JP4007311B2 - Cylinder steel material and cylinder using the same - Google Patents

Cylinder steel material and cylinder using the same Download PDF

Info

Publication number
JP4007311B2
JP4007311B2 JP2003375919A JP2003375919A JP4007311B2 JP 4007311 B2 JP4007311 B2 JP 4007311B2 JP 2003375919 A JP2003375919 A JP 2003375919A JP 2003375919 A JP2003375919 A JP 2003375919A JP 4007311 B2 JP4007311 B2 JP 4007311B2
Authority
JP
Japan
Prior art keywords
cylinder
steel
content
steel material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003375919A
Other languages
Japanese (ja)
Other versions
JP2005139499A (en
Inventor
正志 熊谷
暢俊 村尾
清治 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003375919A priority Critical patent/JP4007311B2/en
Publication of JP2005139499A publication Critical patent/JP2005139499A/en
Application granted granted Critical
Publication of JP4007311B2 publication Critical patent/JP4007311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、ボンベに用いられる鋼材に関し、さらに詳しくは、薄肉のボンベに用いられる高強度の鋼材に関するものである。   The present invention relates to a steel material used for a cylinder, and more particularly to a high-strength steel material used for a thin cylinder.

従来から、流体の可搬式器具としては、高圧ガス、消化剤等が充填される容器(ボンベ)が知られている。このようなボンベに用いられる鋼材としては、例えばJIS規格でいうところのSCM430・435、SMn433・443相当のものがある。また、ボンベ用鋼材の製造方法に関する先行技術としては、例えば「圧力容器用Cr−Mo鋼の製造方法」(特許文献1参照)がある。   Conventionally, containers (cylinders) filled with high-pressure gas, digestive agents, and the like are known as fluid portable instruments. As steel materials used for such cylinders, for example, there are those corresponding to SCM430 · 435 and SMn433 · 443 in the JIS standard. Moreover, as a prior art regarding the manufacturing method of the steel material for cylinders, there exists "a manufacturing method of Cr-Mo steel for pressure vessels" (refer patent document 1), for example.

一般的に、このようなボンベは、安全上の観点から、人および器物に対して危険を及ぼさず十分に安全で、かつ容器自体が長期にわたって稼動、設置されなければならないため、極端な高強度のものは好まれなかった。しかし、近年の低コスト化、省エネルギー化という社会的要請を受けて、引っ張り強さ(以下TSという)が1000MPa以上といった高強度のボンベが必要とされてきた。このような要求を満たす鋼材に関する先行技術として、例えば「超高圧圧力容器用鋼およびその製造方法」(特許文献2参照)がある。これは、鋼材に4%Ni−Cr−Mo−V鋼を用い、CおよびMoの含有量を高めることで、1000MPa以上のTSを実現している。   In general, such cylinders are extremely high strength from a safety standpoint because they are sufficiently safe without danger to humans and equipment, and the container itself must be operated and installed for a long period of time. The thing was not liked. However, in response to social demands for cost reduction and energy saving in recent years, high strength cylinders having a tensile strength (hereinafter referred to as TS) of 1000 MPa or more have been required. As a prior art related to a steel material that satisfies such requirements, there is, for example, “steel for ultra-high pressure vessel and method for producing the same” (see Patent Document 2). This achieves a TS of 1000 MPa or more by using 4% Ni—Cr—Mo—V steel as the steel material and increasing the contents of C and Mo.

図1に示されるような形状の、高さが約500〜1800mm、内径が約200〜300mmの小型軽量のボンベには、優れた耐圧性能の他に、容器1個当たりの充填ガス量を増加させるための内容積の増大、および製品の運搬能力の向上あるいは容器製造のための必要鋼材重量削減による軽量化が求められている。内容積の増大および軽量化という互いにトレードオフの関係にある2つの要求を同時に満たすボンベを実現する方法として、ボンベを薄肉、例えば、厚さを13.0mm以下にする方法がある。
特開昭56−44717号公報 特開平8−120400号公報
In addition to excellent pressure resistance, the amount of filling gas per container is increased for small and lightweight cylinders with the shape shown in Fig. 1 with a height of about 500 to 1800 mm and an inner diameter of about 200 to 300 mm. Therefore, there is a demand for weight reduction by increasing the internal volume to improve the capacity of the product and improving the product carrying capacity or reducing the weight of steel required for manufacturing the container. As a method of realizing a cylinder that simultaneously satisfies two requirements that are in a trade-off relationship of increase in internal volume and weight reduction, there is a method of making the cylinder thin, for example, having a thickness of 13.0 mm or less.
JP 56-44717 A JP-A-8-120400

