JPH02138467A - Differential pressure sealing method - Google Patents
Differential pressure sealing methodInfo
- Publication number
- JPH02138467A JPH02138467A JP13736589A JP13736589A JPH02138467A JP H02138467 A JPH02138467 A JP H02138467A JP 13736589 A JP13736589 A JP 13736589A JP 13736589 A JP13736589 A JP 13736589A JP H02138467 A JPH02138467 A JP H02138467A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pressure vacuum
- vacuum processing
- processing chamber
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000007789 sealing Methods 0.000 title claims description 15
- 239000000463 material Substances 0.000 abstract description 15
- 238000009489 vacuum treatment Methods 0.000 abstract description 12
- 238000004381 surface treatment Methods 0.000 abstract description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- 239000000356 contaminant Substances 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 56
- 238000000576 coating method Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、帯板やウェブ状の材料を、圧力の異なる2室
以上の真空処理室に連続的に通しつつコーティング等を
行う処理ラインにおいて、各真空処理室の間の差圧をシ
ールする方法に関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention is applicable to a processing line in which a material in the form of a strip or web is continuously passed through two or more vacuum processing chambers with different pressures for coating, etc. , relates to a method of sealing differential pressure between vacuum processing chambers.
[従来の技術]
帯板やウェブ状の材料に装飾性、耐食性、耐摩耗性等を
付与するため、真空中でイオンブレーティング、スパッ
タリング、プラズマCVD (chemicalvap
or deposition) 、真空蒸着等を行って
、材料の表面に連続的にセラミックスや金属の皮膜を形
成するコーティング技術か開発されつつある。これらの
コーティング処理を〜・つのラインで2種類以上行う場
合、またコーティングの面処理としてイオンボンバード
処理等を行う場合、圧力の異なる真空処理室に材料を連
続的に通す必要があり、高圧真空処理室と低圧真空処理
室の間の差圧をシールするとともに、各真空処理室のガ
ス導入量比を定に保ち、各真空処理室の雰囲気を保持す
る必要かある。[Prior art] In order to impart decorative properties, corrosion resistance, abrasion resistance, etc. to strips and web-like materials, ion blasting, sputtering, plasma CVD (chemical vapor deposition), etc. are used in vacuum.
Coating techniques are being developed in which a ceramic or metal film is continuously formed on the surface of a material by performing vacuum evaporation or deposition. When carrying out two or more of these coating processes on one line, or when performing ion bombardment as surface treatment for coating, it is necessary to pass the material continuously through vacuum processing chambers with different pressures, and high-pressure vacuum processing is required. It is necessary to seal the differential pressure between the chamber and the low-pressure vacuum processing chamber, maintain the gas introduction amount ratio of each vacuum processing chamber constant, and maintain the atmosphere of each vacuum processing chamber.
このような連続真空処理ラインにおける従来の差圧シー
ル方法として、高圧真空処理室と低圧真空処理室の間に
多数の差圧真空室を設け、各真空室間を材料通過用のス
リットを介して接続し、スリットの抵抗により差圧を確
保し、差圧真空室のうち少なくとも一つの特定差圧真空
室の圧力を高圧真空処理室の圧力よりも高くするか、あ
るいは特定差圧真空室と高圧真空処理室の間のすくなく
とも一つの差圧真空室の圧力を特定差圧真空室の圧力よ
りも低くすることにより、高圧真空処理室の汚染物が低
圧真空処理室に流入するのを防止する方法(特公昭44
−6576) 、スリット部に上下−対のシールロール
を配置してシールロール間に帯板材料を通過させること
により差圧を確保する方法(特開昭62−13572)
等が知られている。As a conventional differential pressure sealing method in such a continuous vacuum processing line, a number of differential pressure vacuum chambers are provided between a high pressure vacuum processing chamber and a low pressure vacuum processing chamber, and a slit for material passage is provided between each vacuum chamber. the pressure in at least one specific differential pressure vacuum chamber is higher than the pressure in the high pressure vacuum processing chamber, or the specific differential pressure vacuum chamber and the high pressure A method for preventing contaminants from a high-pressure vacuum processing chamber from flowing into a low-pressure vacuum processing chamber by lowering the pressure of at least one differential pressure vacuum chamber between the vacuum processing chambers than the pressure of a specific differential pressure vacuum chamber. (Tokuko 1977
-6576), a method of ensuring differential pressure by arranging a pair of upper and lower seal rolls in a slit part and passing a strip material between the seal rolls (Japanese Patent Application Laid-Open No. 13572/1982)
etc. are known.
