JPH02141541A - Method for recovering antimony from copper electrolytic smelting system - Google Patents

Method for recovering antimony from copper electrolytic smelting system

Info

Publication number
JPH02141541A
JPH02141541A JP63296762A JP29676288A JPH02141541A JP H02141541 A JPH02141541 A JP H02141541A JP 63296762 A JP63296762 A JP 63296762A JP 29676288 A JP29676288 A JP 29676288A JP H02141541 A JPH02141541 A JP H02141541A
Authority
JP
Japan
Prior art keywords
antimony
copper
eluent
neutralized
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296762A
Other languages
Japanese (ja)
Inventor
Yoichi Takazawa
高沢 洋一
Shiro Kawai
志郎 河合
Yasukatsu Sasaki
康勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63296762A priority Critical patent/JPH02141541A/en
Publication of JPH02141541A publication Critical patent/JPH02141541A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To recover Sb with high purity from a copper electrolytic refining system by bringing a copper electrolyte and a chelate agent into reaction to adsorb the Sb in the liquid, then adding ethylenediaminetetraacetic acid to the liquid in which the Sb is eluted thereby complexing the Sb. CONSTITUTION:The copper electrolyte subjected to electrolytic refining is brought into contact with the chelate resin which can selectively absorb the Sb to adsorb the Sb in the electrolyte on the chelate resin. The adsorbed Sb and other metals are eluted in a strong acidic solvent. The ethylenediaminetetraacetic acid is added to this eluate to complex the Sb. This eluate neutralized by NaOH, etc., and only the complexed Sb is solidified as a neutralization residue. The solidified Sb is recovered. The eluate is heated to 50 to 70 deg.C and the neutralizing liquid is preferably neutralized up to pH8.5 to 9.5.

Description

【発明の詳細な説明】 一上 1 本発明は、銅電解製錬系統に使用された銅電解液からア
ンチモン(s b)を分離回収する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION 1. The present invention relates to a method for separating and recovering antimony (sb) from a copper electrolyte used in a copper electrolytic smelting system.

【釆立且遣 従来、銅電解製錬系統において、使用された銅電解液か
ら不純物を除去する浄液方法としては脱銅電解が採用さ
れている。
[Katari Katsukashi] Conventionally, in copper electrolytic smelting systems, decopper removal electrolysis has been adopted as a solution purification method to remove impurities from the copper electrolyte used.

脱銅電解では、予め不純物濃度を高めた電解液にて鉛等
の不溶性陽極と銅種板陰極を使用して不純物金属を電解
採取するものであり、該不純物金属としてアンチモン(
s b)が含まれていることは周知である。
In copper removal electrolysis, impurity metals are electrolytically extracted using an insoluble anode such as lead and a copper-seed plate cathode in an electrolytic solution with a high impurity concentration.
It is well known that s b) is included.

一方、近年、アンチモン(s b)は、メツキ材料1含
金用材料、半導体材料、医薬品、その他種々の技術分野
で広く使用されている重要な金属であり、銅製錬の副産
物であるアンチモン(s b)を系外へと完全に分離回
収することが6求されている。
On the other hand, in recent years, antimony (sb) is an important metal widely used in metal-containing materials, semiconductor materials, pharmaceuticals, and various other technical fields. It is desired to completely separate and recover b) from the system.

が  しよ−と る しかしながら、上記銅電解製錬系統における脱銅電解で
は、陰極析出物はアンチモン(s b)の外に約50%
の銅(Cu)、その他ヒ素(AS)、ビスマス(Bi)
、鉄(F e)等が含まれている。該陰極析出物は、含
有された有価物である銅(Cu)を回収するべく繰返し
溶錬工程に供され、アンチモン(s b)を完全に銅製
錬系統から分離除去することは困難か或いは不i+)能
であった。
However, in the copper removal electrolysis in the above-mentioned copper electrolytic smelting system, about 50% of the cathode deposits are other than antimony (sb).
Copper (Cu), other arsenic (AS), bismuth (Bi)
, iron (Fe), etc. The cathode deposits are subjected to repeated smelting processes to recover the valuable copper (Cu) contained therein, and it is difficult or impossible to completely separate and remove antimony (sb) from the copper smelting system. i+) was able to perform well.

