JPH02141560A - Ferrous ceramic material and its manufacture - Google Patents

Ferrous ceramic material and its manufacture

Info

Publication number
JPH02141560A
JPH02141560A JP29323688A JP29323688A JPH02141560A JP H02141560 A JPH02141560 A JP H02141560A JP 29323688 A JP29323688 A JP 29323688A JP 29323688 A JP29323688 A JP 29323688A JP H02141560 A JPH02141560 A JP H02141560A
Authority
JP
Japan
Prior art keywords
molten metal
cementite
iron
carbon
foams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29323688A
Other languages
Japanese (ja)
Other versions
JP2813760B2 (en
Inventor
Yutaka Kawano
川野 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29323688A priority Critical patent/JP2813760B2/en
Publication of JPH02141560A publication Critical patent/JPH02141560A/en
Application granted granted Critical
Publication of JP2813760B2 publication Critical patent/JP2813760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture the title material having dispersed non-oriented cementite crystals and having high strength at low cost by dispersing fine foams in micron order into a molten metal contg. iron and specific amt. of carbon and thereafter cooling it. CONSTITUTION:Fine foams in micron order are formed to disperse into a molten metal contg. iron and, by weight, 3 to 6% C preferably into about <=10 micron distance of foams. The above foams can be formed by rising the temp. of the molten metal to the high one of about >=1600 deg.C with a crucible made of SiO2, bringing C in the molten metal into reaction with SiO2 in the crucible and generating a CO gas. The molten metal having the above dispersed fine foams is cooled. ln this way, the ferrous ceramic material having high strength, excellent wear resistance and toughness which is constituted of 3.0 to 5.5% C, 2.0 to 28.0% Cr and Fe and has dispersed cementite as non-oriented fine crystals of <=100 micron average grain size can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は耐摩耗部品等として使用することのできるセラ
ミック材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to ceramic materials that can be used as wear-resistant parts and the like.

[従来技術] 耐熱性、耐摩耗性を有するセラミック材料として、アル
ミナ等の酸化物をはじめ各種の炭化物、ホウ化物、ケイ
化物を主成分とする材料が広く使用されている。
[Prior Art] As heat-resistant and wear-resistant ceramic materials, materials whose main components include oxides such as alumina, as well as various carbides, borides, and silicides are widely used.

[発明が解決しようとする課題] 従来のセラミック材料は、いずれもすぐれた耐熱性や耐
摩耗性を有しているが、一般に原料が高価であり、製造
コストも高いものとなっていた。
[Problems to be Solved by the Invention] All conventional ceramic materials have excellent heat resistance and wear resistance, but the raw materials are generally expensive and the manufacturing cost is also high.

また、従来のセラミックスは、−旦使用したものを再生
使用することは殆んど不可能であった。
Furthermore, it has been almost impossible to reuse conventional ceramics once they have been used.

本発明は、耐摩耗部品等として使用可能な適耐摩耗性と
靭性を有し、しかも製造が容易で製造コストも安い実用
性に富んだセラミック材料を提供するものである。
The present invention provides a highly practical ceramic material that has appropriate wear resistance and toughness that can be used as wear-resistant parts, is easy to manufacture, and has low manufacturing costs.

[課題を解決するための手段] 本発明にかかる鉄系セラミック材料は、鉄と、重量比で
3.0〜5.5%の炭素と2.0〜28.0%のクロム
を含有し、セメンタイトが平均粒径100ミクロン以下
の無方向性微細結晶として分散していることを特徴とし
ている。
[Means for Solving the Problems] The iron-based ceramic material according to the present invention contains iron, 3.0 to 5.5% carbon and 2.0 to 28.0% chromium by weight, It is characterized in that cementite is dispersed as non-directional fine crystals with an average grain size of 100 microns or less.

また、本発明にかかる鉄系セラミック材料の製法は、鉄
と、重量比で3〜6%の炭素を含む溶湯中にミクロンオ
ーダーの微細な気泡を生成分散せしめた後冷却して無方
向性セメンタイト結晶を有するセラミック材料を得るこ
とを特徴とするものである。
In addition, the method for manufacturing the iron-based ceramic material according to the present invention involves generating and dispersing fine bubbles on the order of microns in a molten metal containing iron and 3 to 6% carbon by weight, and then cooling it to form non-oriented cement. This method is characterized by obtaining a ceramic material having crystals.

従来、鉄と炭素の合金で工業的に利用されていたのは主
として炭素量が3%以下のものであり、これよりも炭素
の多いものは殆んど使われていなかった。また、鉄−炭
素系の合金において黒鉛を多量に析出させることなく炭
素量を増やすことは困難であり、工業的には殆んど不可
能であった。
Conventionally, alloys of iron and carbon that have been used industrially have mainly had a carbon content of 3% or less, and alloys with a higher carbon content have rarely been used. Furthermore, it is difficult to increase the amount of carbon in iron-carbon alloys without precipitating a large amount of graphite, and this has been almost impossible from an industrial perspective.

