JPH02138483A - Surface coating method - Google Patents

Surface coating method

Info

Publication number
JPH02138483A
JPH02138483A JP28961088A JP28961088A JPH02138483A JP H02138483 A JPH02138483 A JP H02138483A JP 28961088 A JP28961088 A JP 28961088A JP 28961088 A JP28961088 A JP 28961088A JP H02138483 A JPH02138483 A JP H02138483A
Authority
JP
Japan
Prior art keywords
coating
film
liquid phase
temp
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28961088A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓哉 鈴木
Takeshi Endo
壮 遠藤
Yasukazu Ohashi
大橋 泰和
Mitsuaki Fukuda
福田 光昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28961088A priority Critical patent/JPH02138483A/en
Publication of JPH02138483A publication Critical patent/JPH02138483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To easily form a corrosion resistant film which is dense and defect-free by forming the corrosion resistant film on the surface of a coating material and further, forming a film which forms a liquid phase at a low temp. thereon, then subjecting the resulted multilayered film body to a heat treatment at a low temp. CONSTITUTION:The surface of the coating material is coated with the desired film by a physical vapor deposition method directly or via an underlying coating layer. The surface thereof is thereafter coated direct or via the prescribed coating layer at need with the film which forms the liquid phase at the temp. lower than with the desired film. The multilayered film body obtd. in such a manner is subjected to the heat treatment at the temp. above the liquid phase forming temp. of the low melting layer and below the solidus line temp. of the desired film. As a result, the defect part of the corrosion resistant film is reformed by the formed liquid phase or the reaction product of the formed liquid phase and the corrosion resistant film and the dense and defect-free corrosion resistant film is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は被コーティング材の表面に緻密で、欠陥の無い
耐蝕性被膜を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a dense, defect-free, corrosion-resistant coating on the surface of a material to be coated.

〔従来の技術〕[Conventional technology]

材料の表面特性を改質する表面処理技術は古くから種々
の方法が知られていて、メツキ、はうろう、溶射等の表
面化成処理、或いは表面層のみを硬化する浸炭、窒化等
の表面硬化処理等が行なわれており、最近ではイオンブ
レーティング等の物理的蒸着法CPVD法)やイオン注
入法等も行なわれている。
Various surface treatment techniques have been known for a long time to modify the surface properties of materials, including surface chemical conversion treatments such as plating, coating, and thermal spraying, and surface hardening methods such as carburizing and nitriding that harden only the surface layer. Recently, physical vapor deposition methods such as ion blating (CPVD method) and ion implantation methods have also been used.

而してこの様な表面改質が材料の耐蝕性向上を目的とす
る場合、特に素材の耐蝕性が余り良好でなく、且つ腐食
性の雰囲気や溶液中で使用される場合には、表面改質層
にピンホールや亀裂等の微細な欠陥が存在すると、これ
らの欠陥から腐食が進行して大事に到る場合があるので
、前記表面改質層は欠陥が皆無である様にする事が必要
である。
Therefore, when the purpose of such surface modification is to improve the corrosion resistance of a material, especially when the material has poor corrosion resistance and is used in a corrosive atmosphere or solution, surface modification is necessary. If there are minute defects such as pinholes or cracks in the surface-modified layer, corrosion may progress from these defects and cause serious damage, so it is important to ensure that the surface-modified layer is completely free of defects. is necessary.

従来表面改質層に欠陥が無い様にする為には、素材表面
に耐蝕性下地メツキを施してから、目的とする改質層を
設ける方法、溶射等で比較的厚い被膜を設け、素材から
被膜表面迄貫通している欠陥を確率的に少なくする方法
、被膜表面にレーザーを照射して表面付近を局部的に溶
融し、欠陥を埋める方法等がとられていた。
Conventionally, in order to ensure that there are no defects in the surface modified layer, there are methods such as applying a corrosion-resistant base plating to the material surface and then applying the desired modified layer, or applying a relatively thick coating by thermal spraying, etc. Methods have been used to stochastically reduce the number of defects penetrating to the surface of the coating, and methods of irradiating the coating surface with a laser to locally melt the vicinity of the surface to fill in the defects.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然しなから、前記耐蝕性下地メツキを施す方法において
は、メツキ自体にもピンホール等の欠陥が含まれており
、要求に合う下地メツキを施す事が出来る素材金属も限
られたものであった2□又溶射の様な厚肉被覆は最終の
製品表面として不都合である場合が多く、しかも被膜自
体に欠陥が含まれている為絶対の信顛性はないものであ
った。
However, in the method of applying the corrosion-resistant base plating, the plating itself contains defects such as pinholes, and there are only a limited number of metal materials that can be used to apply the base plating that meets the requirements. 2□Also, thick coatings such as thermal spray coatings are often inconvenient for the final product surface, and furthermore, the coating itself contains defects, so it is not absolutely reliable.