本発明者等は、多くの研究実験の結果、塩酸(MCIの
ような強酸性溶液中に溶解されたアンチモン(s b)
は、該溶液中にてEDTAにて錯体化し、次いで苛性ソ
ーダ溶液にて中和することにより、中和残渣として回収
し得ることを見出した。
As a result of many research experiments, the inventors have discovered that antimony (s b ) dissolved in a strong acidic solution such as hydrochloric acid (MCI)
found that by complexing with EDTA in the solution and then neutralizing with a caustic soda solution, it could be recovered as a neutralized residue.

本発明は斯る新規な知見に基づきなされたものである。The present invention has been made based on this new knowledge.

従って、本発明の目的は、銅電解製錬系統からアンチモ
ン(s b)のみを高純度にて分離回収する方法を提供
することである。
Therefore, an object of the present invention is to provide a method for separating and recovering only antimony (sb) with high purity from a copper electrolytic smelting system.

るた の 」1記目的は本発明に係る銅電解製錬系統からのアンチ
モンの回収方法にて達成される。要約すれば本発明は、
銅電解液とアンチモン(s b)を選択的に吸着し得る
キレート樹脂とを接触させ、該銅電解液中の少なくとも
アンチモン(s b)を吸着せしめる工程、該キレート
樹脂に吸着されたアンチモン(s b)及び他の金属を
溶離する工程、溶離液にエチレンジアミン四酢酸(ED
TA)を添加し、アンチモン(s b)を錯体化する工
程、次いで、該溶離液を中和し、アンチモン(s b)
のみを中和残渣として回収する工程、を有することを特
徴とする銅電解製錬系統からのアンチモンの回収方法で
ある。
Object 1 of the present invention is achieved by the method for recovering antimony from a copper electrolytic smelting system according to the present invention. In summary, the present invention:
A step of bringing a copper electrolyte into contact with a chelate resin capable of selectively adsorbing antimony (sb) to adsorb at least antimony (sb) in the copper electrolyte; b) and other metals, ethylenediaminetetraacetic acid (ED) is used as the eluent.
TA) to complex antimony (s b), then neutralize the eluate and complex antimony (s b)
This is a method for recovering antimony from a copper electrolytic smelting system, comprising the step of recovering only antimony as a neutralized residue.

支崖遺 次に、本発明に係る銅電解系統からのアンチモンの回収
方法を図面に即して更に詳しく説明する。
Next, the method for recovering antimony from a copper electrolysis system according to the present invention will be explained in more detail with reference to the drawings.

第1図に、銅電解系統における銅電解液から不純物を浄
液し、アンチモン(S b)を分離回収する工程がフロ
ー図で示される。
FIG. 1 is a flowchart showing a process of purifying impurities from a copper electrolyte in a copper electrolysis system and separating and recovering antimony (Sb).

本発明に従えば、銅電解製錬に供された浄液すべき銅電
解液とキレート樹脂とを接触させる。該キレート樹脂と
しては、特にアンチモン(s b)を選択的に吸着し得
るキレート樹脂が選択され、アンチモン(s b)に対
し反応性に富む官能基、例えばアミノアルキレン燐酸基
、イミノアルキレン燐酸基等を有した水不溶性高分子の
任意のものを使用することができ、例えばMX−2(ミ
ヨシ油脂株式会社製)等を使用することができる。
According to the present invention, the chelate resin is brought into contact with the copper electrolyte to be purified that has been subjected to copper electrolytic smelting. As the chelate resin, a chelate resin that can selectively adsorb antimony (sb) is particularly selected, and a functional group highly reactive to antimony (sb), such as an aminoalkylene phosphate group, an iminoalkylene phosphate group, etc. Any water-insoluble polymer having the following can be used, and for example, MX-2 (manufactured by Miyoshi Yushi Co., Ltd.) can be used.

銅電解液は、例えば5V=2〜10程度、好ましくは、
5V=3〜6の速度で16〜24時間通液される。
The copper electrolyte is, for example, about 5V=2 to 10, preferably,
The liquid is passed at a rate of 5V=3 to 6 for 16 to 24 hours.

アンチモン(s b)濃度の低下した吸着検液は、銅電
解製錬系統に戻される。
The adsorption test solution with a reduced antimony (sb) concentration is returned to the copper electrolytic smelting system.