本発明者は、従来工業的にあまり利用されていなかった
高炭素域に注目し、種々研究を行なった結果、これら高
炭素域で耐摩耗性および強度的にすぐれた実用的なセラ
ミックスが得られることを見出して本発明を完成したも
のである。以下、これについて詳細に説明する。
The present inventor focused on the high carbon range, which has not been used industrially in the past, and conducted various studies, and as a result, it was possible to obtain practical ceramics with excellent wear resistance and strength in these high carbon ranges. The present invention was completed by discovering this. This will be explained in detail below.

先ず、鉄−炭素系において多量の黒鉛を析出することな
く結合炭素量を増加させる方法が問題となるが、この問
題は適当なセメンタイト安定化元素例えばクロム(Cr
)を添加することによって解決されることがわかった。
First, the problem is how to increase the amount of bonded carbon in iron-carbon systems without precipitating large amounts of graphite.
) was found to be solved by adding.

その理由としては、クロムは熱力学的に炭素(C)の活
量を低下させるので、炭素量が多くなっても黒鉛として
析出しにくくなることが考えられる。
One possible reason for this is that chromium thermodynamically lowers the activity of carbon (C), so even if the amount of carbon increases, it becomes difficult to precipitate as graphite.

本発明のセラミック材料は、上述の如く鉄と炭素を主要
成分とするものであり、上記範囲すなわち炭素量3.0
%(重量%、以下同じ)〜5.5%では炭素量が多いぼ
どセメンタイトの量が多くなり、逆に炭素量が少なくな
るほどレーデブライト量が多くなる。炭素量のより好ま
しい範囲は4.5〜5,3%であり、この範囲ではセメ
ンタイトとレーデブライトの混合組織となる。
The ceramic material of the present invention has iron and carbon as main components as described above, and has a carbon content in the above range, that is, 3.0
% (weight %, the same applies hereinafter) to 5.5%, the higher the carbon content, the higher the amount of cementite, and conversely, the lower the carbon content, the higher the amount of ledebrite. A more preferable range of carbon content is 4.5 to 5.3%, and in this range a mixed structure of cementite and ledebrite is obtained.

黒鉛の晶出量は、少ない方がよく、理想的には0%であ
るのが望ましが、0.3%以下なら実用上許容され、0
.05%以下にするのが特に好ましい。
The smaller the amount of graphite crystallized, the better, ideally 0%, but 0.3% or less is practically acceptable and 0%.
.. It is particularly preferable to set it to 0.5% or less.

なお、用途によっては黒鉛の量がこれより若干多くても
よい。
Note that depending on the application, the amount of graphite may be slightly larger than this.

上記クロム以外の添加物として、必要に応じて他の元素
、例えばモリブデン(MO)、バナジウム(V)、タン
グステン(W)、マンガン(Mn)、ホウ素(B)等の
1種または2種以上を添加することができる。これらは
いずれもセメンタイトの安定化元素であり、炭素が黒鉛
として析出することを助+l=−する。
As additives other than the above chromium, one or more other elements such as molybdenum (MO), vanadium (V), tungsten (W), manganese (Mn), boron (B), etc. may be added as necessary. Can be added. All of these are cementite stabilizing elements and promote the precipitation of carbon as graphite.

上記添加元素のうち、クロム(Cr)は90%程度まで
セメンタイト中に溶解する元素であり、セメンタイト化
に特に効果的な元素である。これが少ないとセメンタイ
トができにくいのみならず、得られるセラミックスの高
温での安定性が悪くなる。
Among the above additive elements, chromium (Cr) is an element that dissolves in cementite up to about 90%, and is an element that is particularly effective in forming cementite. When this amount is small, not only is it difficult to form cementite, but also the stability of the obtained ceramics at high temperatures becomes poor.

逆にクロムの添加量が多すぎると製品が脆くなるととも
に、原料コストが高くなる。クロムの好ましい添加量は
2.0〜28%であり、4〜lO%とするのが特に好ま
しい。
On the other hand, if too much chromium is added, the product becomes brittle and raw material costs increase. The preferred amount of chromium added is 2.0 to 28%, particularly preferably 4 to 10%.

