JPH02141557A - Stainless steel for seamless high pressure vessel - Google Patents
Stainless steel for seamless high pressure vesselInfo
- Publication number
- JPH02141557A JPH02141557A JP29583888A JP29583888A JPH02141557A JP H02141557 A JPH02141557 A JP H02141557A JP 29583888 A JP29583888 A JP 29583888A JP 29583888 A JP29583888 A JP 29583888A JP H02141557 A JPH02141557 A JP H02141557A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- less
- high pressure
- steel
- pressure gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 31
- 239000010935 stainless steel Substances 0.000 title claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 11
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- 238000011109 contamination Methods 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 abstract 2
- 229910052804 chromium Inorganic materials 0.000 abstract 2
- 229910052748 manganese Inorganic materials 0.000 abstract 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract 2
- 229910052759 nickel Inorganic materials 0.000 abstract 2
- 229910052710 silicon Inorganic materials 0.000 abstract 2
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 10
- 229910000617 Mangalloy Inorganic materials 0.000 description 9
- 230000003749 cleanliness Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Pressure Vessels And Lids Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、継目なし高圧ガス容器用ステンレス鋼に関
するものである。さらに詳しくは、この発明は、マンガ
ン鋼と同程度以上の強度、靭性を有し、熱間加工性も良
好な、クリーンボンベ材として有用な新しい高圧ガス容
器用のステンレス鋼に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a seamless stainless steel for high pressure gas containers. More specifically, the present invention relates to a new stainless steel for high-pressure gas containers, which has strength and toughness comparable to or higher than manganese steel, and has good hot workability, and is useful as a material for clean cylinders.
(従来の技術)
近年、半導体工業、微生物・医薬品工業等の分野におい
て、高度に清浄化した空間を利用するいわゆるクリーン
プロセスが広く採用されている。(Prior Art) In recent years, so-called clean processes that utilize highly purified spaces have been widely adopted in fields such as the semiconductor industry and the microbial/pharmaceutical industry.
このクリーンプロセスにおいては、配管系、給排気系、
反応室の清浄化とともに、これらプロセスに使用する様
々な種類のガスの高純度化が強く求められてきている。In this clean process, piping systems, air supply and exhaust systems,
In addition to cleaning reaction chambers, there is a strong demand for high purity of various types of gases used in these processes.
これにともなって、ガス成分そのものの純度の向上とと
もに、これらガスの容器としてのボンベからの汚染を抑
止するための対策が必要になってきている。Along with this, it has become necessary to improve the purity of the gas components themselves and to take measures to prevent contamination from cylinders serving as containers for these gases.
従来、このような汚染の少ない、いわゆるクリーンボン
ベの実現のために、
(ア) ボンベ内壁表面の平坦化による不純物ガス、パ
ーティクルの吸着防止、
(イ) ボンベ材料自体からの不純物ガス、パーティク
ルの発生の防止
の観点から検討が進められており、前者のための対策と
しては機械研摩や電解研摩による鏡面仕上加工が、また
、後者については、ベーキング処理に加えて放出ガス抑
制に有効なりロム酸化被膜のボンベ内壁表面への生成が
検討されている。前者については、すでにマンガン鋼製
の鏡面仕上加工ボンベが実用的に少量であるが生産開始
の段階にあり、また後者については、オーステナイト系
やオーステナイト・フェライト系のステンレス鋼か研究
対象となってもいる。Conventionally, in order to realize so-called clean cylinders with less contamination, the following methods have been used: (a) flattening the inner wall surface of the cylinder to prevent adsorption of impurity gases and particles; (b) preventing the generation of impurity gases and particles from the cylinder material itself. Studies are underway from the perspective of preventing this, and as a countermeasure for the former, mechanical polishing and electrolytic polishing are used to achieve a mirror finish, while for the latter, in addition to baking treatment, ROM oxide coating is effective in suppressing gas emissions. The formation of on the inner wall surface of the cylinder is being considered. Regarding the former, mirror-finished cylinders made of manganese steel are already at the stage of starting production, although in practical quantities, and for the latter, austenitic and austenitic/ferritic stainless steels are the subject of research. There is.
(発明が解決しようとする課題)
しかしながら、これら従来のクリーンボンベ材について
はいくつかの問題があり、今後の大きな発展が望めない
状況にある。(Problems to be Solved by the Invention) However, there are several problems with these conventional clean cylinder materials, and the situation is such that no significant development can be expected in the future.
