JPH02139974A - Gaas-on-si solar cell - Google Patents

Gaas-on-si solar cell

Info

Publication number
JPH02139974A
JPH02139974A JP63293418A JP29341888A JPH02139974A JP H02139974 A JPH02139974 A JP H02139974A JP 63293418 A JP63293418 A JP 63293418A JP 29341888 A JP29341888 A JP 29341888A JP H02139974 A JPH02139974 A JP H02139974A
Authority
JP
Japan
Prior art keywords
solar cell
gaas
insulating film
substrate
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63293418A
Other languages
Japanese (ja)
Other versions
JPH0793449B2 (en
Inventor
Masaaki Usui
正明 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63293418A priority Critical patent/JPH0793449B2/en
Publication of JPH02139974A publication Critical patent/JPH02139974A/en
Publication of JPH0793449B2 publication Critical patent/JPH0793449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To facilitate welding of an interconnector to a p-type side electrode without deteriorating the solar cell characteristics by a method wherein a GaAs solar cell part is selectively built up on a region where an insulating film is not formed and a reflection-proof film and a metal electrode which are formed last are extended onto the insulating film. CONSTITUTION:The breakdown of a GaAs solar cell part and the deterioration of the solar cell characteristics caused by a thermal damage at the time of welding by forming an interconnector welding part 7 on an Si substrate. As an insulating film 9 on the Si substrate has a lower thermal conductivity than GaAs and the like, energy inputted for welding can be reduced, so that the damage on the solar cell can be further reduced. Moreover, by the selectivity wherein, if an insulating film such as an SiO2 film is formed on as Si substrate first and then GaAs is built up, GaAs is not built up on SiO2, an etching process afterwards can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は軽量、高性能太陽電池であるGaA6onS
i太陽電池に関し、特にその電極構造に関するものであ
る。
[Detailed description of the invention] [Industrial application field] This invention is a lightweight, high-performance solar cell, GaA6onS.
This invention relates to i-solar cells, and particularly to its electrode structure.

〔従来の技術〕[Conventional technology]

第2図は例えば198’J年開、催第8回太陽光発電国
際会議の発表論文集の198頁に示された従来のGaA
sonsi太陽電池を示す断面図であり、図において、
1はSi基板、2はこのSi基板1上にエピタキシャル
成長させたn形GaAs13はさらにその上に成長させ
たGaAsとAIGaASの超格子(以下GaAs/A
lGaAs超格子と称す)、2゛は太陽電池の能動層と
してのn形G a A 814はGaAs/AlGaA
s超格子3の上に形成されたn形GaAs2−の上に形
成され、太陽電池の能動層として光エネルギーを吸収し
発電するpn接合形成のためのp形GaAs55はp形
GaAs4の上に形成され、太陽電池の窓層の役割を果
たすp形A I G a A 8 N Bは太陽電池内
部へできるだけ多くの光を入射させるための反射防止膜
(以下ARCと称す)、7はARC6及びp形AlGa
As5に穴を開け、p形GaA3にコンタクトするよう
にパターニング形成され、光照射により発生した光電流
を有効に収集、外部へ取り出すためのp側メタル電極、
8はSi基板の裏面側に形成されたn側メタル電極であ
る。
Figure 2 shows, for example, the conventional GaA shown on page 198 of the collection of papers presented at the 8th International Conference on Solar Power Generation held in 198'J.
It is a sectional view showing a sonsi solar cell, and in the figure,
1 is a Si substrate, 2 is an n-type GaAs 13 epitaxially grown on this Si substrate 1, and a superlattice of GaAs and AIGaAS (hereinafter referred to as GaAs/A
814 is GaAs/AlGaA as the active layer of the solar cell.
The p-type GaAs 55 is formed on the n-type GaAs2- formed on the s superlattice 3, and the p-type GaAs 55 is formed on the p-type GaAs4 to form a p-n junction that absorbs light energy and generates electricity as the active layer of the solar cell. The p-type A I G a A 8 N B, which plays the role of the window layer of the solar cell, is an anti-reflection coating (hereinafter referred to as ARC) to allow as much light as possible to enter the inside of the solar cell, and 7 is an ARC6 and p-type Shape AlGa
A p-side metal electrode is formed by drilling a hole in As5 and patterning it to contact p-type GaA3, and effectively collects the photocurrent generated by light irradiation and takes it out to the outside.
8 is an n-side metal electrode formed on the back side of the Si substrate.

次に動作について説明する。Next, the operation will be explained.