しかしながら、従来の鋼材を用いて薄肉のボンベを製造しようとした場合、鋼材が0.40%前後あるいはこれを超える高いCを含有しており、また、ボンベが薄肉であるため、焼入れ時に割れが発生し易くなり、従来の鋼材では、薄肉のボンベを実現できないという問題がある。つまり、上記Cでは、高強度化のために焼入れ時の冷却速度を速くすると、薄肉のために割れが発生し易くなるのである。   However, when an attempt is made to produce a thin cylinder using conventional steel materials, the steel material contains high C around 0.40% or more, and since the cylinder is thin, cracks occur during quenching. It becomes easy to generate | occur | produce and there exists a problem that a thin cylinder cannot be implement | achieved in the conventional steel materials. That is, in C, if the cooling rate at the time of quenching is increased in order to increase the strength, cracks are likely to occur due to the thin wall.

また、一般にボンベではガス等の充填が繰り返しおこなわれるため、ボンベ用鋼材には高強度と共に良好な繰り返し疲労性が要求されるが、鋼材が高強度になると、靭性が劣化し、また、降伏比(降伏強さ(以下YSという)/TS、以下YRという)が高くなって、塑性変形した後に破断に至るまでの余裕がなくなり、繰り返し疲労性が劣化するため、従来の鋼材では、高強度と良好な繰り返し疲労性とを両立することができないという問題がある。   In general, gas cylinders are repeatedly filled with gas, etc., so that steel materials for cylinders are required to have high strength and good repeated fatigue. However, when steel materials become high strength, the toughness deteriorates and the yield ratio (Yield strength (hereinafter referred to as YS) / TS, hereinafter referred to as YR) is increased, and there is no room for fracture after plastic deformation, and repeated fatigue deteriorates. There is a problem that it is impossible to achieve both good repeated fatigue properties.

さらに、従来の鋼材では、高強度化のために高い含有量のCr、Moを添加したり、高価な添加金属であるNiを3.5〜4.5%添加したりすることを前提としており、鋼材が高強度になると、鋼材が高コストとなるという問題がある。
そこで、本発明は、かかる問題点に鑑み、薄肉のボンベに最適な高強度の鋼材を提供することを第1の目的とする。
Furthermore, the conventional steel materials are premised on the addition of a high content of Cr and Mo to increase the strength, and the addition of 3.5 to 4.5% of Ni, which is an expensive additive metal. When steel material becomes high strength, there exists a problem that steel material becomes high cost.
Therefore, in view of such a problem, the present invention has a first object to provide a high-strength steel material that is optimal for a thin cylinder.

また、高強度に加えて、優れた繰り返し疲労性をも有する鋼材を提供することを第2の目的とする。
さらに、高強度に加えて、コストに優れた鋼材を提供することを第3の目的とする。
Moreover, it is a second object to provide a steel material having excellent repeated fatigue properties in addition to high strength.
Furthermore, a third object is to provide a steel material that is excellent in cost in addition to high strength.

本発明者は、上記状況に鑑み、高い焼入れ性および焼き戻し性を確保するために、冷却速度を高めた場合の割れの原因となっていたCの含有量を減らし、その代替として焼入れ性の高い変態強化を促す元素であるB、CrおよびMoを添加した鋼材を用いて強度、繰り返し疲労性について精査した。
その結果として、C、Cr、MoおよびBの含有量を調節すれば、高強度のために冷却速度を高くしても割れを発生させないことが可能で、さらに、繰り返し疲労性を向上させ、低コスト化できることを見出した。
In view of the above situation, the present inventor reduced the content of C that caused cracking when the cooling rate was increased in order to ensure high hardenability and temperability, and as an alternative to hardenability. Using steel materials to which B, Cr and Mo, which are elements that promote high transformation strengthening, were added, the strength and repeated fatigue properties were examined.
As a result, if the contents of C, Cr, Mo and B are adjusted, it is possible to prevent cracking even if the cooling rate is increased due to the high strength, and further improve the repeated fatigue and reduce I found out that it could be costly.

以上の知見に基づき、本発明者らは化学成分の設計を行い、本発明に至った。
上記目的を達成するために、本発明の、厚さ13.0mm以下のボンベ用の鋼材あるいは鋼管は、質量%で、C:0.20〜0.35%、Si:≦0.35、Mn:0.3〜2.0%、P:≦0.025%、S:≦0.015%、Cr:0.8〜2.0%、Mo:0.3〜1.0%、B:0.0005〜0.0030%、Al:0.01〜0.10%、N:≦0.008%を含有し、残部はFeと不純物とからなることを特徴とする。
Based on the above findings, the present inventors have designed chemical components and have reached the present invention.
In order to achieve the above object, the steel material or steel pipe for a cylinder having a thickness of 13.0 mm or less according to the present invention is in mass%, C: 0.20 to 0.35%, Si: ≦ 0.35, Mn : 0.3-2.0%, P: ≦ 0.025%, S: ≦ 0.015%, Cr: 0.8-2.0%, Mo: 0.3-1.0%, B: It contains 0.0005 to 0.0030%, Al: 0.01 to 0.10%, N: ≦ 0.008%, and the balance is made of Fe and impurities.