すなわち、マンガン鋼製のものついては、耐食性が悪く
、材料自体からの不純物ガスの放出特性が良くないので
クリーンボンベ用としては不適である。この点、ステン
レス鋼製の場合には、その内壁表面にクロム酸化被膜を
生成させるので、その作用効果は優れており、今後の発
展が期待されるものであるが、これまでのところ、次の
ような課題が克服されなければならない現状にある。That is, materials made of manganese steel have poor corrosion resistance and poor release characteristics of impurity gases from the material itself, making them unsuitable for use in clean cylinders. In this regard, in the case of stainless steel, a chromium oxide film is generated on the inner wall surface, which has excellent effects and is expected to develop in the future. Currently, such issues must be overcome.
まず第1の課題は、マンガン鋼ボンベと同程度の強度を
有する高強度ステンレス鋼が必要とされていることであ
る。The first problem is that there is a need for high-strength stainless steel that has the same strength as manganese steel cylinders.
従来のステンレス鋼製高圧ガス容器では、強度(耐力下
限規格値)が21 kgf / mn2程度であり、マ
ンガン鋼、あるいは従来より継目なし高圧ガス容器に用
いられているクロムモリブデン鋼に比べて約173程度
低いレベルにある。ボンベ肉厚は、耐力規格下限に比例
して決定されるなめ、従来のボンベ用ステンレス鋼では
肉厚を大きくしなければならないが、そうすると容器重
量が大きくなる。Conventional stainless steel high-pressure gas containers have a strength (lower limit of proof stress) of approximately 21 kgf/mn2, which is approximately 173 kgf/mn2 compared to manganese steel or chromium-molybdenum steel, which has traditionally been used in seamless high-pressure gas containers. It is at a low level. The wall thickness of a cylinder is determined in proportion to the lower limit of the proof stress standard, so with conventional stainless steel cylinders, the wall thickness must be increased, but this increases the weight of the container.
生産プロセスに使用する中規模ボンベを移動設置するに
あたっては、はとんどが人手によるので、この重量増大
は、実用ボンベとしては移動困難という問題を生じる。When moving and installing medium-sized cylinders used in the production process, most of the work is done manually, so this increased weight creates a problem in that it is difficult to move the cylinders for practical use.
このため、どうしても、マンガン鋼、もしくは、クロム
モリブデン鋼と同等のボンベ重量であることが必要であ
り、またマンガン鋼と同等以上の強度と靭性を有するス
テンレス鋼が必要である。Therefore, it is absolutely necessary that the cylinder weight be equivalent to that of manganese steel or chromium molybdenum steel, and stainless steel that has strength and toughness equal to or higher than manganese steel is required.
第2の課題は、良好な熱間加工性を有するステンレス鋼
が実現されなければならないことである。The second problem is that stainless steels with good hot workability must be realized.
高圧ガス容器には継目なし鋼材が用いられており、その
製造には、鋼材をプレスで穿孔し、熱伸す方法と、また
は継目なし鋼管をスピニングマシンにより底部絞り加工
する方法とがあるが、いずれの場合にも苛酷な熱間加工
を行うので、これまでに知られている高強度ステンレス
鋼の場合にはボンベ成形時に疵が発生するなどの問題が
ある。Seamless steel is used for high-pressure gas containers, and there are two ways to manufacture it: one method is to punch holes in the steel material using a press and heat stretch it, or the other is to draw the bottom of a seamless steel pipe using a spinning machine. In either case, severe hot working is performed, so in the case of hitherto known high-strength stainless steels, there are problems such as scratches occurring during cylinder molding.
このため、良好な熱間加工性を有するステンレス鋼が必
要になっている。Therefore, stainless steel with good hot workability is needed.
そして最後に、ボンベ内壁表面の清浄度をより高めたス
テンレス鋼を実現することも課題の一つである。特に内
壁表面の非金属介在物は、それ自体が汚染の原因となり
、しかも他のパーティクルを吸着しやすく、クロム酸化
被膜生成による放出ガス抑制効果にも好ましくない影響
を及ぼず。このため、この非金属介在物の存在を低減さ
せた新しいステンレス鋼が必要である。Finally, one of the challenges is to create stainless steel with higher cleanliness for the inner wall surface of the cylinder. In particular, non-metallic inclusions on the inner wall surface cause contamination by themselves, tend to adsorb other particles, and do not have an undesirable effect on the effect of suppressing emitted gas due to the formation of a chromium oxide film. Therefore, there is a need for a new stainless steel in which the presence of non-metallic inclusions is reduced.