以上の如くにしてキレート樹脂に吸着されたアンチモン
(s b)は強酸性の溶媒、例えば6Nの強塩酸を使用
して溶離される。キレート樹脂はアンチモン(s b)
の他に、銅電解液中に溶解された他の金属、例えばビス
マス(Bi)、鉄(Fe)、ヒ素(As)、銅(Cu)
をも吸着しており、従って、該溶離液中には、アンチモ
ン(Sb)の他に、例えばビスマス(Bi)、鉄(Fe
)、ヒ素(As)、銅(Cu)が存在している。
Antimony (sb) adsorbed on the chelate resin as described above is eluted using a strongly acidic solvent, for example, 6N strong hydrochloric acid. Chelate resin is antimony (s b)
Besides, other metals dissolved in the copper electrolyte, such as bismuth (Bi), iron (Fe), arsenic (As), copper (Cu)
Therefore, in addition to antimony (Sb), the eluent also contains bismuth (Bi), iron (Fe), etc.
), arsenic (As), and copper (Cu).

本発明によれば、溶離液にエチレンジアミン四酢酸(E
 D T A)が添加される。該EDTAはアンチモン
(s b)を錯体化する働きをなす。EDTAは、溶離
液中のアンチモン(Sb)、  ヒ素(As)、ビスマ
ス(Bi)、銅(Cu)、鉄(Fe)の合計モル数とほ
ぼ等モルとなる量が添加される。又、このときの溶離液
は50〜70℃程度に保持されるのが好適である。
According to the present invention, ethylenediaminetetraacetic acid (E
DTA) is added. The EDTA functions to complex antimony (s b). EDTA is added in an amount that is approximately equimolar to the total number of moles of antimony (Sb), arsenic (As), bismuth (Bi), copper (Cu), and iron (Fe) in the eluent. Further, the eluent at this time is preferably maintained at a temperature of about 50 to 70°C.

後期溶離液は、フロー図に示されるように、塩酸と水を
添加することにより酸濃度が調整され、溶離用溶媒とし
て再使用される。
As shown in the flow diagram, the acid concentration of the late eluent is adjusted by adding hydrochloric acid and water, and the latter is reused as an elution solvent.

EDTAが添加された溶離液は、次いで、アルカリ性溶
液、例えば苛性ソーダ(NaOH)にて中和される。該
中和液はpHa、5〜9.5程度となるようにするのが
好ましく、又温度は50〜70℃程度とされるのが好ま
しい。該中和作用にて、錯体化されたアンチモン(s 
b)のみが中和残渣として固化され、他の金属、例えば
ビスマス(Bi)、鉄(Fe)、ヒ素(As)、銅(C
U)等は中和液中にイオンの形態にて残留する。
The eluent to which EDTA has been added is then neutralized with an alkaline solution, such as caustic soda (NaOH). The pH of the neutralizing solution is preferably about 5 to 9.5, and the temperature is preferably about 50 to 70°C. Through this neutralizing action, complexed antimony (s
Only b) is solidified as a neutralized residue, and other metals such as bismuth (Bi), iron (Fe), arsenic (As), copper (C
U), etc. remain in the form of ions in the neutralizing solution.

第2図〜第4図には溶離液中の各金属に対するEDTA
及び温度の影響を調べた実験結果が示される。EDTA
を溶離液に添加しない場合には、第3図から分かるよう
に、溶離液のpHを如何様に調整したとしてもアンチモ
ン(s b)と鉄(Fe)、銅(Cu)、  ビスマス
(Bi)、  ヒ素(AS)との残渣移行率を差別化す
ることはできず、結局はアンチモン(s b)を単独で
分離回収することはできない。
Figures 2 to 4 show EDTA for each metal in the eluent.
Experimental results examining the effects of temperature and temperature are shown. EDTA
As can be seen from Figure 3, if no antimony (sb), iron (Fe), copper (Cu), and bismuth (Bi) are added to the eluent, no matter how the pH of the eluent is adjusted. , it is not possible to differentiate the residue transfer rate from arsenic (AS), and in the end it is not possible to separate and recover antimony (sb) alone.