モリブデン(Mo)は高温であらかじめM。Cを生成す
るためセメンタイト中に溶解しにくい元素で、単独では
クロムを単独で添加した場合とあまり差がないが、クロ
ムと共に添加した場合は室温および1000℃以下の高
温における硬度を上昇させ、耐摩耗性および高温強度を
著しく増加させる。高温強度を増加させるので、高温(
例えば1100℃)での塑性加工に対しては多量のモリ
ブデンの添加は好ましくないと考えられる。モリブデン
の好ましい添加量は0〜IO%であり、0.3〜5.0
%とするのがより好ましく、0,5〜2%とするのがさ
らに好ましい。上記範囲中、モリブデン添加量が少なく
なると耐摩耗性、高温強度、耐蝕性が減少する傾向があ
り、多くなりすぎると原料コストが高くなるとともに、
靭性を劣化させる傾向がある。
Molybdenum (Mo) becomes M in advance at high temperature. It is an element that is difficult to dissolve in cementite because it forms C. When added alone, there is not much difference from adding chromium alone, but when added together with chromium, it increases the hardness at room temperature and high temperatures below 1000℃, and increases the resistance. Significantly increases abrasion resistance and high temperature strength. High temperature (
For example, it is considered that addition of a large amount of molybdenum is not preferable for plastic working at 1100°C. The preferred amount of molybdenum added is 0 to IO%, and 0.3 to 5.0%.
%, and even more preferably 0.5 to 2%. Within the above range, if the amount of molybdenum added decreases, wear resistance, high temperature strength, and corrosion resistance tend to decrease, and if it increases too much, the raw material cost increases,
It tends to deteriorate toughness.

バナジウム(V)はセメンタイトによく溶ける元素で、
単独ではクロム単独の場合と殆んど差がなく、しかも場
合によっては黒鉛を少量析出する傾向がある。製品中に
黒鉛が析出すると、耐摩耗性と強度を低下させるほか、
黒鉛と鉄の界面が侵され易いため耐蝕性が低下する。ク
ロムと共同ではセメンタイトの形状を改善し結晶の針状
化を促進する。バナジウムの好ましい範囲は0〜lO%
、より好ましい範囲は0〜9,0%、さらに好ましくは
0〜7.0%であり、この範囲内でバナジウムの量が少
なければ耐摩耗性、耐蝕性、高温強度が低下する傾向が
あり、多くなると原料コストが上昇する。なお、靭性は
バナジウムが多い方が向上する傾向がある。
Vanadium (V) is an element that dissolves well in cementite.
When used alone, there is almost no difference from chromium alone, and in some cases there is a tendency to precipitate a small amount of graphite. If graphite precipitates in products, it will reduce wear resistance and strength, and
Corrosion resistance decreases because the interface between graphite and iron is easily attacked. In collaboration with chromium, it improves the shape of cementite and promotes the formation of needle-like crystals. The preferred range of vanadium is 0-10%
A more preferable range is 0 to 9.0%, and even more preferably 0 to 7.0%, and if the amount of vanadium is small within this range, wear resistance, corrosion resistance, and high temperature strength tend to decrease. If the amount increases, the raw material cost will increase. Note that the toughness tends to improve as the amount of vanadium increases.

タングステン(W)は単独ではクロムとほぼ同様の効果
を示し、クロムと共同ではモリブデンの場合と同様な傾
向を示す。タングステンの好ましい範囲は0〜10%、
より好ましくは0〜:160%、さらに好ましくは2±
0.5%前後であり、少ないほど耐摩耗性、耐蝕性、高
温強度が低下する傾向があり、多いほど原料コストが高
くなり、靭性を劣化させる傾向を示す。
Tungsten (W) alone shows almost the same effect as chromium, and together with chromium shows the same tendency as molybdenum. The preferred range of tungsten is 0-10%,
More preferably 0 to 160%, still more preferably 2±
It is around 0.5%, and the smaller the content, the lower the abrasion resistance, corrosion resistance, and high-temperature strength, and the higher the content, the higher the raw material cost and the tendency to deteriorate the toughness.

ホウ素(B)は、単独添加ではあまり効果は期待できず
、製品が硬くなりすぎるというおそれがあるが、クロム
と共同ではセメンタイトの結晶を微細化し、靭性を向上
させる効果がある。クロムだけではなく、例えばクロム
とモリブデン、クロムとバナジウム等と共に添加する場
合も同様である。ホウ素の好ましい添加量は、0〜1.
0%、より好ましくは0〜0.5%、さらに好ましくは
0.1±0.05%であり、少なすぎると結晶微細化作
用が充分ではなく、多すぎるときわめて脆くなる。
Boron (B) cannot be expected to have much effect when added alone, and there is a risk that the product will become too hard, but when combined with chromium, it has the effect of making cementite crystals finer and improving toughness. The same applies when adding not only chromium but also chromium and molybdenum, chromium and vanadium, etc. The preferred amount of boron added is 0 to 1.
The content is 0%, more preferably 0 to 0.5%, and even more preferably 0.1±0.05%. If it is too small, the crystal refining effect will not be sufficient, and if it is too large, it will become extremely brittle.

