JPH02139973A - Switching element - Google Patents

Switching element

Info

Publication number
JPH02139973A
JPH02139973A JP29339788A JP29339788A JPH02139973A JP H02139973 A JPH02139973 A JP H02139973A JP 29339788 A JP29339788 A JP 29339788A JP 29339788 A JP29339788 A JP 29339788A JP H02139973 A JPH02139973 A JP H02139973A
Authority
JP
Japan
Prior art keywords
channel
state
electrons
channels
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29339788A
Other languages
Japanese (ja)
Inventor
Koji Matsumura
浩二 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP29339788A priority Critical patent/JPH02139973A/en
Publication of JPH02139973A publication Critical patent/JPH02139973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve a switching speed by a method wherein one of two channels is in an ON state and the other is in an OFF state and a bias applied to one gate is changed to switch over the ON and OFF states of both the channels. CONSTITUTION:Normally, a current along an X-Y direction between a source electrode 1 and a drain electrode 2 is in an OFF state and a current along a U-V direction between a source electrode 4 and a drain electrode 5 is in an ON state. Then, if a bias applied to a front gate 7 is changed, electrons stored in a channel I 19 directly under the front gate 7 are transferred to a channel II 20 and, finally, a potential state is obtained. In other words, electrons in the channel I 19 are removed and a two-dimensional electron gas is formed in the channel II 20. With this process, the current along the X-Y direction is turned ON and the current along the U-V direction is turned OFF. That is, electrons are transferred between the channel I and the channel II without charge and discharge of electrons, so that a very high switching speed can be achieved.

Description

【発明の詳細な説明】 産粟上互肌里分互 本発明はスイッチング素子に関し、特に広禁止帯半導体
と狭禁止帯半導体とから成るダブルヘテロ接合を用いた
ディジタル回路用のスイッチング素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switching element, and more particularly to a switching element for a digital circuit using a double heterojunction consisting of a wide bandgap semiconductor and a narrow bandgap semiconductor.

従速41支丘 スイッチング素子として用いられる一般的なヘテロ接合
電界効果トランジスタは、例えば第7図に示すように、
GaAsから成る狭禁止帯半導体N31とN型AlGa
Asから成る広禁止帯半導体層32との界面における狭
禁止帯半導体層31側には、両者の電子親和力の差によ
って電子が蓄積される。この電子は、GaAsとN型A
l1GaAsとによってつくられるポテンシャル障壁の
内に閉じ込められ、ヘテロ界面に平行な方向に対しての
み自由度をもつ2次元電子ガスと呼ばれる。
A typical heterojunction field effect transistor used as a speed-following 41 branch switching element is, for example, as shown in FIG.
Narrow bandgap semiconductor N31 made of GaAs and N-type AlGa
Electrons are accumulated on the narrow bandgap semiconductor layer 31 side at the interface with the wide bandgap semiconductor layer 32 made of As due to the difference in electron affinity between the two. These electrons are connected to GaAs and N-type A.
It is called a two-dimensional electron gas that is confined within a potential barrier created by GaAs and has a degree of freedom only in the direction parallel to the heterointerface.

そして、ソース電極35とドレイン電極36との間に直
流電圧を印加すると、上記2次元電子ガスは加速されて
、両電極間に電流が流れる。さらに、ゲートシ3ントキ
ー電極33に印加する電圧を変化させることによって前
記2次元電子ガスを生成、消滅させることができるので
、上記両電極間に流れる電流をオン・オフすることが可
能となる。
When a DC voltage is applied between the source electrode 35 and the drain electrode 36, the two-dimensional electron gas is accelerated and a current flows between the two electrodes. Further, since the two-dimensional electron gas can be generated and extinguished by changing the voltage applied to the gate switch key electrode 33, it is possible to turn on and off the current flowing between the two electrodes.

B<7゛シよ゛と るi− ところで、スイッチング素子を超高速で動作するディジ
タル回路に用いる場合、スイッチング速度が問題となる
。スイッチング速度を決定する一つのパラメータとして
、キャリアの走行時間τ。
B<7, then i- By the way, when a switching element is used in a digital circuit that operates at extremely high speed, the switching speed becomes a problem. Carrier transit time τ is one parameter that determines the switching speed.

がある。ところが、上記へテロ接合デバイスの場合には
、通常のMOS F ETに比べてで、が必ずしも小さ
くなっていない。これは素子をオン・オフするためには
、キャリアを生成、消滅させる必要があるため、動作状
態変化時のキャリアの充放電の時間が素子の高速動作を
妨げるということに起因するものである。したがって、
上記構造のスイッチング素子はスイッチング速度が遅い
という課題を有していた。
There is. However, in the case of the above-mentioned heterojunction device, d is not necessarily smaller than that of a normal MOS FET. This is because in order to turn on and off the element, it is necessary to generate and eliminate carriers, so the time taken to charge and discharge carriers when the operating state changes impedes high-speed operation of the element. therefore,
The switching element with the above structure has a problem of slow switching speed.