又、第4図から理解されるように、EDTAを溶離液に
添加した場合には、ヒ素(As)及び銅(Cu)の残渣
移行率は低減し、アンチモン(Sb)との分離は良好と
なるが、溶離液が50〜70℃(好ましくは55〜65
℃)に加温されていない場合には、ビスマス(Bi)及
びM(Fe)はアンチモン(s b)との間に残渣移行
率の差別化を形成することはできずアンチモン(s b
)の単独での分離回収効率は悪くなる。
Furthermore, as can be understood from Figure 4, when EDTA was added to the eluent, the residue transfer rate of arsenic (As) and copper (Cu) was reduced, and separation from antimony (Sb) was good. However, the temperature of the eluent is 50 to 70°C (preferably 55 to 65°C).
℃), bismuth (Bi) and M (Fe) cannot form a differentiation in the residue transfer rate between antimony (s b) and antimony (s b
) alone will result in poor separation and recovery efficiency.

つまり、本発明をより有効に実施するには、第2図に図
示されるように、(1)溶11腋にEDTAが添加され
ることの外に、(2)該溶離液は、50〜70℃、好ま
しくは55〜65℃程度に加温されること、更に、(3
)該溶離液は、p)18.5〜9.5にまで中和される
こと、が必要である。斯る条件にて、他の金属、即ち、
ビスマス(Bt)、鉄(Fe)、ヒ素(As)、銅(C
U)の残渣移行率は30%以下となるのに対して、アン
チモン(s b)の回収率は90%程度となる。
In other words, in order to carry out the present invention more effectively, as shown in FIG. heating to 70°C, preferably about 55 to 65°C;
) The eluent needs to be neutralized to p) 18.5-9.5. Under such conditions, other metals, i.e.
Bismuth (Bt), iron (Fe), arsenic (As), copper (C
The residue transfer rate of U) is 30% or less, whereas the recovery rate of antimony (s b) is about 90%.

表1に、■溶離液にEDTAを溶解し、60℃でpH9
に中和したとき、■溶離液にEDTAを溶解し、60℃
でpH9に中和し、更に水洗(パルプ濃度10%)した
とき、■溶離液にEDTAを溶解し、無加温(25℃)
でpH9に中和したとき、■溶離液にEDTAを溶解せ
ず、無加温でPH9に中和したとき、の中和残渣の分析
値を示す。
In Table 1, EDTA was dissolved in the eluent and the pH was adjusted to 9 at 60°C.
When neutralized, dissolve EDTA in the eluent and heat at 60℃.
When neutralized to pH 9 and further washed with water (pulp concentration 10%),
Shown are the analytical values of the neutralized residue when neutralized to pH 9 with (1) and neutralized to pH 9 without dissolving EDTA in the eluent and without heating.

表1 表1より、本発明に従えば純度の高いアンチモン残渣を
得ることができることが分かる。
Table 1 Table 1 shows that according to the present invention, highly pure antimony residue can be obtained.

このようにして得られたアンチモンを含有する中和残渣
は溶離液を濃化することにより溶離液より有効に分離さ
れる。
The antimony-containing neutralized residue thus obtained can be effectively separated from the eluent by concentrating the eluent.

該中和残渣中のアンチモン(s b)は、例えば苛性ソ
ーダ溶液で浸出し、浸出液に酸化剤(HzOz等)を添
加することにより、アンチモン酸ソーダとして回収され
る。
Antimony (s b) in the neutralized residue is recovered as sodium antimonate by, for example, leaching with a caustic soda solution and adding an oxidizing agent (such as HzOz) to the leaching solution.

次に、本発明を実施例について説明する。Next, the present invention will be described with reference to examples.

実施例1 銅電解製錬に供された銅電解液とキレート樹脂、MX−
2(ミヨシ油脂株式会社製)を5V=5で16Hr接触
し、銅電解液中のアンチモン(s b)を選択的に吸着
させた。
Example 1 Copper electrolyte and chelate resin used in copper electrolytic smelting, MX-
2 (manufactured by Miyoshi Oil Co., Ltd.) at 5V=5 for 16 hours to selectively adsorb antimony (sb) in the copper electrolyte.

次いで、アンチモン(S b)を吸着した該キレート樹
脂部分に6Nの強塩酸をSV= 2で5Hr通液し、キ
レート樹脂部分に吸着された金属部分を溶離した。
Next, 6N strong hydrochloric acid was passed through the chelate resin portion adsorbing antimony (S b) at SV=2 for 5 hours to elute the metal portion adsorbed on the chelate resin portion.