上記のほかの添加元素としては、ニッケル(Ni)があ
る。ニッケルは耐熱性向上のために添加するもので、特
にバナジウムを添加した場合に耐熱性の低下を防止する
ためこれを添加しておくのが好ましい。ニッケルの添加
量は0〜9%が好ましく0〜7%がより好ましい。また
、鋳造、熱間割れ防止のため燐(P)を0.3±0.2
%添加するのが好ましい。
Nickel (Ni) is an additional element other than those mentioned above. Nickel is added to improve heat resistance, and it is particularly preferable to add nickel to prevent a decrease in heat resistance when vanadium is added. The amount of nickel added is preferably 0 to 9%, more preferably 0 to 7%. In addition, 0.3±0.2 phosphorus (P) is added to prevent casting and hot cracking.
It is preferable to add %.

なお、微細化又は黒鉛晶出防止用の元素として、0.1
%以下のTe又はBiを使用することができる。また、
これらの添加元素の他にセメンタイトの安定化を阻害し
ない他の元素、例えばレニウム(Re)、ニオブ(Nb
)、タンタル(Ta)、テクネチウム(Tc)等を添加
してもよい。さらに、実用上支障をきたさない程度であ
れば、他の元素を含有してもよく、さらには不可避的に
混入する不純物や前述の如く少量の黒鉛が存在してもよ
い。
In addition, as an element for refining or preventing graphite crystallization, 0.1
% or less of Te or Bi can be used. Also,
In addition to these additive elements, other elements that do not inhibit the stabilization of cementite, such as rhenium (Re) and niobium (Nb), may be added.
), tantalum (Ta), technetium (Tc), etc. may be added. Furthermore, other elements may be contained as long as they do not pose a practical problem, and furthermore, impurities that are unavoidably mixed in or a small amount of graphite as described above may be present.

つぎに、黒鉛球状化剤について述べれば、このセラミッ
ク材料で析出する黒鉛を球状化するには、セリウム(に
e)、  ミツシュメタル(Misha+etal)、
カルシウム(Ca)およびカルシウムシリコン(Cas
i)のうち1種又は2種以上を溶湯に添加するのが有効
であった。ミツシュメタルは天然に産出するセリウムと
ランタン(La)の比較的安価な合金であり、セリウム
の含有量が大体40〜90%程度である。また、カルシ
ウムシリコンはカルシウムの含有量が30〜35%程度
であり残部はほぼシリコンである。
Next, regarding graphite spheroidizing agents, in order to spheroidize the graphite precipitated with this ceramic material, cerium (nie), Mitsushi metal (Misha + etal),
Calcium (Ca) and calcium silicon (Cas
It was effective to add one or more of i) to the molten metal. Mitshu metal is a relatively inexpensive alloy of naturally occurring cerium and lanthanum (La), and the cerium content is approximately 40 to 90%. Further, calcium silicon has a calcium content of about 30 to 35%, and the remainder is almost silicon.

これらの黒鉛球状化剤の添加量については、セリウムの
場合は0.005〜1.0%とするのが好ましく、0.
4〜0.8%とするのがさらに好ましかった。ミツシュ
メタルの好ましい添加量もセリウムと同様である。これ
は、セリウムと同じ稀有元素であるランタン(La)に
もセリウムと同様な効果があるためであると考えられる
。セリウムは水素(H2)を吸蔵しており、これを溶湯
に添加したときにこの水素ガスを気泡として放出するの
で、この気泡の中に黒鉛が球状に析出するのてあろうと
考えられる。また、カルシウムシリコンの添加量は0.
1i〜1.2%とするのが好ましかった。カルシウム単
体で添加する場合は上記カルシウムシリコン中のカルシ
ウム含有量に見合うだけの量を添加すればよい。しかし
ながら、カルシウム単体で添加するよりも、カルシウム
シリコンの形で添加する方が好ましかった。溶湯中に気
泡を発生させるためには、融点が高く溶鉄にとけにくい
カルシウムの方が効果的である。
The amount of these graphite nodularizing agents added is preferably 0.005 to 1.0% in the case of cerium, and 0.005 to 1.0%.
More preferably, the content was 4 to 0.8%. The preferable addition amount of Mitsushi metal is also the same as that of cerium. This is thought to be because lanthanum (La), which is the same rare element as cerium, has the same effect as cerium. Cerium stores hydrogen (H2), and when it is added to the molten metal, it releases this hydrogen gas in the form of bubbles, so it is thought that graphite is precipitated in spherical shapes within these bubbles. In addition, the amount of calcium silicon added was 0.
The content was preferably 1i to 1.2%. When calcium is added alone, it may be added in an amount corresponding to the calcium content in the calcium silicon. However, it was more preferable to add calcium in the form of silicon than to add calcium alone. Calcium, which has a high melting point and is difficult to dissolve in molten iron, is more effective in generating bubbles in molten metal.