本発明は上記従来の課題を考慮してなされたものであっ
て、スイッチング速度を速めることにより、高性能のス
イッチング素子の提供を目的とするものである。
The present invention has been made in consideration of the above-mentioned conventional problems, and an object of the present invention is to provide a high-performance switching element by increasing the switching speed.

m脛夾工五太汝Ω王段 上記目的を達成するために本発明は、広禁止帯半導体と
狭禁止帯半導体とから成るダブルヘテロ接合によって形
成されたスイッチング素子であって、2つのチャンネル
を十字型に交叉させると共に、2つのチャンネルのうち
一方のチャンネルが導通状態、他方のチャンネルが遮断
状態となるようにし、1つのゲートバイアスを変化させ
ることにより両チャンネルの導通、遮断状態を入れ変え
ることを特徴とする。
In order to achieve the above object, the present invention provides a switching element formed by a double heterojunction consisting of a wide bandgap semiconductor and a narrow bandgap semiconductor, which has two channels. In addition to crossing the channels in a cross shape, one of the two channels is in a conductive state and the other channel is in a cutoff state, and by changing one gate bias, the conduction and cutoff states of both channels are switched. It is characterized by

北−U 上記の構成において、2本のチャンネルのうち、一方が
導通状態で他方が遮断状態である場合において、両チャ
ンネルの導通、遮断状態を入れ変えるにはゲートバイア
スを変化させる。この際、キャリアの充放電は起こらず
、ゲート直下のキャリアが一方のチャンネルから他方の
チャンネルに移動するだけである。そしてこの場合に、
素子の高速性に関係するのは、キャリアの走行時間τ1
ではなく、キャリアがチャンネル間を移動する時間τで
ある。τはτ、よりもはるかに小さいと考えられるので
〔「分子線エピタキシー技術」高橋清編 工業調査会(
1984)225参照〕、上記構成のスイッチング素子
は超高速で動作することが可能となる。
North-U In the above configuration, when one of the two channels is in a conductive state and the other is in a cut-off state, the gate bias is changed to switch between the conductive and cut-off states of both channels. At this time, charging and discharging of carriers does not occur, and carriers directly under the gate only move from one channel to the other channel. And in this case,
The carrier transit time τ1 is related to the high speed of the device.
rather, it is the time τ that the carrier takes to travel between channels. Since τ is considered to be much smaller than τ, ["Molecular Beam Epitaxy Technology" edited by Kiyoshi Takahashi, Industrial Research Association (
1984) 225], the switching element having the above structure can operate at ultra high speed.

去−一」L−一但 本発明の一実施例を、第1図乃至第6図に基づいて、以
下に説明する。
However, one embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第2図及び第3図に示すように、N型AlGaAsから
成る広禁止帯半導体層9上には高純度GaAsから成る
狭禁止帯半導体層8が形成されており、この狭禁止帯半
導体層B上には、共にN型A/!GaAsから成るX−
Y方向用の広禁止帯半導体層3とU−V方向用の広禁止
帯半導体層6とが形成されている。上記両店禁止帯半導
体M3・6は第1図に示すように、直行するように構成
されており、上記広禁止帯半導体層3の両端部にはソー
ス電極1とドレイン電極2とこれら両電極の。
As shown in FIGS. 2 and 3, a narrow forbidden band semiconductor layer 8 made of high purity GaAs is formed on a wide forbidden band semiconductor layer 9 made of N-type AlGaAs, and this narrow forbidden band semiconductor layer B Above are both N type A/! X- made of GaAs
A wide forbidden band semiconductor layer 3 for the Y direction and a wide forbidden band semiconductor layer 6 for the UV direction are formed. As shown in FIG. 1, the wide forbidden band semiconductors M3 and 6 are arranged to run perpendicularly, and the wide forbidden band semiconductor layer 3 has a source electrode 1 and a drain electrode 2 at both ends. of.