[発明が解決しようとする課題]
従来の差圧シール方法のうち、特公昭44−6576の
方法では、高圧真空処理室に隣接する差圧真空室と高圧
真空処理室との圧力差は一定に制御されていないため、
該差圧真空室の圧力変化時に該差圧真空室と高圧真空処
理室間のスリットを流れるガス流量が変化し、高圧真空
処理室のガス導入量比、ガス流分布等に影響を与え、高
圧真空処理室の処理に問題が生じる。[Problems to be Solved by the Invention] Among conventional differential pressure sealing methods, the method disclosed in Japanese Patent Publication No. 44-6576 maintains a constant pressure difference between the differential pressure vacuum chamber adjacent to the high pressure vacuum processing chamber and the high pressure vacuum processing chamber. Because it is not controlled
When the pressure in the differential pressure vacuum chamber changes, the gas flow rate flowing through the slit between the differential pressure vacuum chamber and the high pressure vacuum processing chamber changes, affecting the gas introduction amount ratio, gas flow distribution, etc. in the high pressure vacuum processing chamber, and increasing the high pressure. A problem arises in the processing of the vacuum processing chamber.
例えば、高圧真空処理室にてSiH4,N20. Ar
の混合ガスを導入し、プラズマCvDによりs+o、I
IQを生成する場合、スリットから流入するガス(例え
ばArガス)流量が変化すると、高圧真空処理室内に導
入されるガス流黴比ならびに各ガス分圧が変化し、Si
n、膜中のSiと0の組成比を変化させ、膜品質である
耐食性の低下等をひき起こす。また、スリットを流れる
ガス流量の変化により、高圧真空処理室内のガス流分布
が乱され、膜厚分布の不均一化等の問題をもたらす。For example, SiH4, N20. Ar
A mixed gas of s + o, I is introduced by plasma CvD.
When generating IQ, when the flow rate of gas (for example, Ar gas) flowing in from the slit changes, the gas flow mold ratio and the partial pressure of each gas introduced into the high-pressure vacuum processing chamber change, and the Si
n, changes the composition ratio of Si and 0 in the film, causing a decrease in corrosion resistance, which is a film quality. Further, due to a change in the gas flow rate flowing through the slit, the gas flow distribution within the high-pressure vacuum processing chamber is disturbed, leading to problems such as non-uniform film thickness distribution.
また、同じく特公昭44−6576の方法では、差圧真
空室の圧力か常に低圧真空処理室の圧力よりも高く、差
圧シール用のカスが低圧真空処理室に流入するため、特
に低圧真空処理室において差圧シール用のガス以外のガ
ス種を使用する場合は、低圧真空処理室へのガス導入量
比に影響【へ処理に問題が生じる。In addition, in the method of Japanese Patent Publication No. 44-6576, the pressure in the differential pressure vacuum chamber is always higher than the pressure in the low pressure vacuum processing chamber, and the scum for differential pressure sealing flows into the low pressure vacuum processing chamber. If a gas other than gas for differential pressure sealing is used in the chamber, problems may occur due to the effect on the ratio of the amount of gas introduced into the low-pressure vacuum processing chamber.
例えば、低圧真空処理室において、N2ガスを反応ガス
とし、Tiターゲットを用いて反応性スパッタリングに
よりTiN、膜を生成する場合、低圧真空処理室に隣接
する差圧真空室から低圧真空処理室にスリットを介して
流れ込むガス(例えばArガス)の流入量が変化すると
、低圧真空処理室に導入するガス流量比、および各ガス
分圧が変化し、プラズマの状態が変化し、膜を構成する
TiとNの組成比の変化をひき起こし、膜品質である装
飾性、色調、硬度、耐摩耗性を低下させる。For example, when producing a TiN film by reactive sputtering using N2 gas as a reaction gas and a Ti target in a low-pressure vacuum processing chamber, a slit is inserted into the low-pressure vacuum processing chamber from a differential pressure vacuum chamber adjacent to the low-pressure vacuum processing chamber. When the amount of gas (for example, Ar gas) flowing through the chamber changes, the gas flow rate ratio and the partial pressure of each gas introduced into the low-pressure vacuum processing chamber change, the state of the plasma changes, and the Ti and This causes a change in the composition ratio of N, resulting in a decrease in film quality such as decoration, color tone, hardness, and abrasion resistance.