ここで、請求項1に記載した成分に加え更に、質量%で、Nb:≦0.10%、Ti:≦0.10%、Cu:≦2.00%、Ni:≦2.00%、V:≦0.10%、Ca:≦0.01%のうち、少なくとも1種を含有してもよい。
また、前記ボンベ用鋼材は、継ぎ目無し鋼管であってもよい。
また、本発明は、請求項1〜3のいずれか1項に記載の、厚さ13.0mm以下のボンベ用鋼材を用いることを特徴とするボンベであってもよい。
Here, in addition to the components described in claim 1, Nb: ≦ 0.10%, Ti: ≦ 0.10%, Cu: ≦ 2.00%, Ni: ≦ 2.00% in mass%. You may contain at least 1 sort (s) among V: <= 0.10% and Ca: <= 0.01%.
Moreover, the steel material for cylinders may be a seamless steel pipe.
Further, the present invention may be a cylinder using the cylinder steel material according to any one of claims 1 to 3 having a thickness of 13.0 mm or less .

本発明に係るボンベ用鋼材によれば、薄肉のボンベに最適な高強度の鋼材を提供すると共に優れた繰り返し疲労性を有した低コストのボンベ用鋼材を提供することが可能となり、低コストで優れた耐圧性能を有する小型軽量のボンベを実現することが可能である。   According to the cylinder steel material according to the present invention, it is possible to provide a high-strength steel material optimal for thin-walled cylinders and to provide a low-cost cylinder steel material having excellent repeated fatigue properties at low cost. It is possible to realize a small and lightweight cylinder having excellent pressure resistance.

以下に本発明の各要件について詳しく説明する。なお、成分含有量の「%」は「質量%」を意味する。
C:
Cは、鋼の強度を増加させる元素である。しかし、その含有量が0.20%未満では高強度を確保できず、一方、0.35%を超えると冷却速度を高めた場合の割れが発生しやすくなり、また、靭性の低下が著しくなり、繰り返し疲労性も劣化する。したがって、Cの含有量を0.20〜0.35%とした。
Each requirement of the present invention will be described in detail below. In addition, “%” of the component content means “mass%”.
C:
C is an element that increases the strength of steel. However, if the content is less than 0.20%, high strength cannot be ensured. On the other hand, if it exceeds 0.35%, cracking is likely to occur when the cooling rate is increased, and the toughness is significantly reduced. In addition, repeated fatigue properties are also deteriorated. Therefore, the content of C is set to 0.20 to 0.35%.

Si:
Siは、脱酸作用のほか、鋼の強度を増加させる元素である。しかし、その含有量が0.35%を超えると清浄性が劣化しやすくなる。したがって、Siの含有量を0.35%以下とした。
Mn:
Mnは、焼入れ性を向上させ、強度の上昇および靱性の向上のために有効な元素である。しかし、その含有量が0.30%未満ではその添加効果が得られず、一方、2.00%を超えると靭性が劣化する。したがって、Mnの含有量を0.30〜2.00%とした。なお、Mnの含有量は0.30%〜0.80%とすることが好ましい。これによって、優れた靭性を得ることができる。
Si:
Si is an element that increases the strength of steel in addition to deoxidation. However, if the content exceeds 0.35%, the cleanliness tends to deteriorate. Therefore, the Si content is set to 0.35% or less.
Mn:
Mn is an effective element for improving the hardenability, increasing the strength and improving the toughness. However, if the content is less than 0.30%, the effect of addition cannot be obtained, whereas if it exceeds 2.00%, the toughness deteriorates. Therefore, the content of Mn is set to 0.30 to 2.00%. The Mn content is preferably 0.30% to 0.80%. Thereby, excellent toughness can be obtained.

P:
Pは、鋼中に不純物として含まれる元素であり、その含有量が0.025%を超えると靭性を劣化させる。したがって、Pの含有量を0.025%以下とした。
S:
Sは、鋼中に不純物として含まれる元素であり、その含有量が0.015%を超えると靭性を劣化させる。したがって、Sの含有量を0.015%以下とした。
P:
P is an element contained as an impurity in the steel, and when its content exceeds 0.025%, it deteriorates toughness. Therefore, the content of P is set to 0.025% or less.
S:
S is an element contained as an impurity in steel, and when its content exceeds 0.015%, it deteriorates toughness. Therefore, the content of S is set to 0.015% or less.