下部に形成されたオーミック電極11・12とが設けら
れており、これら3つの電極によりX−Y方向に電流を
流すことができる。また、広禁止帯半導体層6の両端部
にはソース電極4とドレイン電極5とこれら両電極の下
部に形成されたオーミック電極13・14とが設けられ
ており、これら3つの電極によりU−V方向に電流を流
すことができる。また、上記両店禁止帯半導体3・6の
交叉点には、電流の流れるチャンネルを切り換えるため
のフロントゲート7が形成されており、更に前記広禁止
帯半導体層9の下面にはU−V方向に伸びるバックゲー
)16が形、成されている。
Ohmic electrodes 11 and 12 formed at the bottom are provided, and current can flow in the X-Y direction by these three electrodes. Further, a source electrode 4, a drain electrode 5, and ohmic electrodes 13 and 14 formed under these two electrodes are provided at both ends of the wide bandgap semiconductor layer 6, and these three electrodes Current can flow in any direction. Further, a front gate 7 for switching the channel through which current flows is formed at the intersection of the two forbidden band semiconductors 3 and 6, and furthermore, a front gate 7 is formed on the lower surface of the wide forbidden band semiconductor layer 9 in the UV direction. 16 has been formed.

ここで、上側に形成された広禁止帯半導体層3・6と下
側に形成された広禁止帯半導体層9とのへテロ界面にお
ける狭禁止帯半導体層8側には、2次元電子ガスをキャ
リアとする2本のチャンネル19・20が形成される。
Here, a two-dimensional electron gas is applied to the narrow bandgap semiconductor layer 8 side at the hetero interface between the wide bandgap semiconductor layers 3 and 6 formed on the upper side and the wide bandgap semiconductor layer 9 formed at the bottom. Two channels 19 and 20 are formed to serve as carriers.

尚、以下、上側のチャンネルをチャンネル119、下側
をチャンネル1120と称する。
Hereinafter, the upper channel will be referred to as channel 119, and the lower channel will be referred to as channel 1120.

ところで、第2図に示すように、上側のN型AffiG
aAsはフロントゲート7の部分を除いてエツチング(
18がエツチング部分)されているので、フロントゲー
ト7の部分を除き薄くなっている。したがって、チャン
ネル118には電子が蓄積せず、チャンネル[19のフ
ロントゲート7直下部分以外には2次元電子ガスが形成
される。第4図は、この状態におけるポテンシャル分布
図である、逆に、フロントゲート7直下部分では、電子
供給層である上部N型AβGaAsがエツチングされて
いないため、チャンネル118のフロントゲート7直下
部分に2次元電子ガスが形成される。さらに、U−V方
向のみに設けられたバックゲート16に正電圧が印加し
であるものとすると、ポテンシャル分布は第5図に示す
ようになり、チャンネルI[19には電子が蓄積しない
。したがって、ソース電極1とドレイン電極2との間に
電圧を印加しても、チャンネル[19のフロントゲート
7直下部分にキャリアが存在しないため、電流が流れな
い。
By the way, as shown in Fig. 2, the upper N type AffiG
aAs is etched (except for the front gate 7 part)
18 is an etched portion), so it is thin except for the front gate 7. Therefore, no electrons are accumulated in the channel 118, and a two-dimensional electron gas is formed in the channel [19] other than the portion directly below the front gate 7. FIG. 4 is a potential distribution diagram in this state. Conversely, since the upper N-type AβGaAs, which is the electron supply layer, is not etched in the part directly below the front gate 7, the part directly below the front gate 7 of the channel 118 is A dimensional electron gas is formed. Furthermore, assuming that a positive voltage is applied to the back gate 16 provided only in the UV direction, the potential distribution becomes as shown in FIG. 5, and no electrons are accumulated in the channel I[19. Therefore, even if a voltage is applied between the source electrode 1 and the drain electrode 2, no current flows because there are no carriers in the portion of the channel [19 directly below the front gate 7].

一方、U−V方向に関しては、フロントゲート7部分と
同様に、ポテンシャルが第5図に示す状態となる。した
がって、チャンネル119に2次元電子ガスが形成され
、チャンネル■20には電子は存在しない。従って、U
−V方向に形成されたソース電極4とドレイン電極5・
との間に電圧を印加すれば、チャンネルIを通して電流
が流れる。
On the other hand, in the UV direction, the potential is in the state shown in FIG. 5, similar to the front gate 7 portion. Therefore, a two-dimensional electron gas is formed in the channel 119, and no electrons exist in the channel 20. Therefore, U
A source electrode 4 and a drain electrode 5 formed in the -V direction.
When a voltage is applied between , current flows through channel I.

即ち、第6図に示すように、通常の状B(フロントゲー
ト7にバイアスを印加しない状態)では、X−Y方向の
ソース電極1とドレイン電極2との間の電流はOFFと
なり、U−V方向のソース電極4とドレイン電極5との
間の電流はONとなる。
That is, as shown in FIG. 6, in the normal state B (state where no bias is applied to the front gate 7), the current between the source electrode 1 and the drain electrode 2 in the X-Y direction is OFF, and the U- The current between the source electrode 4 and the drain electrode 5 in the V direction is turned on.