この発明は、以上の通りの課題を解決し、高強度で熱間
加工性の良好な、高清浄継目なし高圧ガス容器用ステン
レス鋼を提供することを目的としている。The object of the present invention is to solve the above-mentioned problems and provide a highly clean, seamless stainless steel for high-pressure gas containers that has high strength and good hot workability.
(課題を解決するための手段)
この発明は、上記の課題を解決するものとして、重量百
分率で次の割合
Cr:10〜17、
Ni二2へ−6、
Mo:0.1〜2、
M n : 2以下、
55=1以下、
c :0.06以下、
P :0.02以下、
s :0.01以下、
N :0.02以下、
0 :50111111以下、
H:4ppm以下、
の元素を有し、残部がFeと不可避的不純物からなり、
かつ、Ni含有量が次の式
%式%
を満たす範囲内にあることを特徴とする継目なし高圧ガ
ス容器用ステンレス鋼を提供するものである。(Means for Solving the Problems) This invention solves the above problems by using the following weight percentages: Cr: 10 to 17, Ni to 2 to 6, Mo: 0.1 to 2, M n: 2 or less, 55=1 or less, c: 0.06 or less, P: 0.02 or less, s: 0.01 or less, N: 0.02 or less, 0: 50111111 or less, H: 4ppm or less, the following elements with the remainder consisting of Fe and unavoidable impurities,
The present invention also provides a seamless stainless steel for a high-pressure gas container, characterized in that the Ni content is within a range that satisfies the following formula: %.
また、この発明は、重量百分率で、Ti、Nbおよび■
の1種または2種以上の合計が0.3以下の元素を含有
する上記の継目なし高圧ガス容器用ステンレス鋼をも提
供するものである。In addition, this invention provides Ti, Nb and ■
The present invention also provides the above-mentioned seamless stainless steel for high-pressure gas containers, which contains one or more of the following elements in a total of 0.3 or less.
以上の元素組成と、Ni含有量についての規定は、この
発明の発明者による膨大な数の実証検討の結果から導か
れたものであり、これらの規定内にある限り、従来のボ
ンベ材料の欠点を解消することを可能としたものである
。The above regulations regarding the elemental composition and Ni content were derived from the results of a huge number of empirical studies by the inventor of this invention, and as long as they fall within these regulations, the shortcomings of conventional cylinder materials can be overcome. This makes it possible to eliminate the
元素成分のうちのCrについては、クロム酸化膜(不動
態膜)生成に欠かせないものであり、この点から、その
含有量は、少なくとも10重量%とする必要がある。1
7重量%を超える場合には、δ−Fe(フェライト)組
織生成によって強度が低下し、熱間加工性も低下するた
め好ましくない。Among the elemental components, Cr is essential for the formation of a chromium oxide film (passive film), and from this point of view, its content needs to be at least 10% by weight. 1
If it exceeds 7% by weight, strength decreases due to the formation of δ-Fe (ferrite) structure, and hot workability also decreases, which is not preferable.
Niは2〜6重量%で、しかも上記の特定の関係式を満
たす範囲とするが、N5の含有量がこれら範囲を超える
と、オーステナイト相析出による耐力低下がみられ、ま
た、熱間変形抵抗が大きくなり、熱間加工性が悪くなる
。The Ni content is 2 to 6% by weight, and should be in a range that satisfies the specific relational expression above. However, if the N5 content exceeds this range, a decrease in yield strength due to austenite phase precipitation will occur, and hot deformation resistance will decrease. becomes large, and hot workability deteriorates.
Moについては0.1〜2重量%の範囲とする。The content of Mo is in the range of 0.1 to 2% by weight.
この元素の添加は強度および耐食性の向上に欠かせない
。しかしながら、2%以上の場合には変形抵抗が大きく
なるため熱間加工性が悪化し、好ましくない。Cは、耐
食性、靭性の観点から0.06%以下含有させ、また、
Slは、強度を向上させるが、非金属介在物の原因とも
なるので、1%以下の範囲で含有させる。Addition of this element is essential for improving strength and corrosion resistance. However, if it is 2% or more, the deformation resistance becomes large and hot workability deteriorates, which is not preferable. C is contained at 0.06% or less from the viewpoint of corrosion resistance and toughness, and
Although Sl improves strength, it also causes nonmetallic inclusions, so it is contained in a range of 1% or less.