前述の如く、これら黒鉛球状化剤は単独で又は2種以上
を組合わせて添加することができる。このうち、セリウ
ムを含むものとカルシウムを含むものとを組合わせて添
加するのがより好ましく、なかではミツシュメタルとカ
ルシウムシリコンの組合わせが最も効果的であった。
As mentioned above, these graphite spheroidizing agents can be added alone or in combination of two or more. Among these, it is more preferable to add a combination of cerium-containing and calcium-containing substances, and among them, the combination of Mitsushi metal and calcium silicon was the most effective.

これら黒鉛球状化剤は、例えば粒状のものを紙につつん
で1700℃以上の溶湯中につつ込みホスホライザーで
溶湯中に速やかに添加する。このとき、添加した球状化
剤が蒸発するので、手早く鋳造するのが好ましい。得ら
れた鉄系セラミック材料には、少量の球状化黒鉛が析出
するが、この球軟化黒鉛の周囲には薄いFeの層が形成
されるので、ここでクラックの伝播が阻止される結果強
度が向上するのであろうと推測される。
These graphite spheroidizing agents are, for example, wrapped in granular paper and inserted into a molten metal at 1700° C. or higher, and then quickly added to the molten metal using a phosphorizer. At this time, since the added spheroidizing agent evaporates, it is preferable to cast quickly. A small amount of spheroidized graphite precipitates in the obtained iron-based ceramic material, but a thin Fe layer is formed around this spheroidal softened graphite, which prevents crack propagation and improves strength. It is assumed that this will improve.

この鉄系セラミック材料は、所望の配合の溶湯を鋳型に
鋳造することによって得られる。この場合、0.8%以
上、好ましくは1%以上の脱炭が生じるような条件とす
るのが良い。このような比較的大きい脱炭が生じたとき
に、微細な無方向性のセメンタイトが分散した所望の組
織(A組織と呼ぶ)が得られた。
This iron-based ceramic material is obtained by casting a molten metal having a desired composition into a mold. In this case, the conditions should be such that decarburization occurs by 0.8% or more, preferably 1% or more. When such relatively large decarburization occurred, a desired structure (referred to as A structure) in which fine non-oriented cementite was dispersed was obtained.

この理由は、脱炭が生じると炭素と酸素の化合物である
一酸化炭素(CO)が発生するが、この気泡の外周部に
おける液体(溶湯)と気体との界面に大きなエネルギー
落差が生じ、この界面にセメンタイトが晶出しやすくな
るためであろうと考えられる。すなわち、セメンタイト
は一方向に伸びやすく、大きな気泡の場合はこれを貫ぬ
いて成長してゆくと思われるが、気泡の界面エネルギー
は半径の2乗に逆比例するので、原子サイズの気泡のよ
うに気泡が小さい場合(例えばオンダストローム単位)
は、前記界面にセメンタイトの初晶が析出し、これが気
泡の内部に向って求心的な成長を遂げて気泡内部につま
ると考えられる。そして、これか核となって成長するの
で、方向性の殆ど無い球状に近いセメンタイト結晶が得
られると考えられる。この意味では、気泡は小さいほど
好ましく、しかも微細な気泡が溶湯中に高密度に分散し
ているのが好ましい。例えば、気泡の好ましい大きさは
5ミクロン以下、より好ましくは1ミクロン以下であり
、気泡間の間隔は10ミクロン以下であるのが好ましい
The reason for this is that when decarburization occurs, carbon monoxide (CO), which is a compound of carbon and oxygen, is generated, but a large energy drop occurs at the interface between the liquid (molten metal) and the gas at the outer periphery of the bubble. This is thought to be because cementite tends to crystallize at the interface. In other words, cementite tends to stretch in one direction, and if it is a large bubble, it will likely grow through it, but since the interfacial energy of a bubble is inversely proportional to the square of the radius, If the bubbles are small (e.g. ondastrom units)
It is considered that primary crystals of cementite precipitate at the interface, grow centripetally toward the inside of the bubble, and become stuck inside the bubble. Since this crystal grows as a nucleus, it is thought that nearly spherical cementite crystals with almost no directionality can be obtained. In this sense, the smaller the bubbles, the better, and it is preferable that the fine bubbles are dispersed in the molten metal at a high density. For example, the preferred size of the bubbles is 5 microns or less, more preferably 1 micron or less, and the spacing between the bubbles is preferably 10 microns or less.