次に、フロントゲート7に印加するバイアスを変化させ
ると、フロントゲート7直下部分ではチャンネル119
にたまった電子がチャンネル■20に移動し、ついには
第4図に示すようなポテンシャル状態となる。即ち、チ
ャンネル119の電子はなくなってチャンネルlI20
に2次元電子ガスが形成される。これにより、今度はX
−Y方向の電流がONとなり、U−■方向の電流はOF
Fとなる。
Next, when the bias applied to the front gate 7 is changed, the channel 119 is
The electrons accumulated in the channel move to the channel 20, and the potential state as shown in FIG. 4 is finally established. That is, the electrons in channel 119 disappear and become channel lI20.
A two-dimensional electron gas is formed. As a result, this time
-Y direction current is ON, U-■ direction current is OFF
It becomes F.

以上のように、ゲートバイアスを変化させることにより
、2組のソースドレイン間電流のON。
As described above, by changing the gate bias, two sets of source-drain currents can be turned on.

OFF状態を変化させることができる。この際、電子の
充放電はなく、チャンネル■とチャンネル■との間を電
子が移動するだけでなので、極めて高速にスイッチング
することができる。
The OFF state can be changed. At this time, there is no charging or discharging of electrons, and only electrons move between channels (2) and (2), so extremely high-speed switching is possible.

尚、チャンネルを複数の100人程度の量子細4゜ 線によって形成するものとすると、Tk (h/2π=
i(hはブランク定数)、kは移動量)の運動量で走っ
ている電子が弾性散乱するためには、運動量保存則によ
り21πに1なる大きな運動量変化が必要となる。した
がって、このような散乱が生ずる確率は極めて小さい。
Furthermore, if the channel is formed by a plurality of quantum thin 4° wires of about 100 people, then Tk (h/2π=
In order for an electron running with a momentum of i (h is a blank constant and k is a displacement) to be elastically scattered, a large momentum change of 1 in 21π is required according to the law of conservation of momentum. Therefore, the probability that such scattering will occur is extremely small.

これにより、非弾性散乱の生ずる確率の小さい極低温域
において、量子細線を用いた本素子は、極めて高いスイ
ッチング速度を示すものと考えられる。
As a result, it is thought that the present device using quantum wires exhibits an extremely high switching speed in the extremely low temperature region where the probability of inelastic scattering occurring is small.

1里■苅来 以上のように本発明によれば、2本のチャンネルのオン
、オフ状態を入れ換える場合に、キャリアの充放電は起
こらず、ゲート直下のキャリアが一方のチャンネルから
他方のチャンネルに移動するだけである。したがって、
スイッチング素子は超高速で動作することが可能となる
ので、スイッチング素子の性能を飛躍的に向上させるこ
とができる。
As described above, according to the present invention, when switching the on and off states of two channels, charging and discharging of carriers does not occur, and carriers directly under the gate transfer from one channel to the other. Just move. therefore,
Since the switching element can operate at ultra high speed, the performance of the switching element can be dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る素子を用いた装置の上面図、第2
図は第1図のn−n断面図、第3図は第1図のm−m断
面図、第4図はx−y方向チャンネルのポテンシャル図
、第5図はU−■方向チャンネルのポテンシャル図、第
6図は素子動作のためのバイアス印加図、第7図は従来
のへテロ接合電界効果トランジスタを示す断面図である
。 l・・・ソース電極、2・・・ドレイン電極、3・・・
X−Y方向チャンネル用の広禁止帯半導体層、4・・・
ソース電極、5・・・ドレイン電極、6・・・U−V方
向チャンネル用の広禁止帯半導体層、7・・・フロント
ゲート、8・・・狭禁止帯半導体層、9・・・広禁止帯
半導体層、19・・・チャンネル1120・・・チャン
ネル■。 実用新案登録出願人:三洋電機株式会社代理人    
  :弁理士  中島 司朗第3図 第6図 ム 第7図 (a)
FIG. 1 is a top view of a device using the element according to the present invention, and FIG.
The figure is a nn cross-sectional view of Figure 1, Figure 3 is a mm-m cross-section of Figure 1, Figure 4 is a potential diagram of the channel in the x-y direction, and Figure 5 is the potential diagram of the channel in the U-■ direction. 6 is a bias application diagram for device operation, and FIG. 7 is a sectional view showing a conventional heterojunction field effect transistor. l...source electrode, 2...drain electrode, 3...
Wide bandgap semiconductor layer for X-Y channel, 4...
Source electrode, 5... Drain electrode, 6... Wide bandgap semiconductor layer for UV channel, 7... Front gate, 8... Narrow bandgap semiconductor layer, 9... Wide bandgap semiconductor layer. Band semiconductor layer, 19...channel 1120...channel ■. Utility model registration applicant: Sanyo Electric Co., Ltd. agent
: Patent Attorney Shiro Nakajima Figure 3 Figure 6 Figure 7 (a)