更に被膜表面にレーザーを照射する方法においては、表
面付近の欠陥を埋める事は可能であるが、コスト高であ
り、処理能力も低いという問題があった。
Furthermore, in the method of irradiating the surface of the coating with a laser, it is possible to fill in defects near the surface, but there are problems in that the cost is high and the processing capacity is low.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、被コーティング材の表
面に緻密で、欠陥の無い耐蝕性被膜を形成する比較的筒
車で且つ効率の良い方法を提供する事である。
The present invention has been made as a result of intensive studies in view of the above points, and its purpose is to form a corrosion-resistant coating on the surface of a material to be coated with a dense and defect-free coating in a relatively simple and efficient manner. The goal is to provide a good method for

本発明者等は、被コーティング材の表面に目的とする耐
蝕性被膜を形成し、更にその上に前記被コーティング材
や耐蝕性被膜よりも低温で液相を生成づる被膜を形成し
た後、この様にして得られた多層膜体を低温で熱処理し
、生成した液相、或いは生成した液相と耐蝕性被膜との
反応生成物によって当該耐蝕性被膜の欠陥部を埋める事
によって、緻密で、欠陥の無い耐蝕性被膜が得られる事
を見出して、本発明の完成に到ったものである。
The present inventors formed a desired corrosion-resistant coating on the surface of a material to be coated, and further formed a coating that generates a liquid phase at a lower temperature than the material to be coated or the corrosion-resistant coating. The multilayer film obtained in the above manner is heat-treated at a low temperature, and the defects in the corrosion-resistant coating are filled with the generated liquid phase or a reaction product between the generated liquid phase and the corrosion-resistant coating, thereby creating a dense, The present invention was completed by discovering that a corrosion-resistant coating without defects can be obtained.

即ち本発明における請求項1の発明は、物理蒸着法(P
VD法)により被コーティング材表面に直接或いは下地
被覆層を介して、目的とする被膜を被覆した後、その表
面に直接或いは必要に応じて所定の被覆層を介して目的
とする被膜よりも低温で液相を生成する被膜(低融点層
)を被覆し、これを前記低融点層の液相生成温度(固相
線温度)以上で、被コーティング材及び目的とする被膜
の固相線温度未満の温度で熱処理する事を特徴とする表
面被覆方法である。又請求項2の発明は、被膜を熱処理
する際に同時に加圧する事を特徴とする請求項1記載の
表面被覆方法である。又請求項3の発明は、被膜を熱処
理後CIPで加圧し、再度熱処理を行なう事を特徴とす
る請求項1記載の表面被覆方法である。
That is, the invention of claim 1 of the present invention is based on the physical vapor deposition method (P
After coating the target coating directly on the surface of the material to be coated (VD method) or through a base coating layer, apply the coating directly to the surface or, if necessary, through a predetermined coating layer at a lower temperature than the target coating. A coating that generates a liquid phase (low melting point layer) is coated with a coating that generates a liquid phase (low melting point layer), and this is heated at a temperature higher than the liquid phase generation temperature (solidus temperature) of the low melting point layer and lower than the solidus temperature of the material to be coated and the target coating. This is a surface coating method characterized by heat treatment at a temperature of . A second aspect of the invention is the surface coating method according to the first aspect, characterized in that pressure is applied at the same time as the coating is heat treated. A third aspect of the invention is the surface coating method according to the first aspect, characterized in that after the heat treatment, the coating is pressurized by CIP and then heat treated again.