このような気泡を発生させる方法としては、溶湯中で炭
素と結合してCOガスを発生する酸素を供給する必要が
ある。例えば高温で炭素と反応してCOを発生する材料
を溶湯に接触させる方法がある。具体的には、シリカ5
i02製のルツボで溶融し、1600℃以上より好まし
くは1700℃以上の高温に保持すれば、ルツボの5i
n2と溶湯中の炭素が反応して発生期のCOを発生する
。このほかに、溶湯中に酸素を吹込む方法や、他の酸素
化合物と溶湯を反応させる方法等も考えられる。酸化化
合物と溶湯を反応させてCO気泡を発生させる場合は、
その反応に充分な温度、例えば1700℃以上で一旦保
持することが必要である。
In order to generate such bubbles, it is necessary to supply oxygen that combines with carbon in the molten metal to generate CO gas. For example, there is a method in which a material that reacts with carbon to generate CO at high temperatures is brought into contact with the molten metal. Specifically, silica 5
If melted in a crucible made of i02 and maintained at a high temperature of 1600°C or higher, preferably 1700°C or higher, the 5i of the crucible
n2 and carbon in the molten metal react to generate nascent CO. Other possible methods include blowing oxygen into the molten metal and reacting the molten metal with other oxygen compounds. When generating CO bubbles by reacting oxidized compounds with molten metal,
It is necessary to temporarily maintain the temperature at a temperature sufficient for the reaction, for example, 1700° C. or higher.

[実施例] つぎに、本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

炭素添加量を種々に変化させたものをS i02のルツ
ボ中で溶融し鋳造した。使用した遠心鋳造装置の例を第
1図に示す。この鋳造装置1は回転軸2に水平方向に突
設した一方の支持部材3にルツボ4と鋳型5が支持され
ており、両者の間には耐火性リング6が介装されている
。ルツボ4の外周部には高周波誘導加熱用のコイル7が
捲回され、ルツボ4の上部開口部は石英ドーム8によっ
て覆蓋されている。ルツボ4の内部には外部からのアル
ゴンガスが回転軸2の芯部を通って供給される。
Materials with various amounts of added carbon were melted and cast in a Si02 crucible. An example of the centrifugal casting apparatus used is shown in Fig. 1. In this casting apparatus 1, a crucible 4 and a mold 5 are supported by one support member 3 that projects horizontally from a rotating shaft 2, and a refractory ring 6 is interposed between the two. A coil 7 for high-frequency induction heating is wound around the outer periphery of the crucible 4, and the upper opening of the crucible 4 is covered with a quartz dome 8. Argon gas from the outside is supplied into the crucible 4 through the core of the rotating shaft 2 .

回転軸2に突設した他方の支持部材9にはカウンターウ
ェイトlOが取り付けられている。回転軸2はモータ1
1によって回転駆動され、ルツボ4内で溶解した原料が
遠心鋳造される。1回のチャージ量は30gであり、1
600℃以上で100秒以上保持したのち、200秒以
内で鋳造した。
A counterweight IO is attached to the other support member 9 protruding from the rotating shaft 2. Rotating shaft 2 is motor 1
1, and the raw material melted in the crucible 4 is centrifugally cast. The amount of charge per time is 30g, and 1
After holding the temperature at 600° C. or higher for 100 seconds or more, it was cast within 200 seconds.

第2図および第3図は使用した金型の例をあられすもの
で、第2図は純銅製の大気溶解用金型を、第3図は銅−
クロム合金製の遠心鋳造用金型をそれぞれあられす。第
2図においてTは12mm。
Figures 2 and 3 show examples of the molds used. Figure 2 is a pure copper mold for atmospheric melting, and Figure 3 is a copper mold.
Each is a centrifugal casting mold made of chromium alloy. In Figure 2, T is 12 mm.

Wは52mm、 Lは200mm、  Aは160mm
、  Bは40m+e。
W is 52mm, L is 200mm, A is 160mm
, B is 40m+e.

Cは20mmであった。また、第3図においてAは44
mm、 Bは24mm、 Cは10mm、 Dは54m
m、 Eは20m+a。
C was 20 mm. Also, in Figure 3, A is 44
mm, B is 24mm, C is 10mm, D is 54m
m, E is 20m+a.

Fは70mm、 Gは53mmであフだ。鋳型としては
金型の他に砂型も使用した。なお、図中鎖線で示したF
はセラミックホームフィルタ(ジルコニアZ「02製)
であり、溶湯はこのフィルターを通って鋳込まれるので
、酸化物等の不純物が除去される。
F is 70mm and G is 53mm. In addition to metal molds, sand molds were also used as molds. In addition, F indicated by the chain line in the figure
is a ceramic home filter (made by Zirconia Z "02")
Since the molten metal is cast through this filter, impurities such as oxides are removed.