さらにまた、この発明においては、非金属介在物による
クリーンボンベとして好ましくない影響を抑止し、他方
で、靭性等の特性を向上させるため、P、Sをはじめ、
0、H,Nなどの元素についても厳密にその含有量を規
制する。Ti、Nbおよび■についても、これらの添加
は靭性向上に有効であるが、多量に添加すると熱間加工
性が低下するためこれらの合計は0.3%以下とするの
が好ましい。Furthermore, in this invention, in order to suppress the unfavorable effects of non-metallic inclusions on a clean cylinder, and on the other hand, to improve properties such as toughness, P, S, etc.
The contents of elements such as 0, H, and N are also strictly regulated. The addition of Ti, Nb, and (2) is also effective in improving toughness, but if added in large amounts, hot workability deteriorates, so the total of these is preferably 0.3% or less.
(作 用)
以上のこの発明のステンレス鋼においては、元素組成の
制御によって、マンガン鋼と同等のi械的性質、すなわ
ち耐力、靭性を有し、熱間加工性に優れ、しかも非金属
介在物による汚染を抑止することのできる継目なし高圧
ガス容器用ステンレス鋼を実現する。(Function) By controlling the elemental composition, the stainless steel of the present invention has mechanical properties equivalent to those of manganese steel, that is, yield strength and toughness, and has excellent hot workability. To realize seamless stainless steel for high-pressure gas containers that can prevent contamination caused by
このステンレス鋼は、種々のクリーンプロセスに用いる
クリーンボンベ材として極めて有用なものとなる。This stainless steel is extremely useful as a clean cylinder material used in various clean processes.
(実施例)
次に実施例を示し、さらに詳しくこの発明について説明
する。(Example) Next, an example will be shown and the present invention will be explained in more detail.
実施例1〜7(比較例1〜10) 元素含有量を種々変化させて7種の供試体を製造した。Examples 1 to 7 (Comparative Examples 1 to 10) Seven types of specimens were manufactured with various element contents.
その組成割合は表1に示した通りとした。The composition ratio was as shown in Table 1.
なお、表1には、Niについての前述の式から導かれる
許容される上限値(U)と下限値< L )も算出して
示している。Note that Table 1 also calculates and shows the allowable upper limit value (U) and lower limit value <L) derived from the above-mentioned formula for Ni.
また同様に、Niの上限値(IJ)と下限値(1−〉の
範囲からずれた組成比のものについても、比較例1〜7
の供試体としてその組成を表1に示した。Similarly, Comparative Examples 1 to 7 have a composition ratio that is out of the range between the upper limit (IJ) and lower limit (1-) of Ni.
The composition of the sample is shown in Table 1.
各元素の一般的規定範囲に入らない従来例としての供試
体も比較例8〜10として製造した。Conventional specimens that did not fall within the generally specified ranges for each element were also manufactured as Comparative Examples 8 to 10.
なお、比較例8.9および10は、J I 5G345
9(配管用ステンレス鋼鋼管)の5US304TP、、
5US316TP、5US329J2Lのそれぞれの化
学成分を有している。In addition, Comparative Examples 8.9 and 10 are J I 5G345
9 (stainless steel pipe for piping) 5US304TP,,
It has the respective chemical components of 5US316TP and 5US329J2L.
また、5US304TP、5US316TPは、JIS
B8241 (継目なし鋼製高圧ガス容器)のステンレ
ス鋼容器材料に規定されているものである。In addition, 5US304TP and 5US316TP are JIS
This is specified for the stainless steel container material of B8241 (Seamless Steel High Pressure Gas Container).
これらすべての供試体について、耐力、衝撃値、熱間加
工性、さらに清浄度について評価した。清浄度について
は、公知のマンガン鋼に比較しての相対評価とした。All of these specimens were evaluated for yield strength, impact value, hot workability, and cleanliness. The cleanliness was evaluated as a relative evaluation compared to known manganese steel.
この結果を示したものが表2である。Table 2 shows the results.
この表2から明らかなように、この発明の実施例1〜7
の場合には、耐力、衝撃値ともに大きく、実用上満足で
きるものであった。また熱間加工性も良好で、清浄度も
優れていた。As is clear from Table 2, Examples 1 to 7 of the present invention
In the case of , both yield strength and impact value were large, and were practically satisfactory. Moreover, the hot workability was also good, and the cleanliness was also excellent.