一方、特開昭62−13572等のシールロールを用い
る方法は、気密性が高いのでシール効果は優れているが
、材料の処理面にシールロールが接触するので表面疵や
汚れが発生するという問題かある。On the other hand, methods using seal rolls such as those disclosed in JP-A No. 62-13572 have excellent sealing effects due to their high airtightness, but the problem is that surface flaws and stains occur because the seal rolls come into contact with the treated surface of the material. There is.
本発明は、帯板やウェブ状の材料を圧力の異なる2室以
上の真空処理室に連続的に通しつつコーティング等を行
う処理ラインにおいて、各真空処理室の間の差圧を確実
にシールするとともに、各真空処理室の雰囲気が互いに
影響されないようにしてコーティング等の処理を安定し
て行うことができ、かつ処理面に疵や汚れを発生させる
ことのない差圧シール方法の提供を目的とする。The present invention reliably seals the differential pressure between the vacuum processing chambers in a processing line in which a material in the form of a strip or web is continuously passed through two or more vacuum processing chambers with different pressures for coating, etc. In addition, the purpose of the present invention is to provide a differential pressure sealing method that allows stable processing such as coating by preventing the atmospheres of each vacuum processing chamber from being influenced by each other, and which does not cause scratches or stains on the processing surface. do.
[課題を解決するための手段1作用]
上記目的を達成するための本発明請求項1の差圧シール
方法は、高圧真空処理室と低圧真空処理室の間に2室以
上の差圧真空室を直列に設け、該各差圧真空室と前記高
圧真空処理室と前記低圧真空処理室とを互いにスリット
を介して接続し、前記高圧真空処理室に隣接する前記差
圧真空室の圧力を前記高圧真空処理室の圧力よりも高く
かつ註圧力差を一定に制御することを特徴とする。[Means for Solving the Problems 1 Effect] The differential pressure sealing method according to claim 1 of the present invention for achieving the above object provides two or more differential pressure vacuum chambers between a high pressure vacuum processing chamber and a low pressure vacuum processing chamber. are provided in series, each of the differential pressure vacuum chambers, the high pressure vacuum processing chamber, and the low pressure vacuum processing chamber are connected to each other via a slit, and the pressure of the differential pressure vacuum chamber adjacent to the high pressure vacuum processing chamber is controlled by the pressure of the differential pressure vacuum chamber adjacent to the high pressure vacuum processing chamber. It is characterized by being higher than the pressure in the high-pressure vacuum processing chamber and controlling the pressure difference to be constant.
また、本発明請求項2の差圧シール方法は、上記請求項
1の差圧シール方法において、前記低圧真空処理室に隣
接する航記差圧真空室の圧力をflf記低圧真空処理室
の圧力よりも低くすることを特徴とする。Further, in the differential pressure sealing method according to claim 1, the pressure in the differential pressure vacuum chamber adjacent to the low pressure vacuum processing chamber is set to the pressure in the low pressure vacuum processing chamber. It is characterized by being lower than.
[作用]
本発明の差圧シール方法を第1図に示す具体例により説
明する。[Operation] The differential pressure sealing method of the present invention will be explained using a specific example shown in FIG.