本発明方法においては、被コーティング材表面に目的と
する耐蝕性被膜及び低融点層の被膜を被覆し、これを所
定温度で熱処理する際に、被コーティング材と耐蝕性被
膜との間で熱拡散が起こるのを防止する為、必要に応じ
て両者間に下地被覆層を介在させる事が望ましい。又目
的とする耐蝕性被膜と低融点層との間に、前記熱処理に
よって生成した液相の耐蝕性被膜への浸透、或いは生成
した液相と耐蝕性被膜との反応を促進する所定の被覆層
を必要に応じて介在させる事が望ましい。
In the method of the present invention, when the surface of the material to be coated is coated with the intended corrosion-resistant film and the film of the low-melting point layer, and when this is heat-treated at a predetermined temperature, thermal diffusion occurs between the material to be coated and the corrosion-resistant film. In order to prevent this from occurring, it is desirable to interpose a base coating layer between the two as necessary. Further, a predetermined coating layer is provided between the desired corrosion-resistant coating and the low melting point layer to promote the penetration of the liquid phase generated by the heat treatment into the corrosion-resistant coating or the reaction between the generated liquid phase and the corrosion-resistant coating. It is desirable to intervene as necessary.

更に本発明方法においては、前記被膜の熱処理時に、同
時に加圧する事が望ましく、この様にする事によって目
的とする耐蝕性被膜中に存在するピンホールや亀裂等の
微細な欠陥を機械的に押しつぶすと共に、生成した液相
のこれら欠陥中への浸透を促進する事が可能である。
Furthermore, in the method of the present invention, it is desirable to apply pressure at the same time as the heat treatment of the coating, and by doing so, minute defects such as pinholes and cracks existing in the target corrosion-resistant coating are mechanically crushed. At the same time, it is possible to promote the penetration of the generated liquid phase into these defects.

或いは被膜の熱処理と加圧を同時に行なわないで、当該
被膜を熱処理後CI Pで加圧し、その後再度熱処理を
行なっても良く、この様に冷間で加圧する事によっても
目的とする被膜中に存在する欠陥を機械的に押しつぶす
事が可能である。
Alternatively, instead of heat-treating and pressurizing the film at the same time, the film may be heat-treated and then pressurized using CI P, and then heat-treated again. It is possible to mechanically crush existing defects.

〔作用〕[Effect]

本発明方法においては、被コーティング材の表面に目的
とする耐蝕性被膜を形成し、さらにそのを上に前記被コ
ーティング材や耐蝕性被膜よりも低温で液相を生成する
被膜を形成した後、この様にして得られた多層膜体を低
温で熱処理しているので、生成した液相、或いは生成し
た液相と耐蝕性被膜との反応生成物によって当該耐蝕性
被膜の欠陥部が埋められ、緻密で、欠陥の無い耐蝕性被
膜が得られる。
In the method of the present invention, a desired corrosion-resistant coating is formed on the surface of the material to be coated, and a coating that generates a liquid phase at a lower temperature than the material to be coated or the corrosion-resistant coating is formed on top of the coating, and then, Since the multilayer film obtained in this manner is heat-treated at a low temperature, defects in the corrosion-resistant coating are filled with the generated liquid phase or a reaction product between the generated liquid phase and the corrosion-resistant coating. A dense, defect-free, corrosion-resistant coating can be obtained.

〔実施例1〕 次に本発明を実施例により更に具体的に説明するー 被コーティング材として厚さ1mm、30mm角(正方
形)の鏡面に研磨したFe仮を用い、この表面に高周波
マグネトロンスパッタにより、目的とする耐蝕性被膜と
して厚さ3μmのNb被膜を形成した。更にこの上に厚
さ1μmのCu被膜を介して、低融点層として厚さ2μ
mのSn被膜をスパッタリングした。
[Example 1] Next, the present invention will be explained in more detail with reference to an example. As the material to be coated, a mirror-polished Fe temporary of 1 mm thickness and 30 mm square (square) was used, and this surface was coated with high-frequency magnetron sputtering. A Nb coating with a thickness of 3 μm was formed as the intended corrosion-resistant coating. Furthermore, a 2 μm thick low melting point layer is placed on top of this via a 1 μm thick Cu film.
A Sn film of m was sputtered.