これに対して、比較例1,2および5の、Ni含有量が
下限値(L)より小さいものは、耐力が劣り、比較例3
および6のNi含有量が上限値(U)より大きいものは
、熱間加工性が劣っていた。On the other hand, Comparative Examples 1, 2, and 5 whose Ni content is smaller than the lower limit (L) have poor yield strength, and Comparative Example 3
and No. 6 in which the Ni content was greater than the upper limit (U) had poor hot workability.
また、比較例4および7は、清浄度が劣っていた。Furthermore, Comparative Examples 4 and 7 had poor cleanliness.
さらに従来例としての比較例8〜10の場合には、耐力
は著しく劣り、かつ、比較例9および10については熱
間加工性が、また比較例8については清浄度が悪かった
。Further, in the case of Comparative Examples 8 to 10 as conventional examples, the yield strength was significantly inferior, and the hot workability was poor in Comparative Examples 9 and 10, and the cleanliness was poor in Comparative Example 8.
表
実施例8〜9
表3の化学組成からなるステンレス鋼により、高圧ガス
容器を作製した。その手順は次の通りとした。Table Examples 8 to 9 High pressure gas containers were manufactured from stainless steel having the chemical composition shown in Table 3. The procedure was as follows.
すなわち、第1図に示したように、所定の長さに切断し
たステンレス鋼片(1)を誘導加熱炉で約1250℃に
加熱し、1800tプレスで熱間穿孔し、穿孔体(2)
を形成し、これをさらに250t、プレスで熱伸して庭
付素管(3)を作製した。That is, as shown in Fig. 1, a piece of stainless steel (1) cut into a predetermined length is heated to about 1250°C in an induction heating furnace, and hot perforated with a 1800t press to form a perforated body (2).
This was further heat-stretched for 250 tons using a press to produce a base pipe with a garden (3).
これを所定長さに鋸切断し、スピニングマシンで頭部成
形し、熱処理(960℃XIHr焼入れ、600℃4X
Hr焼きもどし)およびねじ加工して容器(4)を作製
した。This was sawed to a predetermined length, the head was formed using a spinning machine, and heat treated (960°C XIHr quenching, 600°C 4X
A container (4) was prepared by subjecting the container to heat treatment (tempering) and thread processing.
得られたガス容器供試体につき、高圧ガス取締法および
JIS 88241 (継目なし鋼製高圧ガス容器)
による試験評価し、いずれの規格も満足していることを
確認した。The obtained gas container specimen was compliant with the High Pressure Gas Control Law and JIS 88241 (Seamless Steel High Pressure Gas Container)
It was confirmed that all standards were met.
また、この供試体材料についても、その特性を評価した
。表4にその結果を示したように、良好な特性を示し、
清浄度も優れていた。The characteristics of this specimen material were also evaluated. As shown in Table 4, it shows good characteristics,
The cleanliness was also excellent.
表2
(特性評価)
(発明の効果)
この発明により、強度、靭性ともに大きく、熱間加工性
および清浄度ともに良好な、クリーンボンベ材として有
用な、継目なし高圧ガス容器用ステンレス鋼が実現され
る。Table 2 (Characteristic evaluation) (Effects of the invention) This invention has realized a seamless stainless steel for high-pressure gas containers, which is useful as a clean cylinder material, has high strength and toughness, and has good hot workability and cleanliness. Ru.
第1図は、この発明のステンレス鋼からの容器製造の一
例を示した工程断面図である。
1・・・ステンレス鋼片
2・・・穿 孔 体
3・・・取付素管
4・・・容 器FIG. 1 is a process sectional view showing an example of manufacturing a container from stainless steel according to the present invention. 1... Stainless steel piece 2... Perforated body 3... Mounting base pipe 4... Container
Claims (3)
かつ、Ni含有量が次の式 Ni≦[8−(0.2×Cr%+1.04×Mo%+2
.1]/0.24 Ni≧1/(0.959−0.0467×Cr%)を満
たす範囲にあることを特徴とする継目なし高圧ガス容器
用ステンレス鋼。(1) The following weight percentages: Cr: 10-17, Ni: 2-6, Mo: 0.1-2, Mn: 2 or less, Si: 1 or less, C: 0.06 or less, P: 0. 02 or less, S: 0.01 or less, N: 0.02 or less, O: 50ppm or less, H: 4ppm or less, with the remainder consisting of Fe and inevitable impurities,
And, the Ni content satisfies the following formula: Ni≦[8-(0.2×Cr%+1.04×Mo%+2
.. 1]/0.24 Ni≧1/(0.959-0.0467×Cr%) A seamless stainless steel for a high-pressure gas container.