このようにして得られた溶離液を1文採取し、該溶離液
にエチレンジアミン四酢酸4Na(EDTA−4Na)
を43.4g添加した。該EDTAが溶解された溶離液
は60’Cにて30分間保持された。このとき、EDT
A溶解後の溶離液中の成分は表2に示す通りであった。
One sample of the eluent thus obtained was added to the eluent, and 4Na ethylenediaminetetraacetic acid (EDTA-4Na) was added to the eluent.
43.4g of was added. The EDTA-dissolved eluate was held at 60'C for 30 minutes. At this time, EDT
The components in the eluent after dissolving A were as shown in Table 2.

表2 EDTAが添加された溶離液は、次いで、苛性ソーダ(
NaOH)を186.4g添加し、PH9程度となるよ
うに中和した。
Table 2 The eluent to which EDTA was added was then treated with caustic soda (
186.4g of NaOH) was added to neutralize the solution to a pH of about 9.

該中和液を60℃にて6時間静置すると、中和残渣が形
成され、該中和残渣は濾化することにより中和抜液と分
離された。得られた中和残渣は9.8g (水分19.
0%)であり、中和抜液は1.3Jlであった。表3び
表4それぞれ中和残渣及び中和抜液の成分が示される。
When the neutralized solution was allowed to stand at 60° C. for 6 hours, a neutralized residue was formed, and the neutralized residue was separated from the neutralized solution by filtration. The neutralized residue obtained was 9.8 g (moisture 19.
0%), and the amount of neutralized liquid drained was 1.3 Jl. Tables 3 and 4 show the components of the neutralized residue and neutralized liquid, respectively.

表3 ンチモンのみが高純度にて分離回収される。Table 3 Only antimony is separated and recovered with high purity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従った銅電解製錬系統における銅電
解液から不純物を浄液し、アンチモン(Sb)を分離回
収する工程を示すフロー図である。 第2図は、本発明に従ってEDTAを添加し、60℃に
保持した場合の各成分のpH値に対する残渣移行率を示
すグラフである。 第3図は、EDTAを添加しない場合(無加温)の各成
分のpH値に対する残渣移行率を示すグラフである・ 第4図は、本発明に従ってEDTAを添加し、無加温状
態に保持した場合の各成分のpH値に対する残渣移行率
を示すグラフである。 代理人  弁理士  倉 橋   暎 代理人  弁理士  宮 川 長 夫 表4 次に、中和残渣をtg採取し、水100mM加えて、無
加温、パルプ濃度10 g/lにて1時間攪拌して水洗
した。水洗後の中和残渣の成分を表5示す。 表5 本実施例にて、中和残渣は純度の高いアンチモン(s 
b)残渣であることが分かる。 先艶夏逝遣
FIG. 1 is a flow diagram showing a process of purifying impurities from a copper electrolyte and separating and recovering antimony (Sb) in a copper electrolytic smelting system according to the present invention. FIG. 2 is a graph showing the residue transfer rate versus pH value of each component when EDTA is added according to the present invention and maintained at 60°C. Figure 3 is a graph showing the residue transfer rate with respect to the pH value of each component when EDTA is not added (no heating). Figure 4 is a graph showing the residue transfer rate with respect to the pH value of each component when EDTA is added according to the present invention and maintained in an unheated state. It is a graph which shows the residue transfer rate with respect to the pH value of each component in the case. Agent Patent Attorney Akio Kurahashi Agent Patent Attorney Nagao Miyagawa Table 4 Next, the neutralized residue was collected at tg, 100mM of water was added, and the mixture was stirred for 1 hour without heating at a pulp concentration of 10 g/l. Washed with water. Table 5 shows the components of the neutralized residue after washing with water. Table 5 In this example, the neutralization residue was highly pure antimony (s
b) It turns out to be a residue. Early summer passing away

Claims (1)