高圧真空処理室P1と低圧真空処理室P2の間に2室以
上(図では4室)の差圧真空室DI、D2.D3.D4
を直列に設け、各差圧真空室り、、D2.D3.D4と
高圧真空処理室P1と低圧真空処理室P2とを互いにス
リットSt、S2.S*、S、、Ssを介して接続し、
高圧真空処理室P1に隣接する差圧真空室D1の圧力を
高圧真空処理室P1の圧力よりも高くかつ該圧力差を一
定に制御する。低圧真空処理室P2に隣接する差圧真空
室D4の圧力を低圧真空処理室P2の圧力よりも低くす
る。Two or more (four in the figure) differential pressure vacuum chambers DI, D2. D3. D4
are installed in series, and each differential pressure vacuum chamber, , D2. D3. D4, the high-pressure vacuum processing chamber P1, and the low-pressure vacuum processing chamber P2 are connected to each other by slits St, S2. Connected via S*, S, , Ss,
The pressure in the differential pressure vacuum chamber D1 adjacent to the high pressure vacuum processing chamber P1 is controlled to be higher than the pressure in the high pressure vacuum processing chamber P1, and the pressure difference is kept constant. The pressure of the differential pressure vacuum chamber D4 adjacent to the low pressure vacuum processing chamber P2 is made lower than the pressure of the low pressure vacuum processing chamber P2.
高圧真空処理室P2.低圧真空処理室P2および差圧真
空室DI、D2.D3.D4は排気装置9により排気さ
れ、高圧真空処理室P1および低圧真空処理室P2には
ガスが導入されて被処理材料に各種処理が施される。差
圧真空室り、 、D2.D3.D4の圧力を単純に順次
低くした場合は、高圧真空処理室P、内のガスが低圧真
空処理室P2に流入するので、低圧真空処理室P2にお
ける処理に問題が生じる。上記請求項1の本発明法にお
いては、高圧真空処理室P1に隣接する差圧真空室D1
の圧力を高圧真空処理室PIの圧力よりも高くすること
により、高圧真空処理室P1内のガスが低圧真空処理室
P2に流入するのか防IFされる。そして、高圧真空処
理室P、の圧力とこハに隣接する差圧真空室D1の圧力
の差が一定となるように制御することにより、差圧真空
室D1から高圧真空処理室PIに流入するガスの量が−
・定に制御されて、高圧真空処理室Plの圧力およびガ
ス導入衛比が一定に維持される。High pressure vacuum processing chamber P2. Low pressure vacuum processing chamber P2 and differential pressure vacuum chambers DI, D2. D3. D4 is exhausted by the exhaust device 9, and gas is introduced into the high-pressure vacuum processing chamber P1 and the low-pressure vacuum processing chamber P2, and various treatments are performed on the material to be processed. Differential pressure vacuum chamber, D2. D3. If the pressure of D4 is simply lowered one after another, the gas in the high pressure vacuum processing chamber P will flow into the low pressure vacuum processing chamber P2, causing a problem in the processing in the low pressure vacuum processing chamber P2. In the method of the present invention according to claim 1, the differential pressure vacuum chamber D1 adjacent to the high pressure vacuum processing chamber P1
By making the pressure higher than the pressure in the high-pressure vacuum processing chamber PI, gas in the high-pressure vacuum processing chamber P1 is prevented from flowing into the low-pressure vacuum processing chamber P2. The gas flowing from the differential pressure vacuum chamber D1 into the high pressure vacuum processing chamber PI is controlled so that the difference between the pressure in the high pressure vacuum processing chamber P and the pressure in the differential pressure vacuum chamber D1 adjacent thereto is constant. The amount of -
- The pressure and gas introduction ratio of the high-pressure vacuum processing chamber Pl are maintained constant.
また、請求項2の本発明法においては、さらに、低圧真
空処理室P2に隣接する差圧真空室04の圧力を低圧真
空処理室P2の圧力よりも低くすることにより、低圧真
空処理室P2に差圧真空室D4内のガスが流入すること
がない。そして、画室はともに低圧であるため、低圧真
空処理室P2から差圧真空室D4に流出するガスの舒は
僅少なので、画室の圧力差を一定に制御しなくても、低
圧真空処理室P2の圧力およびガス導入量比は=一定に
維持される。Furthermore, in the method of the present invention according to claim 2, the pressure of the differential pressure vacuum chamber 04 adjacent to the low pressure vacuum processing chamber P2 is lowered than the pressure of the low pressure vacuum processing chamber P2. Gas in the differential pressure vacuum chamber D4 does not flow in. Since both compartments are at low pressure, the amount of gas flowing out from the low-pressure vacuum processing chamber P2 to the differential pressure vacuum chamber D4 is small, so even if the pressure difference between the compartments is not controlled constant, the pressure difference between the low-pressure vacuum processing chamber P2 and the The pressure and the gas introduction ratio are kept constant.
第1図の例において、帯板等の被処理材料;まス’)
ットSO,St、S2,53.S4.Si、56を通し
で左右ニ1般送される。このように、被処理材料はスリ
ットSを通して搬送さJlるので、被処理材Hの少なく
とも片面は無接触の状態で処理することができる。した
がって、処理面に疵や汚れが発生することがない
[実施例]
プラズマCVD装置を高圧真空処理室P、とし、スパッ
タリング装置を低圧真空処理室P2として、第1図のよ
うに差圧真空室りを4室設け、第1図の右から左にステ
ンレス鋼帯を搬送し、帯板の下面にコーティングを行っ
た。各室を排気するときは、排気シャットオフバルブ8
を開の状態にし。In the example in Figure 1, the material to be treated such as a strip;
SO, St, S2, 53. S4. It is generally fed to the left and right through Si, 56. In this way, since the material to be processed is conveyed through the slit S, at least one side of the material to be processed H can be processed without contact. Therefore, no scratches or stains will occur on the processing surface [Example] A plasma CVD apparatus is designated as a high-pressure vacuum processing chamber P, a sputtering apparatus is designated as a low-pressure vacuum processing chamber P2, and a differential pressure vacuum chamber is installed as shown in FIG. A stainless steel strip was conveyed from right to left in FIG. 1 in four chambers, and the lower surface of the strip was coated. When exhausting each room, use the exhaust shutoff valve 8.
Leave it open.
排気速度調節バルブ6を調節して行う。This is done by adjusting the exhaust speed control valve 6.
差圧真空室D1の圧力を高圧真空処理室P、の圧力より
・も高くかつ該圧力差を一定に制御するのは、次のよう
にして行う。ガス導入シャットオフバルブ7aを開にし
、ガス導入量調節バルブ5aの開度を調節して所定の組
成のガスを高圧真空処理室貼に導入する。高圧真空処理
室P1の圧力設定値を排気用圧力制御装置1aに人力し
ておき、高圧真空処理室P1に設けた真空計48の圧力
信号と比較して、その差が;になるように排気速度調節
バルブ6aの開度を自動調節し排気する。また、高圧真
空処理室P1と差圧真空室D1の間の圧力差設定値を演
算装置3に人力しておき、真空計48の圧力信号に基づ
く圧力値をこれに加算してガス導入用圧力制御装置2に
人力し、差圧真空室D1に設けた真空計41)の圧力信
号と比較して、その差が零となるようにガス導入量調節
バルブ5bの開度を自動調節し、差圧真空室0、にガス
を導入する。高圧真空処理室P1の所定のガス組成が、
反応ガスと希釈ガスの混合カスであるときは、差圧真空
室り、に導入するガスを希釈ガスとする。The pressure in the differential pressure vacuum chamber D1 is made higher than the pressure in the high pressure vacuum processing chamber P and the pressure difference is controlled to be constant as follows. The gas introduction shutoff valve 7a is opened, and the opening degree of the gas introduction amount adjustment valve 5a is adjusted to introduce a gas having a predetermined composition into the high pressure vacuum processing chamber panel. The pressure setting value of the high-pressure vacuum processing chamber P1 is manually entered into the exhaust pressure control device 1a, and compared with the pressure signal of the vacuum gauge 48 provided in the high-pressure vacuum processing chamber P1, the evacuation is performed so that the difference becomes; The opening degree of the speed control valve 6a is automatically adjusted to exhaust the air. In addition, the pressure difference set value between the high pressure vacuum processing chamber P1 and the differential pressure vacuum chamber D1 is manually entered into the calculation device 3, and the pressure value based on the pressure signal of the vacuum gauge 48 is added thereto to obtain the gas introduction pressure. The control device 2 is manually operated to compare the pressure signal from the vacuum gauge 41) provided in the differential pressure vacuum chamber D1, and automatically adjust the opening degree of the gas introduction amount control valve 5b so that the difference becomes zero. Gas is introduced into the pressure vacuum chamber 0. The predetermined gas composition of the high pressure vacuum processing chamber P1 is
When the gas is a mixture of a reaction gas and a diluent gas, the gas introduced into the differential pressure vacuum chamber is used as the diluent gas.
差圧真空室D4の圧力を低圧真空処理室P2の圧力より
も低くするのは次のようにして行う。ガス導入シャット
オフバルブ7Cを開にし、ガス導入贋調節バルブ5cの
開度を1週節して所定の組成のガスを低圧真空処理室P
2に導入する。低圧真空処理室P2の圧力設定値を排気
用圧力制御装置l))に入力しておき、低圧真空処理室
P2に設けた真空計4dの圧力信号と比較して、モの差
が零になるように排気速度調節バルブ6dの開度を自動
調節し排気する。また、差圧真空室D4の真空計40の
圧力信号が4dの圧力信号よりも常に低くなるように排
気速度調節バルブ6Cの開度を設定して、差圧真空室D
4を排気する。なお、真空計40および4dの圧力信号
に基づいて排気速度調節バルブ6Cの開度を自動調節し
てもよい。The pressure in the differential pressure vacuum chamber D4 is made lower than the pressure in the low pressure vacuum processing chamber P2 in the following manner. Open the gas introduction shutoff valve 7C, set the opening degree of the gas introduction counterfeit control valve 5c for one week, and supply the gas of a predetermined composition to the low-pressure vacuum processing chamber P.
Introduced in 2. Input the pressure setting value of the low-pressure vacuum processing chamber P2 into the exhaust pressure control device l)), and compare it with the pressure signal of the vacuum gauge 4d provided in the low-pressure vacuum processing chamber P2, until the difference in value becomes zero. The opening degree of the exhaust speed control valve 6d is automatically adjusted as shown in FIG. In addition, the opening degree of the exhaust speed control valve 6C is set so that the pressure signal of the vacuum gauge 40 of the differential pressure vacuum chamber D4 is always lower than the pressure signal of 4d.
Exhaust 4. Note that the opening degree of the exhaust speed control valve 6C may be automatically adjusted based on the pressure signals from the vacuum gauges 40 and 4d.
差圧真空室り、、D、、D、の排気は排気装置9bにて
行う。O3室にガスが導入されるのでり、、O2,O3
の順に圧力が低下し、排気速度調節バルブ6bの開度調
節と前記したガス導入量調節バルブ5bの開度調節によ
り、適正な圧力勾配となる。The differential pressure vacuum chambers , D, , D are evacuated by an exhaust device 9b. Since gas is introduced into the O3 chamber, O2, O3
The pressure decreases in this order, and an appropriate pressure gradient is achieved by adjusting the opening degree of the exhaust speed control valve 6b and the opening degree of the gas introduction amount control valve 5b described above.
以上の説明は、差圧真空室りを4室設けた例であるが、
高圧真空処理室P1と低圧真空処理室P2の圧力差が小
さい場合は差圧真空室りの数は少なくてもよく、圧力差
が大きい場合は多くした方がよい。The above explanation is an example in which four differential pressure vacuum chambers are provided.
When the pressure difference between the high-pressure vacuum processing chamber P1 and the low-pressure vacuum processing chamber P2 is small, the number of differential pressure vacuum chambers may be small, and when the pressure difference is large, it is better to increase the number.
(実施例1)
低圧真空処理室P2にはArガスを導入し、TiNター
ゲットをスパッタしてステンレス鋼帯にTiNの皮膜を
形成した。高圧真空処理室P・IにはSiH,とN20
とArの混合ガスを導入し、TiNの皮膜の上にSiO
□の皮膜を形成した。差圧真空室り、には差圧シール用
のArガスを導入して高圧真空処理室Plよりも圧力を
高くした。各室の圧力は第2図に示すとおりで、差圧真
空室り、を最も高圧に、低圧真空処理室P2を最も低圧
にした。(Example 1) Ar gas was introduced into the low-pressure vacuum processing chamber P2, and a TiN target was sputtered to form a TiN film on the stainless steel strip. SiH and N20 are used in the high pressure vacuum processing chambers P and I.
A mixed gas of SiO and Ar is introduced onto the TiN film.
A film of □ was formed. Ar gas for differential pressure sealing was introduced into the differential pressure vacuum chamber Pl to make the pressure higher than that of the high pressure vacuum processing chamber Pl. The pressure in each chamber was as shown in FIG. 2, with the differential pressure vacuum chamber P2 being the highest pressure and the low pressure vacuum processing chamber P2 being the lowest pressure.
(実施例2)
低圧真空処理室P、には反応ガスとしてN2ガスを導入
し、Tiターゲットをスパッタしてステンレス鋼帯にT
iNの皮膜を形成した。高圧真空処理室P。(Example 2) N2 gas was introduced as a reaction gas into the low-pressure vacuum processing chamber P, and a Ti target was sputtered to deposit T on the stainless steel strip.
A film of iN was formed. High pressure vacuum processing chamber P.
には5il14とN20とArの混合ガスを導入し、T
iNの皮膜の上にSiO□の皮膜を形成した。差圧真空
室O1には差圧シール用のArガスを導入して高圧真空
処理室P1よりも圧力を高くした。各室の圧力は第3図
に示すとおりで、差圧真空室り、を最も高圧に、差圧真
空室D4を最も低圧にした。A mixed gas of 5il14, N20, and Ar was introduced into the T
A SiO□ film was formed on the iN film. Ar gas for differential pressure sealing was introduced into the differential pressure vacuum chamber O1 to make the pressure higher than that in the high pressure vacuum processing chamber P1. The pressure in each chamber was as shown in FIG. 3, with the differential pressure vacuum chamber D4 being the highest pressure and the differential pressure vacuum chamber D4 being the lowest pressure.
実施例1.2とも各室の圧力は処理中一定に保たれ、高
圧真空処理室P、および低圧真空処理室P2のガス導入
量比も変わらず、ステンレス鋼帯の全長に均一な皮膜が
形成された。In both Examples 1 and 2, the pressure in each chamber was kept constant during the treatment, and the gas introduction amount ratio in the high-pressure vacuum treatment chamber P and low-pressure vacuum treatment chamber P2 remained unchanged, and a uniform film was formed over the entire length of the stainless steel strip. It was done.
高圧真空処理室P、に導入したS i H4は有害ガス
であるが、差圧真空室D1の方が高圧であるため、全量
が排気装置9aによって排気されたので、排気装置9a
の排ガスのみを処理すればよかった。The S i H4 introduced into the high pressure vacuum processing chamber P is a harmful gas, but since the pressure in the differential pressure vacuum chamber D1 is higher, the entire amount was exhausted by the exhaust device 9a.
It was only necessary to treat the exhaust gas.
ステンレス鋼帯の下面はスリットSに接触しないように
張力を付与して搬送したので、疵や汚れのない美麗なコ
ーティング皮膜が得られた。Since the lower surface of the stainless steel strip was conveyed under tension so as not to come into contact with the slit S, a beautiful coating film without scratches or stains was obtained.
[発明の効果]
以上説明した本発明法により、帯板やウェブ状の材料を
圧力の異なる2室以上の真空処理室に連続的に通しつつ
コーティング等を行う処理ラインにおいて、各真空処理
室の間の差圧が確実にシールされ、各真空処理室のガス
導入量比が変動しないので、コーティング等の処理を安
定して行うことができ、さらに処理面に疵や汚れが発生
せず美麗な処理面が得られる。[Effects of the Invention] According to the method of the present invention as described above, in a processing line in which a strip or web-shaped material is continuously passed through two or more vacuum processing chambers with different pressures for coating, etc., each vacuum processing chamber is The differential pressure between the chambers is reliably sealed, and the ratio of gas introduced into each vacuum processing chamber does not fluctuate, making it possible to perform coatings and other processes stably.Furthermore, the processing surface is free from scratches and stains, making it beautiful. A treated surface is obtained.