光がARC8及びp形AlGaAs5を通してp形Ga
As4及びn形GaAs5に入射すると該入射した光は
この領域で吸・収され、電子と正孔のキャリアに変換さ
れp形GaAs4で発生した電子はpn接合を通しn形
GaAs2へ、n形GaAs2で発生した正孔はpn接
合を通しp形GaAs4へそれぞれ拡散してゆき、正の
電荷がp側メタル電極7、負の電荷がn側メタル電極8
へ収集され、この端子間に電圧が発生しこの端子間から
電流を取り出すことができる。
Light passes through ARC8 and p-type AlGaAs5 to p-type Ga
When incident light enters As4 and n-type GaAs5, the incident light is absorbed in this region and converted into carriers of electrons and holes. The electrons generated in p-type GaAs4 pass through the p-n junction to n-type GaAs2, and are transferred to n-type GaAs2. The generated holes diffuse into the p-type GaAs 4 through the p-n junction, and the positive charges are transferred to the p-side metal electrode 7 and the negative charges are transferred to the n-side metal electrode 8.
A voltage is generated between these terminals, and a current can be extracted from between these terminals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のGaAsonSi太陽電池は以上のように構成さ
れているので、原理上電流の取り出しに問題がないよう
に見えるが、実際に太陽電池として使用する場合は、こ
のp電極7及びn電極8側に電流取り出しのためのイン
ターコネクタを接続する必要がある。この接続にはGa
AsonSi太陽電池等では、−膜内には信顆性の高い
パラレルギャップ溶接法が用いられているが、この方式
を第2図に示すような構造のGaAsonSi太陽電池
に適用すると、熱ダメージによりp側電極7下のGaA
s層を破壊し、太陽電池特性を著しく・低下させてしま
・う七いう実用上の問題点があった。
Since the conventional GaAsonSi solar cell is configured as described above, there seems to be no problem in drawing out the current in principle, but when actually used as a solar cell, there are It is necessary to connect an interconnector for current extraction. This connection requires Ga
In AsonSi solar cells, etc., a parallel gap welding method with high fidelity is used inside the film. However, when this method is applied to a GaAsonSi solar cell with a structure as shown in Figure 2, P GaA under side electrode 7
There were practical problems in that the S-layer was destroyed and the solar cell characteristics were significantly degraded.

この発明は上記のような問題点を解消するためになされ
たもので、太陽電池特性を低下させることなくp側電極
にインターコネクタを溶接できるGaAsonSi太陽
電池を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain a GaAsonSi solar cell in which an interconnector can be welded to the p-side electrode without deteriorating the solar cell characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るGaAsonSi太陽電池は、まず最初
に電極溶接部分を形成するための絶縁膜を形成し、その
後GaAs太陽電池部分を絶縁膜の非形成領域に選択成
長させ、最後に形成する反射防止膜及びおよびメタル電
極を上記絶縁膜上にまで延伸形成するようにしたもので
ある。
In the GaAsonSi solar cell according to the present invention, an insulating film for forming an electrode welding part is first formed, then a GaAs solar cell part is selectively grown in an area where the insulating film is not formed, and finally an antireflection film is formed. and a metal electrode is formed extending over the insulating film.

〔作用〕[Effect]

この発明においては、p側メタル電極のインターコネク
タ溶接部分は1.GaAs太陽電池能動層の上でなく機
能上挙なる保持材であるSi基板上の絶縁膜上に形成さ
れていることにより、太陽電池特性を低下させることな
く容易にインターコネクタを溶接するこ・とができる。
In this invention, the interconnector welding portion of the p-side metal electrode is 1. Since it is formed not on the GaAs solar cell active layer but on the insulating film on the Si substrate, which is a functional holding material, the interconnector can be easily welded without deteriorating the solar cell characteristics. Can be done.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1はSi基板、9はこのSl基板1上
に形成した絶縁膜、2は絶縁II9を形成したSi基板
1上に選択成長させた′n形G a A s s3はそ
の上に形成した歪み緩和のGaAs/AlGaAs超格
子、2′はGaAs太陽電池の能動層としてのn形G 
a A s s  4はその上のp形GaAs55は太
陽電池の窓層としてのp形AlGaAs1 Bは反射防
止膜であり、この実施例では絶縁性の5taNnを想定
しており、I)n接合も含めたG a’A s結晶端面
及び絶縁膜9をもパッシベートシている。7は反射防止
膜6及びp形AlGaAs5に開けられたコンタクトホ
ールを介しp形GaAs4とコンタクトす、るとともに
その延長がSi基板1上に形成された絶縁膜θ上まで延
伸形成されているp側メタル電極、8はSt基板1裏面
に形成されたn側メタル電極である。
In FIG. 1, 1 is a Si substrate, 9 is an insulating film formed on this Sl substrate 1, and 2 is an 'n-type GaAs s3 selectively grown on the Si substrate 1 on which insulation II9 is formed. strain-relaxed GaAs/AlGaAs superlattice formed in
a A s s 4 is p-type GaAs on it 55 is p-type AlGaAs as a window layer of the solar cell 1 B is an anti-reflection film, and in this example, insulating 5taNn is assumed, and I)n junction is also used. The included Ga'As crystal end face and the insulating film 9 are also passivated. Reference numeral 7 denotes a p-side layer which is in contact with the p-type GaAs 4 through the anti-reflection film 6 and the contact hole made in the p-type AlGaAs 5, and whose extension extends over the insulating film θ formed on the Si substrate 1. The metal electrode 8 is an n-side metal electrode formed on the back surface of the St substrate 1.