【特許請求の範囲】 1)銅電解液とアンチモン(Sb)を選択的に吸着し得
るキレート樹脂とを接触させ、該銅電解液中の少なくと
もアンチモン(Sb)を吸着せしめる工程、該キレート
樹脂に吸着されたアンチモン(Sb)及び他の金属を溶
離する工程、溶離液にエチレンジアミン四酢酸(EDT
A)を添加し、アンチモン(Sb)を錯体化する工程、
次いで、該溶離液を中和し、アンチモン(Sb)のみを
中和残渣値として回収する工程、を有することを特徴と
する銅電解製錬系統からのアンチモンの回収方法。 2)溶離液は50〜70℃に加温され、中和液はpH8
.5〜9.5にまで中和されることを特徴とする請求項
1記載の銅電解製錬系統からのアンチモンの回収方法。
[Claims] 1) A step of bringing a copper electrolyte into contact with a chelate resin capable of selectively adsorbing antimony (Sb) and causing at least antimony (Sb) in the copper electrolyte to be adsorbed; In the step of eluting adsorbed antimony (Sb) and other metals, ethylenediaminetetraacetic acid (EDT) is used as the eluent.
A) adding and complexing antimony (Sb);
A method for recovering antimony from a copper electrolytic smelting system, comprising the steps of: then neutralizing the eluent and recovering only antimony (Sb) as a neutralized residue value. 2) The eluent is heated to 50-70°C, and the neutralizing solution has a pH of 8.
.. 2. The method for recovering antimony from a copper electrolytic smelting system according to claim 1, wherein antimony is neutralized to a concentration of 5 to 9.5.
JP63296762A 1988-11-24 1988-11-24 Method for recovering antimony from copper electrolytic smelting system Pending JPH02141541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296762A JPH02141541A (en) 1988-11-24 1988-11-24 Method for recovering antimony from copper electrolytic smelting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296762A JPH02141541A (en) 1988-11-24 1988-11-24 Method for recovering antimony from copper electrolytic smelting system

Publications (1)

Publication Number Publication Date
JPH02141541A true JPH02141541A (en) 1990-05-30

Family

ID=17837795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296762A Pending JPH02141541A (en) 1988-11-24 1988-11-24 Method for recovering antimony from copper electrolytic smelting system

Country Status (1)

Country Link
JP (1) JPH02141541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222948A (en) * 2015-05-27 2016-12-28 国立大学法人 宮崎大学 Extractant of antimony ion and recovery method of antimony ion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222948A (en) * 2015-05-27 2016-12-28 国立大学法人 宮崎大学 Extractant of antimony ion and recovery method of antimony ion

Similar Documents

Publication Publication Date Title
JPS59162108A (en) Washing of solution of sulfuric acid
US5256187A (en) Separation of precious metals by an ion exchange process
KR960029491A (en) Method for recovering antimony and bismuth from copper electrolytic solution
US6514414B1 (en) Process for separation and removal of iron ions from basic zinc solution
JPH07187618A (en) Refining of concentrated sulfuric acid solution
JP5403224B2 (en) How to recover bismuth
JP3062448B2 (en) Separation and recovery method of uranium and impurities using chelating resin
KR100220976B1 (en) Recovering method for co,ni,cu from the scrap of diamond tools
JPH02141541A (en) Method for recovering antimony from copper electrolytic smelting system
CN85100109B (en) Recovery of platinum via extracting waste catalysts
CN109055775B (en) Regeneration method of complexing precipitator for purifying copper electrolyte
JP7486021B2 (en) Method for producing cadmium hydroxide
CN85100106B (en) All-wet refining process of goldmud from cyanide processing
JP3548097B2 (en) Separation and recovery method of bismuth and copper etc. from treatment object containing cuprous oxide and bismuth
CN106906363A (en) A kind of processing method containing arsenical copper slag
JPH01108118A (en) Selective separation and recovery of scandium
JPH0233777B2 (en)
KR20190036607A (en) Method for separating and recovering silver, platinum metals and heavy metals from industrial waste
JP2006526491A (en) Extraction method of resin and non-ferrous metal
JPS6220838A (en) Installation for treating waste pickling liquid and solid residue
JP2003213350A (en) Method of recovering bismuth and method of recovering bismuth sulfate
JP4506041B2 (en) Methods for removing osmium and ruthenium from nickel chloride solutions.
CN1052264C (en) Metallurgical technology of sulfuric acid treatment of concentrated gold ore powder
JPH085666B2 (en) Gold recovery method
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte