en) Production of zinc alloy electroplated steel sheet
JPS6360825B2 (en)
JPH0483860A (en) Method for regulating surface roughness of galvannealed steel sheet