得られたテストピースの顕微鏡組織を第4図および第5
図に示す。第4図は本発明品の組織(A組織)をあられ
し、第5図は比較例の組織(C組織)をあられす。これ
らの写真中、白いのはセメンタイト(Fe3G)であり
、灰色のものはレーデブライトである。第5図のC組織
ではセメンタイトが細長く一方向に伸びているが、第4
図のへ組織ではセメンタイトが微細でほぼ球状となって
おり、C組織のような方向性がないことがわかる。
The microstructure of the obtained test piece is shown in Figures 4 and 5.
As shown in the figure. FIG. 4 shows the structure of the product of the present invention (Tissue A), and FIG. 5 shows the structure of the comparative example (Tissue C). In these photographs, the white part is cementite (Fe3G), and the gray part is ledebrite. In structure C in Figure 5, cementite is elongated and extends in one direction, but
In the C structure shown in the figure, the cementite is fine and almost spherical, and it can be seen that there is no directionality as in the C structure.

このような方向性のないセメンタイトは従来全く認めら
れていなかったもので、本発明によって初めて得られた
ものである。この無方向性かつ微細なセメンタイトによ
り高強度が得られることが容易に推察される。また、レ
ーデブライトはセメンタイトに較べて靭性が高く、セメ
ンタイトを微細化することにより強度が向上する。なお
、ホウ素(B)を0.1%程度添加したものは粒径が細
かく、強度、靭性が向上するが、この粒径は鋳造後の冷
却速度によっても大きく影響されるので、所望の高性能
を得るためには、冷却速度の管理も大切である。
Cementite without such directionality has not been recognized at all in the past, and is the first to be obtained by the present invention. It is easily inferred that high strength can be obtained from this non-directional and fine cementite. Further, ledebrite has higher toughness than cementite, and its strength is improved by making cementite finer. In addition, those with approximately 0.1% boron (B) added have fine particle sizes and improve strength and toughness, but this particle size is also greatly affected by the cooling rate after casting, so it is difficult to achieve the desired high performance. In order to obtain this, it is also important to control the cooling rate.

第1表はこのようにして得られたセラミック材料の特性
を示すものであり、へ組織のものは抗折力が著しく向上
していることがわかる。このような靭性の高さは、従来
のセラミックスでは全く得られなかったものである。こ
のへ組織は、かなりの脱炭が生じた場合に得られること
がわかる。
Table 1 shows the characteristics of the ceramic materials thus obtained, and it can be seen that the transverse rupture strength of the ceramic materials having a hemi-textured structure is significantly improved. Such high toughness has never been achieved with conventional ceramics. It can be seen that this hemistructure is obtained when significant decarburization occurs.

また、第6図はへ組織のものとCIII!lのものの硬
度(ロックウェルCスケール)をあられすもので、へ組
織のものは炭素量が少なくても硬度が高いことがわかる
。さらに、第7図は炭素の初期添加量と脱炭量の関係を
あられすもので、へ組織のものの脱炭量がC組織のもの
の脱炭量より大きいことがわかる。これは、溶湯中にC
Oガスが生じたことを意味するものと考えられる。
Also, Figure 6 shows that of the He tissue and CIII! It can be seen that the hardness (Rockwell C scale) of the grain is high even if the carbon content is small. Furthermore, FIG. 7 shows the relationship between the initial addition amount of carbon and the amount of decarburization, and it can be seen that the amount of decarburization in the hemi-grain structure is greater than that in the C-structure. This is due to C in the molten metal.
This is thought to mean that O gas was generated.

第1表 [発明の効果] 以上の説明から明らかなように、本発明によれば、従来
全く得られなかった無方向性かつ微細なセメンタイト組
織とすることにより、高硬度かつ高強度の鉄系セラミッ
ク材料を得ることが可能となった。この材料は鉄と炭素
を主たる原料とするものであるから安価で製造が容易で
あり、しかも高温に加熱して酸素を吹き込むことにより
、容易に鉄を回収し、再使用することが可能である。
Table 1 [Effects of the Invention] As is clear from the above explanation, according to the present invention, by creating a non-directional and fine cementite structure that could not be obtained in the past, iron-based It became possible to obtain ceramic materials. Since this material uses iron and carbon as its main raw materials, it is cheap and easy to manufacture. Moreover, by heating it to high temperatures and blowing oxygen into it, the iron can be easily recovered and reused. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳造装置の説明図、第2図(a)。 (b)、(e)は使用した大気溶解用金型の平面図、場
よび一部を省略した正面図と側面図、第3図(a)、(
b)、(c)は遠心鋳造用金型の平面図、正面図、側面
図、第4図(a)、(b)、(e)および第5図(a)
、(b)、(c)は結晶組織をあられす顕微鏡写真、第
6図は硬度と炭素量との関係をあられすグラフ、第7図
は炭素添加量と脱炭量の関係をあられすグラフである。
FIG. 1 is an explanatory diagram of the casting apparatus, and FIG. 2(a). (b) and (e) are a plan view, a front view and a side view with the field and some parts omitted, and Figures 3 (a) and (
b) and (c) are a plan view, front view, and side view of the centrifugal casting mold, Fig. 4 (a), (b), (e), and Fig. 5 (a).
, (b) and (c) are micrographs showing the crystal structure, Figure 6 is a graph showing the relationship between hardness and carbon content, and Figure 7 is a graph showing the relationship between carbon addition amount and decarburization amount. It is.