Cr:
Crは、高強度を確保するために有効な元素である。しかし、その含有量が0.80%未満ではその添加効果が得られず、一方、2.00%を超えると焼戻脆化感受性が高まる。さらに、靱性が劣化し、それに伴い繰り返し疲労性も劣化する。したがって、Crの含有量を0.80〜2.00%とした。なお、Crの含有量は0.80%〜1.30%とすることが好ましい。これによって、優れた靭性を得ることができる。
Cr:
Cr is an effective element for ensuring high strength. However, if the content is less than 0.80%, the effect of addition cannot be obtained. On the other hand, if the content exceeds 2.00%, the temper embrittlement susceptibility increases. Further, the toughness is deteriorated, and accordingly, the fatigue property is also deteriorated. Therefore, the Cr content is set to 0.80 to 2.00%. In addition, it is preferable that content of Cr shall be 0.80%-1.30%. Thereby, excellent toughness can be obtained.

Mo:
Moは、高強度を確保するために有効な元素である。しかし、その含有量が0.30%未満ではその添加効果が得られず、一方、1.00%を超えると靱性が劣化し、それに伴い繰り返し疲労性も劣化する。したがって、Moの含有量を0.30%〜1.00%とした。なお、Moの含有量は0.30%〜0.70%とすることが好ましい。これによって、優れた靭性を得ることができる。
Mo:
Mo is an effective element for ensuring high strength. However, if the content is less than 0.30%, the effect of addition cannot be obtained. On the other hand, if the content exceeds 1.00%, the toughness deteriorates, and accordingly, the repeated fatigue properties also deteriorate. Therefore, the Mo content is set to 0.30% to 1.00%. The Mo content is preferably 0.30% to 0.70%. Thereby, excellent toughness can be obtained.

B:
Bは、焼入れ性を高くし、強度を上昇させる元素である。しかし、その含有量が0.0005%未満ではその添加効果が得られず、一方、0.0030%を超えると靱性が著しく劣化する。したがって、Bの含有量を0.0005%〜0.0030%とした。
Al:
Alは、脱酸に加えて組織の細粒化のために有効な元素である。しかし、その含有量が0.01%未満ではその添加効果が得られず、一方、0.10%を超えると靭性が劣化する。したがって、Alの含有量を0.01%〜0.10%とした。
B:
B is an element that increases hardenability and increases strength. However, if the content is less than 0.0005%, the effect of addition cannot be obtained, while if it exceeds 0.0030%, the toughness is significantly deteriorated. Therefore, the content of B is set to 0.0005% to 0.0030%.
Al:
Al is an effective element for refining the structure in addition to deoxidation. However, if the content is less than 0.01%, the effect of addition cannot be obtained, while if it exceeds 0.10%, the toughness deteriorates. Therefore, the Al content is set to 0.01% to 0.10%.

N:
Nは、Bと結合してBNを生成させ、Bの焼入れ性を低下させる元素であり、その含有量が0.008%を超えると焼入れ性が低下する。したがって、Nの含有量を0.008%以下とした。
以上が請求項1の鋼材の化学成分を限定した理由である。
N:
N is an element that combines with B to form BN and lowers the hardenability of B. When the content exceeds 0.008%, the hardenability is lowered. Therefore, the N content is set to 0.008% or less.
The above is the reason for limiting the chemical composition of the steel material of claim 1.

次に請求項2で請求項1の鋼材の化学成分に加えて、Nb:≦0.10%、Ti:≦0.10%、Cu:≦2.00%、Ni:≦2.00%、V:≦0.10%、Ca:≦0.01%のうち、少なくとも1種を含有させる限定理由を述べる。
Nb:
Nbは含有させなくてもよい。含有させれば、NbCの微細析出により組織を細粒化し、強度の確保、靭性の向上のために有効に機能する。ただし、その含有量が0.10%を超えて過剰に添加されると、靭性が劣化するので、添加する場合には含有量を0.10%以下とするのが好ましい。なお、含有量は0.01%以上とすることがより好ましい。これによって、その効果を顕著に発揮させることができる。
Next, in addition to the chemical components of the steel material of claim 1 in claim 2, Nb: ≦ 0.10%, Ti: ≦ 0.10%, Cu: ≦ 2.00%, Ni: ≦ 2.00%, The reason for limiting at least one of V: ≦ 0.10% and Ca: ≦ 0.01% will be described.
Nb:
Nb may not be contained. If contained, it finely refines the structure by fine precipitation of NbC, and functions effectively for securing strength and improving toughness. However, if the content exceeds 0.10% and is added excessively, the toughness deteriorates. Therefore, when added, the content is preferably made 0.10% or less. The content is more preferably 0.01% or more. Thereby, the effect can be exhibited remarkably.