この様にして得られたサンプルを、真空中で650°C
X4 h r熱処理したところ、表面はブロンズ色を呈
しており、断面をX線マイクロアナライザーで観察した
ところ、Nb層の上にNb−Sn化合物層が形成され、
最外層はS n −Cu合金層となっていた。
The sample thus obtained was heated to 650°C in vacuum.
After X4 hr heat treatment, the surface had a bronze color, and when the cross section was observed with an X-ray microanalyzer, an Nb-Sn compound layer was formed on the Nb layer.
The outermost layer was a Sn-Cu alloy layer.

この試料のコーティング面以外をエポキシ系樹脂接着剤
でマスキングし、室温の塩酸に浸漬したところ、表面S
n層は溶解するものの、表面分析では鉄分は検出されず
、下地は完全に保護されていた。即ち熱処理により生成
した液相や、生成した液相とNb被膜との反応生成物(
Nb−Sn化合物層)によってNb被膜中のピンホール
等の欠陥が埋められ、被コーティング材から被膜表面に
到る貫通孔が皆無になったものと考えられる。
When this sample was masked with an epoxy resin adhesive and immersed in hydrochloric acid at room temperature, the surface S
Although the n-layer dissolved, no iron was detected in surface analysis, and the underlying layer was completely protected. That is, the liquid phase generated by heat treatment and the reaction product between the generated liquid phase and the Nb coating (
It is considered that defects such as pinholes in the Nb film were filled by the Nb-Sn compound layer, and that there were no through holes from the material to be coated to the surface of the film.

〔比較例1〕 実施例1と同様なF e板上に、実施例1と同様な方法
で厚さ3μmのNb被膜を形成した。しかる後実施例1
と同様な塩M浸漬試験を行なったところ、直ちにNb被
膜面に浸食箇所が発生した。
[Comparative Example 1] A 3 μm thick Nb film was formed on the same Fe plate as in Example 1 in the same manner as in Example 1. After that, Example 1
When a salt M immersion test similar to the above was conducted, corrosion spots were immediately generated on the Nb coating surface.

〔実施例2〕 実施例1と同様なFe板上に、高周波マグネトロンスパ
ッタにより、N b y S nターゲットを用いて厚
さ5μmのNb、Snl膜を形成し、この上に厚さ2μ
mのSn被膜をスパッタリングした。
[Example 2] On the same Fe plate as in Example 1, a 5 μm thick Nb, Snl film was formed using a N by S n target by high frequency magnetron sputtering, and a 2 μm thick Nb and Snl film was formed on this.
A Sn film of m was sputtered.

この様にして得られたサンプルを、真空中で600℃X
5hr熱処理した後、実施例1と同様な塩酸浸漬試験を
行なったところ、表面Sn層は溶解するものの、表面分
析では鉄分は検出されず、下地は完全に保護されていた
The sample obtained in this way was heated to 600°C in a vacuum.
After heat treatment for 5 hours, a hydrochloric acid immersion test similar to that in Example 1 was conducted, and although the surface Sn layer was dissolved, no iron was detected in surface analysis, and the base was completely protected.

〔比較例2〕 実施例1と同様なFe板上に、実施例2と同様な方法で
厚さ5μmのNbtSn被膜を形成した。
[Comparative Example 2] On the same Fe plate as in Example 1, a 5 μm thick NbtSn coating was formed in the same manner as in Example 2.

しかる後実施例1と同様な塩酸浸漬試験を行なったとこ
ろ、直ちにN b s S n被膜面に浸食箇所が発生
した。
Thereafter, when a hydrochloric acid immersion test similar to that in Example 1 was conducted, erosion spots were immediately generated on the N b s S n coating surface.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、被コーティング材の表面に緻密で
、欠陥の無い耐蝕性被膜を比較的簡単に、且つ効率良く
形成する事が出来、工業上顕著な効果を奏するものであ
る。
According to the method of the present invention, a dense, defect-free corrosion-resistant coating can be formed relatively easily and efficiently on the surface of a material to be coated, and it has a significant industrial effect.