本発明の太陽電池の基本的動作原理については従来例と
同様であるので説明を省略し、本実施例の構造により得
られる効果について述べる。
Since the basic operating principle of the solar cell of the present invention is the same as that of the conventional example, the explanation will be omitted, and the effects obtained by the structure of this embodiment will be described.

第1にSi基板上にインターコネクタ溶接部7を形成し
たことにより溶接時の熱ダメージでGaAs太陽電池部
が破壊され、太陽電池特性が低下するようなことがなく
なる。
First, by forming the interconnector welded portion 7 on the Si substrate, the GaAs solar cell portion will not be destroyed due to thermal damage during welding and the solar cell characteristics will not deteriorate.

第2にSi基板上の絶縁11E9がGaAs等に比べて
熱を伝えにくいことから、溶接時の投入エネルギーを減
少させることができるので、さらに太陽電池へのダメー
ジが少なくなる。このと、とから現在では不可能なイン
ターコネクタの溶接が実用レベルで可能になる。
Second, since the insulation 11E9 on the Si substrate conducts heat less easily than GaAs or the like, the energy input during welding can be reduced, further reducing damage to the solar cell. With this and, welding of interconnectors, which is currently impossible, becomes possible at a practical level.

第8にSi基板上に始めにSin、等の絶縁膜を形成し
その後GaAsを成長させると5i02上にはGaAs
が成長しないという選択性によってその後のエツチング
プロセスを簡略化することができる。ここで、始めにG
aAs太陽電池部分を形成し、後から絶縁膜を形成する
製造方法では、ければならない点や、′数種のGaAs
系の膜をエツチングするプロセスが必要になるなど生産
性が問題になるが、本発明ではSN基板上に始めに5i
02等の絶縁膜を形成しその後GaAsを成長させるこ
とによってSin、上にはGaAsが成長しないという
選択性を利用するようにしているので、その後のエツチ
ングプロセスを大きく簡略化できる。
Eighth, if an insulating film such as Sin is first formed on the Si substrate and then GaAs is grown, GaAs is formed on 5i02.
The selectivity of no growth simplifies the subsequent etching process. Here, at the beginning, G
In the manufacturing method in which the aAs solar cell part is formed and the insulating film is formed later, there are certain points that must be met, and that several types of GaAs
Although productivity is a problem as a process of etching the system film is required, in the present invention, the 5i film is first deposited on the SN substrate.
By forming an insulating film such as 02 and then growing GaAs, the selectivity that GaAs does not grow on Sin is utilized, so the subsequent etching process can be greatly simplified.

このように本発明では低価格で高信頼性のGaAson
Si太陽電池が得られるものである。
In this way, the present invention utilizes low-cost and highly reliable GaAson.
A Si solar cell is obtained.

なお上記実施例では絶縁膜9にS i O,を利用した
ものを示したが、高い絶縁性を有するものであれば他の
材質を用いても良い。
In the above embodiment, the insulating film 9 is made of SiO, but other materials may be used as long as they have high insulating properties.

また上記実施例では太陽電池について説明したが、Ga
As on S i構造の他の半導体デバイスであって
もよく、上記実施例と同様の効果を奏する。
Furthermore, in the above embodiment, a solar cell was explained, but Ga
Other semiconductor devices having an As on Si structure may be used, and the same effects as in the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、GaAs  。 As described above, according to the present invention, GaAs.