Ti:
Tiは含有させなくてもよい。含有させれば、TiC、TiNの析出によって強度の上昇及び靭性を向上させる。ただし、その含有量が0.10%を超えて添加されると、靭性が劣化するので、添加する場合には含有量を0.10%以下とするのが好ましい。なお、含有量は0.01%以上とすることがより好ましい。これによって、その効果を顕著に発揮させることができる。
Ti:
Ti may not be contained. If contained, the strength and toughness are improved by precipitation of TiC and TiN. However, if the content exceeds 0.10%, the toughness deteriorates. Therefore, when added, the content is preferably 0.10% or less. The content is more preferably 0.01% or more. Thereby, the effect can be exhibited remarkably.

V:
Vは含有させなくてもよい。含有させれば、VCの析出によって強度の上昇に寄与する。ただし、その含有量が0.10%を超えて添加されると、靭性が劣化するので、添加する場合には含有量を0.10%以下とするのが好ましい。なお、含有量は0.02%以上とすることがより好ましい。これによって、その効果を顕著に発揮させることができる。
V:
V may not be contained. If contained, it contributes to an increase in strength by precipitation of VC. However, if the content exceeds 0.10%, the toughness deteriorates. Therefore, when added, the content is preferably 0.10% or less. The content is more preferably 0.02% or more. Thereby, the effect can be exhibited remarkably.

Cu、Ni:
Cu、Niは含有させなくてもよい。含有させれば、それぞれ固溶強化等の強化機構で強度を更に高くすることが出来る。ただし、その含有量がそれぞれ2.0%を超えて添加されるとその効果が飽和し、コストが嵩むばかりであるため、添加する場合には含有量をそれぞれ2.0%以下とするのが好ましい。なお、含有量はそれぞれ0.05%以上とすることがより好ましい。これによって、その効果を顕著に発揮させることができる。
Cu, Ni:
Cu and Ni may not be contained. If contained, the strength can be further increased by a strengthening mechanism such as solid solution strengthening. However, when the content exceeds 2.0%, the effect is saturated and the cost is increased. Therefore, when added, the content should be 2.0% or less. preferable. The content is more preferably 0.05% or more. Thereby, the effect can be exhibited remarkably.

Ca:
Caは含有させなくてもよい。含有させれば、Sと結合し靭性を向上させる。ただし、その含有量が0.01%を超えて添加されるとCa系介在物が増加し、靭性を劣化させるので、添加する場合には含有量を0.01%以下とするのが好ましい。なお、含有量は0.0005%以上とすることがより好ましい。これによって、その効果を顕著に発揮させることができる。
Ca:
Ca may not be contained. If contained, it combines with S and improves toughness. However, if the content exceeds 0.01%, Ca inclusions increase and the toughness is deteriorated. Therefore, when added, the content is preferably 0.01% or less. The content is more preferably 0.0005% or more. Thereby, the effect can be exhibited remarkably.

以上が請求項1および請求項2の鋼材の化学成分を限定した理由である。
前述した理由で、請求項1および請求項2に記載した化学成分にすることで、薄肉のボンベに最適な高強度のボンベ用鋼材を実現すると共に優れた繰り返し疲労性を有した低コストのボンベ用鋼材をも実現することができる。
次に、請求項1および請求項2に記載のボンベ用鋼材を用いてボンベを製造する方法を、従来一般的に採用されているボンベの成型工程を例に説明する。なお、請求項の成分を満たしていれば、特別な設備あるいは特別なヒートパターンは必要とされない。
The above is the reason why the chemical components of the steel materials of claims 1 and 2 are limited.
For the reasons described above, by using the chemical components described in claim 1 and claim 2, a high-strength cylinder steel material optimal for thin-walled cylinders can be realized, and a low-cost cylinder having excellent repeated fatigue properties. Steel can also be realized.
Next, a method of manufacturing a cylinder using the cylinder steel material according to claim 1 and claim 2 will be described by taking an example of a cylinder molding process that has been generally employed conventionally. As long as the claimed components are satisfied, no special equipment or special heat pattern is required.

ボンベは、ボンベ用鋼材を容器の形状に加工した後、熱処理を施すという成型工程を経て製造される。熱処理方法は、例えば(Ar3変態点+50℃)以上1100℃以下の温度から、5℃/sec以上の冷却速度で水焼入れもしくは油焼入れ処理を実施し、その後狙いの強度が得られる450℃以上Ac1変態点以下の温度で焼戻し処理を実施する。
ここで、容器の形状に成形するには、継ぎ目無し鋼管を原管とする方法や、ブルーム・ビレットらの鋼片から成形する方法等がある。
The cylinder is manufactured through a molding process in which a steel material for a cylinder is processed into the shape of a container and then heat-treated. The heat treatment method is, for example, a water quenching or oil quenching treatment at a cooling rate of 5 ° C./sec from a temperature of (Ar 3 transformation point + 50 ° C.) to 1100 ° C., and then a target strength of 450 ° C. Tempering is performed at a temperature below the transformation point.
Here, to form into the shape of the container, there are a method of using a seamless steel pipe as a raw pipe, a method of forming from a steel piece such as Bloom Billet, and the like.