Claims (1)

【特許請求の範囲】[Claims] (1)広禁止帯半導体と狭禁止帯半導体とから成るダブ
ルヘテロ接合によって形成されたスイッチング素子であ
って、 2つのチャンネルを十字型に交叉させると共に、2つの
チャンネルのうち一方のチャンネルが導通状態、他方の
チャンネルが遮断状態となるようにし、1つのゲートバ
イアスを変化させることにより両チャンネルの導通、遮
断状態を入れ変えることを特徴とするスイッチング素子
(1) A switching element formed by a double heterojunction consisting of a wide forbidden band semiconductor and a narrow forbidden band semiconductor, in which two channels intersect in a cross shape, and one of the two channels is in a conductive state. , a switching element characterized in that the other channel is placed in a cut-off state and the conduction and cut-off states of both channels are switched by changing one gate bias.
JP29339788A 1988-11-18 1988-11-18 Switching element Pending JPH02139973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29339788A JPH02139973A (en) 1988-11-18 1988-11-18 Switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29339788A JPH02139973A (en) 1988-11-18 1988-11-18 Switching element

Publications (1)

Publication Number Publication Date
JPH02139973A true JPH02139973A (en) 1990-05-29

Family

ID=17794237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29339788A Pending JPH02139973A (en) 1988-11-18 1988-11-18 Switching element

Country Status (1)

Country Link
JP (1) JPH02139973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241190A (en) * 1991-10-17 1993-08-31 At&T Bell Laboratories Apparatus for contacting closely spaced quantum wells and resulting devices
WO2018046034A1 (en) * 2016-09-08 2018-03-15 Forschungszentrum Jülich GmbH Apparatus based on a nanowire cross for measuring small potentials of a sample, method for producing the apparatus, and use of the apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241190A (en) * 1991-10-17 1993-08-31 At&T Bell Laboratories Apparatus for contacting closely spaced quantum wells and resulting devices
WO2018046034A1 (en) * 2016-09-08 2018-03-15 Forschungszentrum Jülich GmbH Apparatus based on a nanowire cross for measuring small potentials of a sample, method for producing the apparatus, and use of the apparatus
CN110050187A (en) * 2016-09-08 2019-07-23 于利奇研究中心有限公司 For measure sample small current potential, the application of the equipment based on nanowire crossbars, the method for manufacturing the equipment and the equipment
CN110050187B (en) * 2016-09-08 2022-07-08 于利奇研究中心有限公司 Device for measuring a small potential of a sample, method for producing said device and use thereof
US11668672B2 (en) 2016-09-08 2023-06-06 Forschungszentrum Juelich Gmbh Apparatus based on a nanowire cross for measuring small potentials of a sample, method for producing the apparatus, and use of the apparatus

Similar Documents

Publication Publication Date Title
US8772877B2 (en) Tunnel field-effect transistor
US5567961A (en) Semiconductor device
US4821090A (en) Compound semiconductor integrated circuit device
JP3922466B2 (en) Semiconductor logic element
JPH05110086A (en) Tunnel transistor
JP2604349B2 (en) Semiconductor device
US7956348B2 (en) Complementary logic circuit
JPH0258773B2 (en)
JPH024140B2 (en)
CN103178116A (en) Transistor with modified grid structure
JPH02139973A (en) Switching element
EP0301260A1 (en) Modulation doped high electron mobility transistor with n-i-p-i structure
US5349202A (en) Tunneling transistor
JPH07161965A (en) Semiconductor device and multivalued logical circuit
EP0262610A2 (en) Two-dimensional electron gas switching device
JP2778447B2 (en) Tunnel transistor and manufacturing method thereof
JPH1168087A (en) Resonance tunnel transistor and manufacture thereof
US5225895A (en) Velocity-modulation transistor with quantum well wire layer
JPS62268165A (en) Field effect transistor
JPS6245183A (en) Field-effect transistor
JPH02330A (en) Field effect transistor
JPH03227070A (en) Semiconductor switching element
JPS63236358A (en) Semiconductor device
JPS60145671A (en) Integration type semiconductor device
JPH06163885A (en) Insulated-gate thyristor