nSl太陽電池において、プロセスの最初にSt基板上
に絶縁膜を形成し一*  GaAsエピ層の形成後イン
ターコネクタ溶接部である反射防止膜およびメタル金属
を上記SN基板上の絶縁膜上まで延伸形成するようにし
たので、実用性のある軽量GBA6onSi太陽電池を
容易に製造できるという効果がある。
In the nSl solar cell, an insulating film is formed on the St substrate at the beginning of the process, and after the formation of the GaAs epi layer, an anti-reflection film and metal, which are interconnector welding parts, are extended to the insulating film on the SN substrate. This has the effect that a practical and lightweight GBA6onSi solar cell can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるGaAs  。 nSi太陽電池を示す断面構造図、第2図は従来のGa
AsonSi太陽電池を示す断面構造図である。 図において、1はSi基板、2はn形GaAs12゛は
GaAs太陽電池の能動層としてのn形GaAs53は
G a A s / A I G a A s超格子、
4はp形G a A S15はp形A I G a A
 8% 8は絶縁性反射防止膜、7はp側メタル電極、
8はn側メタル電極、9は絶縁膜である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 shows a GaAs film according to an embodiment of the present invention. A cross-sectional structural diagram showing an nSi solar cell, Figure 2 is a conventional Ga solar cell.
FIG. 2 is a cross-sectional structural diagram showing an AsonSi solar cell. In the figure, 1 is a Si substrate, 2 is n-type GaAs, 12 is n-type GaAs as an active layer of a GaAs solar cell, and 53 is a GaAs/AIGaAs superlattice.
4 is p-type G a A S15 is p-type A I G a A
8% 8 is an insulating anti-reflection film, 7 is a p-side metal electrode,
8 is an n-side metal electrode, and 9 is an insulating film. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1)Si基板上の一部に形成された絶縁膜と、該Si基
板上の上記絶縁膜の非形成領域に順次選択的にエピタキ
シャル成長されたn形GaAs層及びp形GaAs層と
、 該n形GaAs層及びp形GaAs層上に形成され、か
つ上記絶縁膜上まで延伸形成された反射防止膜及びメタ
ル電極とを備えたことを特徴とするGaAsonSi太
陽電池。
[Scope of Claims] 1) An insulating film formed on a part of a Si substrate, and an n-type GaAs layer and a p-type GaAs layer epitaxially grown selectively in sequence on regions where the insulating film is not formed on the Si substrate. A GaAsonSi solar cell comprising: an antireflection film and a metal electrode formed on the n-type GaAs layer and the p-type GaAs layer and extending onto the insulating film.
JP63293418A 1988-11-18 1988-11-18 GaAs on Si solar cell Expired - Lifetime JPH0793449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63293418A JPH0793449B2 (en) 1988-11-18 1988-11-18 GaAs on Si solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63293418A JPH0793449B2 (en) 1988-11-18 1988-11-18 GaAs on Si solar cell

Publications (2)

Publication Number Publication Date
JPH02139974A true JPH02139974A (en) 1990-05-29
JPH0793449B2 JPH0793449B2 (en) 1995-10-09

Family

ID=17794512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293418A Expired - Lifetime JPH0793449B2 (en) 1988-11-18 1988-11-18 GaAs on Si solar cell

Country Status (1)

Country Link
JP (1) JPH0793449B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356509A (en) * 1992-10-16 1994-10-18 Astropower, Inc. Hetero-epitaxial growth of non-lattice matched semiconductors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156372A (en) * 1986-12-19 1988-06-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156372A (en) * 1986-12-19 1988-06-29 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356509A (en) * 1992-10-16 1994-10-18 Astropower, Inc. Hetero-epitaxial growth of non-lattice matched semiconductors

Also Published As

Publication number Publication date
JPH0793449B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US9716201B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
US4688068A (en) Quantum well multijunction photovoltaic cell
Choi et al. High-performance GaInAsSb thermophotovoltaic devices with an AlGaAsSb window
JP2016509376A (en) Photoactive device having a low bandgap active layer configured to improve efficiency and related methods
TW201438264A (en) Compound semiconductor photovoltaic cell and manufacturing method of the same
JP2007115916A (en) Compound solar cell and method of manufacturing same
JP3646940B2 (en) Solar cell
WO2013123818A1 (en) Efficient three-junction solar cell and manufacturing method therefor
JP2002368238A (en) Tandem solar cell and manufacturing method therefor
WO2018192199A1 (en) Multi-junction laminated laser photovoltaic cell and manufacturing method thereof
TWI496314B (en) Compound semiconductor solar cell manufacturing laminated body, compound semiconductor solar cell and manufacturing method thereof
JPH0964386A (en) Multijunction solar cell
JP3250425B2 (en) Compound semiconductor wafer and solar cell
CN115332379A (en) Multi-junction solar cell with multi-quantum well structure
JPH02139974A (en) Gaas-on-si solar cell
JPH06163962A (en) Solar cell
JPH0955522A (en) Tunnel diode
CN107403850B (en) Multi-junction solar cell containing embedded back surface field structure and preparation method thereof
JP3657096B2 (en) GaAs solar cell
JP3027116B2 (en) Solar cell
JP2008270604A (en) Compound semiconductor solar cell
US4366334A (en) Photovoltaic cell usable as a solar cell
JPH08204215A (en) Series connected solar cell
JP2662309B2 (en) Compound semiconductor solar cells
WO2013004188A1 (en) Solar cell, system, and manufacturing method thereof