継ぎ目無し鋼管から製造する場合、鋼管の端部を加熱し、片端は底部を形成、片端には頭部を形成し、その後熱処理を実施する。
ブルーム・ビレットらの鋼片から製造する場合、鋼片を加熱・穿孔・再加熱・搾伸しておおまかな形状に成形した後、底部を整え、片端に頭部を形成し、その後熱処理を実施する。
When manufacturing from a seamless steel pipe, the end of the steel pipe is heated, one end forms a bottom, the other end forms a head, and then heat treatment is performed.
When manufacturing from billets such as Bloom Billet, the steel pieces are heated, perforated, reheated and drawn to form a rough shape, then the bottom is trimmed, the head is formed at one end, and then heat treatment is performed. To do.

以下、本発明を実施例によって更に詳しく説明する。なお、本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前後記の趣旨に適合しうる範囲で変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. The configuration and operational effects of the present invention will be described more specifically. However, the present invention is not limited by the following examples, but should be implemented with modifications within a range that can meet the gist of the preceding and following descriptions. Of course, they are all possible and are within the scope of the present invention.

(実施例)
表1は、各種ボンベ用鋼材1〜23に関する化学成分を示している。なお、表1において、ボンベ用鋼材1〜14は化学成分範囲が本発明で規定する条件を満たすボンベ用鋼材であり、ボンベ用鋼材15〜23は化学成分範囲が本発明で規定する条件を満たしていないボンベ用鋼材である。
(Example)
Table 1 has shown the chemical component regarding the various steel materials 1-23 for cylinders. In Table 1, the cylinder steel materials 1 to 14 are cylinder steel materials that satisfy the chemical component range defined by the present invention, and the cylinder steel materials 15 to 23 satisfy the chemical component range defined by the present invention. It is not steel for cylinders.

Figure 0004007311
各種ボンベ用鋼材1〜23のそれぞれから試験片を切り出し、実験的に熱処理をし、強度と繰り返し疲労性を評価した。その結果を表2にまとめる。
ここで、強度の評価としては、TSおよびYSを測定することによりおこない、TSについては、1000MPa以下、YRについては、95%以上のものに#を付した。
Figure 0004007311
A test piece was cut out from each of the steel materials 1 to 23 for various cylinders, heat-treated experimentally, and evaluated for strength and repeated fatigue. The results are summarized in Table 2.
Here, the strength was evaluated by measuring TS and YS. TS was 1000 MPa or less, and YR was 95% or more.

また、繰り返し疲労性の評価は、圧力サイクル試験を実施することによりおこない、破断に至る目標回数を12000回以上とし、目標値に達した場合には〇とし、達しない場合には×とし#を付した。なお、圧力サイクル試験は、繰り返し最大試験圧量2450(N/cm2)、繰り返し最小試験圧量0(N/cm2)、サイクル2.3(回/min)の試験条件でおこなった。 In addition, the evaluation of repeated fatigue is performed by carrying out a pressure cycle test. The target number of times to break is set to 12000 times or more. When the target value is reached, ◯ is set. It was attached. The pressure cycle test was performed under the test conditions of a repeated maximum test pressure 2450 (N / cm 2 ), a repeated minimum test pressure 0 (N / cm 2 ), and a cycle 2.3 (times / min).