種以上の合計が0.3以下の元素を有する請求項(1)
記載の継目なし高圧ガス容器用ステンレス鋼。(2) One or two of Ti, Nb and V in weight percentage
Claim (1) containing elements whose total number of species or more is 0.3 or less
Stainless steel for seamless high pressure gas vessels as described.
らなる高圧ガス容器。(3) A high-pressure gas container made of stainless steel according to claim (1) or (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29583888A JP2687509B2 (en) | 1988-11-23 | 1988-11-23 | Stainless steel for seamless high pressure gas containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29583888A JP2687509B2 (en) | 1988-11-23 | 1988-11-23 | Stainless steel for seamless high pressure gas containers |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02141557A true JPH02141557A (en) | 1990-05-30 |
JP2687509B2 JP2687509B2 (en) | 1997-12-08 |
Family
ID=17825840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29583888A Expired - Lifetime JP2687509B2 (en) | 1988-11-23 | 1988-11-23 | Stainless steel for seamless high pressure gas containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2687509B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004324800A (en) * | 2003-04-25 | 2004-11-18 | Nippon Steel Corp | Tank for high pressure hydrogen gas, and piping |
EP2865777A4 (en) * | 2012-06-21 | 2015-11-11 | Jfe Steel Corp | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same |
-
1988
- 1988-11-23 JP JP29583888A patent/JP2687509B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004324800A (en) * | 2003-04-25 | 2004-11-18 | Nippon Steel Corp | Tank for high pressure hydrogen gas, and piping |
JP4700263B2 (en) * | 2003-04-25 | 2011-06-15 | 新日本製鐵株式会社 | High-pressure hydrogen gas tank and piping |
EP2865777A4 (en) * | 2012-06-21 | 2015-11-11 | Jfe Steel Corp | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same |
US9758850B2 (en) | 2012-06-21 | 2017-09-12 | Jfe Steel Corporation | High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2687509B2 (en) | 1997-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104831165B (en) | With good low-temperature high-toughness normalizing type high-strength pressure vessel steel plate and its manufacture method | |
EP3705594B1 (en) | High-strength multiphase tinned steel raw plate and manufacturing method therefor | |
US11313007B2 (en) | High-strength seamless steel pipe for oil country tubular goods, and method for producing the same | |
CN1310771A (en) | Ferritic stainless steel plate | |
CN110643894A (en) | Ultra-high strength hot rolled steel sheet and steel strip having good fatigue and hole expansion properties, and method for manufacturing same | |
CN110747391A (en) | Cold-rolled ultrahigh-strength steel with excellent elongation and preparation method thereof | |
CN111057947A (en) | Ferrite stainless steel with good high-temperature strength and preparation method thereof | |
CN107779740A (en) | Atmospheric corrosion resistant hot rolled steel strip with yield strength of 700MPa and manufacturing method thereof | |
CN113604729A (en) | Low-carbon equivalent easy-welding steel plate for pressure container and preparation method thereof | |
JP2023182698A (en) | Hot rolled steel and manufacturing method thereof | |
CN105917016A (en) | Ferritic stainless steel and method for producing same | |
CN1237189C (en) | High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics and its mfg. method | |
JPS5938300B2 (en) | Ferritic stainless steel with excellent corrosion resistance | |
CN112011735A (en) | Economical low-temperature steel pipe with good corrosion resistance and manufacturing method thereof | |
JPH02141557A (en) | Stainless steel for seamless high pressure vessel | |
EP4180548A1 (en) | Steel plate for torsion beam and manufacturing method therefor, and torsion beam and manufacturing method therefor | |
CN108130452A (en) | A kind of robot large cover and its preparation process | |
CN118251510A (en) | Ferritic stainless steel sheet | |
CN1236020A (en) | Method for producing high toughness, high wear resistant steel of slurry pipeline | |
JPS6067623A (en) | Preparation of high strength low carbon seamless steel pipe by direct hardening method | |
TWI841339B (en) | Steel plate and method for manufacturing the same | |
KR20150007607A (en) | High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same | |
JP4007311B2 (en) | Cylinder steel material and cylinder using the same | |
CN110284064B (en) | High-strength boron-containing steel and preparation method thereof | |
CN115341147B (en) | Medium chromium ferrite stainless steel for elevator panel and preparation method thereof |