特許出願人 古河電気工業株式会社Patent applicant: Furukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)物理蒸着法(PVD法)により被コーティング材
表面に直接或いは下地被覆層を介して、目的とする被膜
を被覆した後、その表面に直接或いは必要に応じて所定
の被覆層を介して目的とする被膜よりも低温で液相を生
成する被膜(低融点層)を被覆し、これを前記低融点層
の液相生成温度(固相線温度)以上で、被コーティング
材及び目的とする被膜の固相線温度未満の温度で熱処理
する事を特徴とする表面被覆方法。
(1) After coating the target coating directly on the surface of the material to be coated using the physical vapor deposition method (PVD method) or via a base coating layer, apply the desired coating directly to the surface or via a predetermined coating layer as necessary. Coat a film (low melting point layer) that generates a liquid phase at a lower temperature than the target film, and use this as the material to be coated and the target at a temperature higher than the liquid phase formation temperature (solidus temperature) of the low melting point layer. A surface coating method characterized by heat treatment at a temperature below the solidus temperature of the coating.
(2)被膜を熱処理する際に同時に加圧する事を特徴と
する請求項1記載の表面被覆方法。
(2) The surface coating method according to claim 1, wherein the coating is pressurized at the same time as the heat treatment.
(3)被膜を熱処理後CIPで加圧し、再度熱処理を行
なう事を特徴とする請求項1記載の表面被覆方法。
(3) The surface coating method according to claim 1, characterized in that after the heat treatment, the film is pressurized by CIP and then heat treated again.
JP28961088A 1988-11-16 1988-11-16 Surface coating method Pending JPH02138483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28961088A JPH02138483A (en) 1988-11-16 1988-11-16 Surface coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28961088A JPH02138483A (en) 1988-11-16 1988-11-16 Surface coating method

Publications (1)

Publication Number Publication Date
JPH02138483A true JPH02138483A (en) 1990-05-28

Family

ID=17745469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28961088A Pending JPH02138483A (en) 1988-11-16 1988-11-16 Surface coating method

Country Status (1)

Country Link
JP (1) JPH02138483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241373A (en) * 2018-03-09 2019-09-17 三菱重工业株式会社 The manufacturing method of metal formed article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241373A (en) * 2018-03-09 2019-09-17 三菱重工业株式会社 The manufacturing method of metal formed article

Similar Documents

Publication Publication Date Title
US3998603A (en) Protective coatings for superalloys
JPS60238489A (en) Formatin of metallic coating layer on surface
JPS6378740A (en) Layer composite material with diffusion preventive layer particularly for sliding bearing and manufacture thereof
Man et al. Corrosion protection of NdFeB magnets by surface coatings-Part I: Salt spray test
KR101353451B1 (en) Coated steel sheet and method for manufacturing the same
JPH02138483A (en) Surface coating method
JPH05271986A (en) Aluminum-organic polymer laminate
CA2156081A1 (en) Diffusion barrier layers
CN102534468B (en) Preparation technology for steel-surface in-situ ceramic layer used in low-temperature aluminizing petroleum pipeline
RU2145981C1 (en) Method of protection of surface of ingots
JPS61113756A (en) Manufacture of seawater-resistant al-coated steel material
US6789723B2 (en) Welding process for Ti material and Cu material, and a backing plate for a sputtering target
JP4392087B2 (en) Surface treatment method of die casting mold and die
JPS5950177A (en) Surface treatment of metal giving superior adhesive property
KR20110086740A (en) Method for coating a metal crucible member with a glass and ceramic mixture
JPS61113757A (en) Treatment of film of different metals formed on surface of metallic substrate with laser
JPH02156094A (en) Surface coating method
Kaminski et al. The Effect of Tightening on the Corrosion Properties of the PVD Layers on Magnesium AZ91D alloy
JPS6293391A (en) Plating method
SU1151326A1 (en) Method of obtaining thermoplastic coating
JPH02101178A (en) Surface coating method
Vazirani Surface preparation of steel for adhesive bonding and organic coatings
JP2007113105A (en) Surface modification process by diffusion/penetration of coating and stacking treatment agent depending on local heating
JPH0280547A (en) Corrosion-resisting thermal spraying material and its production and formation of corrosion-resisting film
JPH02149672A (en) Surface coating method