Figure 0004007311
表2から、比較用のボンベ用鋼材であるボンベ用鋼材15〜23はすべて肉厚が13mm以下であるが、ボンベ用鋼材15はBが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になり、ボンベ用鋼材16はCが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になり、ボンベ用鋼材17はCが本発明で規定した化学成分範囲を外れているために圧力サイクル試験において目標値に達しなくなり、ボンベ用鋼材18はMoが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になり、ボンベ用鋼材19はCrが本発明で規定した化学成分範囲を外れているためにYRが95%以上でかつ圧力サイクル試験において目標値に達しなくなり、ボンベ用鋼材20はMnが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になり、ボンベ用鋼材21はMoが本発明で規定した化学成分範囲を外れているためにYRが95%以上でかつ圧力サイクル試験において目標値に達しなくなり、ボンベ用鋼材22はCrが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になり、ボンベ用鋼材23はNが本発明で規定した化学成分範囲を外れているためにTSが1000MPa以下になっていることがわかる。
Figure 0004007311
From Table 2, although the cylinder steel materials 15-23 which are the steel materials for cylinders for comparison are 13 mm or less in thickness, since the steel material 15 for cylinders is outside the chemical component range prescribed | regulated by this invention, TS is 1000 MPa or less, and the steel for the cylinder 16 is out of the chemical component range defined by the present invention, so the TS is 1000 MPa or less, and the steel for the cylinder 17 is a chemical component range defined by the present invention. Therefore, the target value in the pressure cycle test is not reached, and the steel for the cylinder 18 has a TS of 1000 MPa or less because Mo is out of the chemical composition range defined in the present invention. Is outside the chemical component range defined in the present invention, so that the YR is 95% or more and does not reach the target value in the pressure cycle test. Since n is outside the chemical component range defined in the present invention, TS is 1000 MPa or less, and the cylinder steel 21 has a YR of 95% or more because Mo is outside the chemical component range defined in the present invention. In addition, the target value is not reached in the pressure cycle test, and the cylinder steel material 22 has a TS of 1000 MPa or less because Cr is out of the chemical composition range defined in the present invention, and the cylinder steel material 23 has N defined in the present invention. It can be seen that TS is 1000 MPa or less because it is out of the chemical composition range.

これらに対して、本発明で規定した化学成分範囲にしたボンベ用鋼材1〜14は、すべて肉厚が13mm以下であり、またTSおよびYRに関してそれぞれ1000MPa以上、95%以下であることがわかる。すなわち本発明に係るボンベ用鋼材であれば、薄肉のボンベに最適な高強度の鋼材を実現できる。
また、本発明で規定した化学成分範囲にしたボンベ用鋼材1〜14は、すべてTSおよびYRに関してそれぞれ1000MPa以上、95%以下であり、また圧力サイクル試験に関して目標値に達していることがわかる。すなわち本発明に係るボンベ用鋼材であれば、高強度に加えて、優れた繰り返し疲労性を有する鋼材を実現できる。
On the other hand, it can be seen that the cylinder steel materials 1 to 14 in the chemical component range defined in the present invention all have a thickness of 13 mm or less, and TS and YR are 1000 MPa or more and 95% or less, respectively. That is, the steel material for a cylinder according to the present invention can realize a high-strength steel material optimal for a thin-walled cylinder.
In addition, it can be seen that all of the cylinder steel materials 1 to 14 having the chemical composition range defined in the present invention are 1000 MPa or more and 95% or less with respect to TS and YR, respectively, and reach the target value with respect to the pressure cycle test. That is, if it is the steel material for cylinders which concerns on this invention, in addition to high intensity | strength, the steel material which has the outstanding repeated fatigue property is realizable.

さらに、本発明で規定した化学成分範囲にしたボンベ用鋼材1〜14は、すべて高価な添加金属であるNiを最大でも1.91%しか含有しておらず、またCr、Moについてもそれぞれ最大でも1.91%、0.90%しか含有していないが、TSおよびYRに関してそれぞれ1000MPa以上、95%以下であることがわかる。すなわち本発明に係るボンベ用鋼材であれば、高強度に加えて、コストに優れた鋼材を実現できる。   Furthermore, the steel materials for cylinders 1 to 14 in the chemical composition range defined in the present invention all contain only 1.91% of Ni which is an expensive additive metal, and Cr and Mo are also maximum. However, although it contains only 1.91% and 0.90%, it turns out that it is 1000 Mpa or more and 95% or less regarding TS and YR, respectively. That is, if it is the steel material for cylinders concerning this invention, in addition to high intensity | strength, the steel material excellent in cost is realizable.

本発明は、薄肉のボンベ用鋼材に利用でき、特に小型軽量の高圧ガス用、消火器用ボンベ等に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for thin-walled cylinder steel materials, and in particular, can be used for small and light high pressure gas, fire extinguisher cylinders, and the like.

ボンベの形状の概略を示す図である。It is a figure which shows the outline of the shape of a cylinder.

Claims (4)