Claims (2)

【特許請求の範囲】[Claims] (1)鉄と、重量比で3.0〜5.5%の炭素と、2.
0〜28.0%のクロムを含有し、セメンタイトが平均
粒径100ミクロン以下の無方向性微細結晶として分散
していることを特徴とする高強度を有する鉄系セラミッ
ク材料。
(1) Iron and 3.0 to 5.5% carbon by weight; 2.
An iron-based ceramic material containing 0 to 28.0% chromium and having high strength, characterized in that cementite is dispersed as non-oriented fine crystals with an average grain size of 100 microns or less.
(2)鉄と、重量比で3〜6%の炭素を含む溶湯中にミ
クロンオーダーの微細な気泡を生成分散せしめた後冷却
して無方向性セメンタイト結晶を有するセラミック材料
を得ることを特徴とする鉄系セラミック材料の製法。
(2) A ceramic material having non-oriented cementite crystals is obtained by generating and dispersing micron-order fine bubbles in a molten metal containing iron and 3 to 6% carbon by weight, and then cooling the metal. A manufacturing method for iron-based ceramic materials.
JP29323688A 1988-11-19 1988-11-19 Iron-based ceramic material and its manufacturing method Expired - Fee Related JP2813760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29323688A JP2813760B2 (en) 1988-11-19 1988-11-19 Iron-based ceramic material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29323688A JP2813760B2 (en) 1988-11-19 1988-11-19 Iron-based ceramic material and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH02141560A true JPH02141560A (en) 1990-05-30
JP2813760B2 JP2813760B2 (en) 1998-10-22

Family

ID=17792195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29323688A Expired - Fee Related JP2813760B2 (en) 1988-11-19 1988-11-19 Iron-based ceramic material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2813760B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146546A (en) * 2010-02-09 2011-08-10 徐州胜海机械制造科技有限公司 High-fluidity and high-abrasion resistant alloy material for solid material conveying pipe
CN104611620A (en) * 2015-02-16 2015-05-13 濮训春 Li feldspar composite ceramic enhanced steel-based material and preparation method thereof
CN104612965A (en) * 2014-11-26 2015-05-13 宁波市鸿博机械制造有限公司 Automobile steering pump rotor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146546A (en) * 2010-02-09 2011-08-10 徐州胜海机械制造科技有限公司 High-fluidity and high-abrasion resistant alloy material for solid material conveying pipe
CN104612965A (en) * 2014-11-26 2015-05-13 宁波市鸿博机械制造有限公司 Automobile steering pump rotor
CN104611620A (en) * 2015-02-16 2015-05-13 濮训春 Li feldspar composite ceramic enhanced steel-based material and preparation method thereof

Also Published As

Publication number Publication date
JP2813760B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
RU2449027C2 (en) Additives reducing steel grain size, manufacturing methods and use
US6053989A (en) Amorphous and amorphous/microcrystalline metal alloys and methods for their production
KR101158070B1 (en) Fe Based Amorphous Alloys with High Carbon Content by using hot pig iron and the manufacturing Method thereof
IE52603B1 (en) Process for the production of amorphous metal alloys based on iron,phosphorus,carbon and chromium
KR100615951B1 (en) Oxides dispersion steel and making process thereof
JPH02141560A (en) Ferrous ceramic material and its manufacture
JP2018044217A (en) Manufacturing method of hypoeutectic spheroidal graphite cast iron cast
JPH10317093A (en) High rigidity spheroidal graphite cast iron and its production
JPS586922A (en) Production of as-cast spheroidal graphite cast iron of pearlite case
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
US5547487A (en) Amorphous metal alloy and method of producing same
US8302667B2 (en) Cast iron semi-finished product excellent in workability and method of production of the same
JP2686499B2 (en) Manufacturing method of iron-based ceramic materials
JP2681125B2 (en) Iron-based ceramic material
CN1047632C (en) Amorphous metal alloy and method of producing same
JP2000256722A (en) Inoculant for spheroidal graphite cast iron and production thereof
RU2196187C1 (en) Method of producing alloy with free and fixed carbon
SU1731856A1 (en) Cast iron for ferroalloy molds
JPH0827537A (en) Production of fine spheroidal graphite cast steel
JPH11246929A (en) Oxide-dispersed steel and its production
JPH08176656A (en) Production of cast iron with high ductility
JP4732280B2 (en) Cast iron with excellent heat and corrosion resistance
CN112458354A (en) High-chromium alloy casting grinding ball for refining crystal grains and casting process thereof
Battezzati et al. Solidification experiments for the study of phase selection in cast iron
JPH02263908A (en) Production of austenitic spheroidal graphite cast iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250