質量%で、
C:0.20〜0.35%、Si:≦0.35、Mn:0.3〜2.0%、P:≦0.025%、S:≦0.015%、Cr:0.8〜2.0%、Mo:0.3〜1.0%、B:0.0005〜0.0030%、Al:0.01〜0.10%、N:≦0.008%を含有し、残部はFeと不純物とからなる
ことを特徴とする、厚さ13.0mm以下のボンベ用鋼材。
% By mass
C: 0.20 to 0.35%, Si: ≦ 0.35, Mn: 0.3 to 2.0%, P: ≦ 0.025%, S: ≦ 0.015%, Cr: 0.8 -2.0%, Mo: 0.3-1.0%, B: 0.0005-0.0030%, Al: 0.01-0.10%, N: ≦ 0.008%, The balance is made of Fe and impurities. A steel for cylinders having a thickness of 13.0 mm or less .
請求項1に記載した成分に加え更に、質量%で、
Nb:≦0.10%、Ti:≦0.10%、Cu:≦2.00%、Ni:≦2.00%、V:≦0.10%、Ca:≦0.01%のうち、少なくとも1種を含有する
ことを特徴とする請求項1に記載の、厚さ13.0mm以下のボンベ用鋼材。
In addition to the ingredients described in claim 1,
Nb: ≦ 0.10%, Ti: ≦ 0.10%, Cu: ≦ 2.00%, Ni: ≦ 2.00%, V: ≦ 0.10%, Ca: ≦ 0.01%, It contains at least 1 sort (s). The steel material for cylinders of thickness 13.0 mm or less of Claim 1 characterized by the above-mentioned.
前記ボンベ用鋼材は、継ぎ目無し鋼管である
ことを特徴とする請求項1又は2に記載の、厚さ13.0mm以下のボンベ用鋼材。
The said steel material for cylinders is a seamless steel pipe. The steel material for cylinders of thickness 13.0 mm or less of Claim 1 or 2 characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の、厚さ13.0mm以下のボンベ用鋼材を用いる
ことを特徴とするボンベ。
The cylinder for steel according to any one of claims 1 to 3 , having a thickness of 13.0 mm or less .
JP2003375919A 2003-11-05 2003-11-05 Cylinder steel material and cylinder using the same Expired - Lifetime JP4007311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375919A JP4007311B2 (en) 2003-11-05 2003-11-05 Cylinder steel material and cylinder using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375919A JP4007311B2 (en) 2003-11-05 2003-11-05 Cylinder steel material and cylinder using the same

Publications (2)

Publication Number Publication Date
JP2005139499A JP2005139499A (en) 2005-06-02
JP4007311B2 true JP4007311B2 (en) 2007-11-14

Family

ID=34687155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375919A Expired - Lifetime JP4007311B2 (en) 2003-11-05 2003-11-05 Cylinder steel material and cylinder using the same

Country Status (1)

Country Link
JP (1) JP4007311B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251229B1 (en) 2007-09-19 2009-04-08 住友金属工業株式会社 Low alloy steel for high pressure hydrogen gas environment and container for high pressure hydrogen
JP4528346B2 (en) * 2009-04-28 2010-08-18 ファーバー・インダストリー・エッセ・ピ・ア FRP container for high pressure hydrogen storage using Cr-Mo steel liner
DE102019217369A1 (en) * 2019-11-11 2021-05-12 Robert Bosch Gmbh Slow-transforming steel alloy, process for the production of the slow-transforming steel alloy and hydrogen storage with a component made from the slow-transforming steel alloy

Also Published As

Publication number Publication date
JP2005139499A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US9222156B2 (en) High strength steel having good toughness
CN102676930B (en) Unimach with excellent toughness
JP5880788B2 (en) High strength oil well steel and oil well pipe
JP5176561B2 (en) Manufacturing method of high alloy pipe
CN104250705B (en) Enamel steel with high-temperature baking hardenability and manufacturing method thereof
JPS6411105B2 (en)
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP7349776B2 (en) High-pressure hydrogen containers and steel materials for high-pressure hydrogen
KR102096190B1 (en) Moldable lightweight steel with improved mechanical properties and method for manufacturing semi-finished products from the steel
JP6954475B2 (en) High Mn steel and its manufacturing method
CN107709592A (en) Ferrite series stainless steel plate and its manufacture method
KR101333307B1 (en) Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
CN107974625A (en) A kind of LPG ships storage tank high tenacity, low yield strength ratio low-temperature steel and its manufacture method
JP5668547B2 (en) Seamless steel pipe manufacturing method
RU2478727C1 (en) High-strength welded rebar
CN1746326A (en) Needle ferrichrome-X70 pipeline steel with high crack-arresting toughenss and its production
JP4007311B2 (en) Cylinder steel material and cylinder using the same
RU2653954C2 (en) Method of manufacturing thick-sheet rolled stock for manufacturing of electrically welded gas-and-oil pipes of large diameter category x42-x56, resistant against hydrogen-induced cracking in h2s-containing media
CN113088817A (en) Seamless steel tube, preparation method thereof and oil cylinder
JP6760476B2 (en) Steel plate and its manufacturing method
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JPH09176786A (en) Non-heat treated steel with high strength and low ductility
CN113278865A (en) Production method of high-pressure gas cylinder
JPH06306553A (en) Stainless steel excellent in pitting corrosion resistance
CN106566998B (en) CrMo series gear round steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350