第1図は本発明法を行う装置の具体例を示す図、第2図
は本発明の実施例(請求項1)の圧力分布を示す図、お
よび第3図は本発明の他の実施例(請求項2)の圧力分
布を示す図である。
1・・・排気用圧力制御装置、2・・・ガス導入用圧力
制御装置、3・・・演算装置、4・・・真空計、5・・
・ガス導入量調節バルブ、6・・・排気速度鋼jmバル
ブ、7・・・ガス導入シャットオフバルブ、8・・・排
気シャットオフバルブ、9・・・排気装置、D・・・差
圧真空室、Pl・・・高圧真空処理室、P2・・・低圧
真空処理室、S・・・スリット。FIG. 1 is a diagram showing a specific example of an apparatus for carrying out the method of the present invention, FIG. 2 is a diagram showing pressure distribution in an embodiment of the present invention (Claim 1), and FIG. 3 is a diagram showing another embodiment of the present invention. It is a figure which shows the pressure distribution of (Claim 2). DESCRIPTION OF SYMBOLS 1... Pressure control device for exhaust, 2... Pressure control device for gas introduction, 3... Arithmetic device, 4... Vacuum gauge, 5...
・Gas introduction amount adjustment valve, 6... Exhaust speed steel jm valve, 7... Gas introduction shutoff valve, 8... Exhaust shutoff valve, 9... Exhaust device, D... Differential pressure vacuum Chamber, Pl...High pressure vacuum processing chamber, P2...Low pressure vacuum processing chamber, S...Slit.
Claims (1)
差圧真空室を直列に設け、該各差圧真空室と前記高圧真
空処理室と前記低圧真空処理室とを互いにスリットを介
して接続し、前記高圧真空処理室に隣接する前記差圧真
空室の圧力を前記高圧真空処理室の圧力よりも高くかつ
該圧力差を一定に制御することを特徴とする差圧シール
方法。 2、低圧真空処理室に隣接する差圧真空室の圧力を低圧
真空処理室の圧力よりも低くすることを特徴とする請求
項1記載の差圧シール方法。[Claims] 1. Two or more differential pressure vacuum chambers are provided in series between a high pressure vacuum processing chamber and a low pressure vacuum processing chamber, and each differential pressure vacuum chamber, the high pressure vacuum processing chamber, and the low pressure vacuum processing The chambers are connected to each other via a slit, and the pressure in the differential pressure vacuum chamber adjacent to the high pressure vacuum processing chamber is controlled to be higher than the pressure in the high pressure vacuum processing chamber, and the pressure difference is controlled to be constant. Differential pressure sealing method. 2. The differential pressure sealing method according to claim 1, wherein the pressure in a differential pressure vacuum chamber adjacent to the low pressure vacuum processing chamber is lower than the pressure in the low pressure vacuum processing chamber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18836988 | 1988-07-29 | ||
JP63-188369 | 1988-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02138467A true JPH02138467A (en) | 1990-05-28 |
Family
ID=16222408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13736589A Pending JPH02138467A (en) | 1988-07-29 | 1989-06-01 | Differential pressure sealing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02138467A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6758222B2 (en) * | 2001-02-09 | 2004-07-06 | Tokyo Ohka Kogyo Co., Ltd. | Processing method for substrate |
JP2014227580A (en) * | 2013-05-23 | 2014-12-08 | 株式会社アルバック | Film deposition device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144947A (en) * | 1984-08-10 | 1986-03-04 | Mitsui Petrochem Ind Ltd | Polyester composition |
-
1989
- 1989-06-01 JP JP13736589A patent/JPH02138467A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144947A (en) * | 1984-08-10 | 1986-03-04 | Mitsui Petrochem Ind Ltd | Polyester composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6758222B2 (en) * | 2001-02-09 | 2004-07-06 | Tokyo Ohka Kogyo Co., Ltd. | Processing method for substrate |
JP2014227580A (en) * | 2013-05-23 | 2014-12-08 | 株式会社アルバック | Film deposition device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0305573B1 (en) | Continuous composite coating apparatus for coating strip | |
JP3706157B2 (en) | Gas introduction apparatus and method | |
US6592942B1 (en) | Method for vapour deposition of a film onto a substrate | |
US4849081A (en) | Formation of oxide films by reactive sputtering | |
JPH07122498A (en) | Gas supply method to chamber | |
KR950014461A (en) | Thin Film Formation Method | |
US4294871A (en) | Method for depositing a layer on the inside of cavities of a work piece | |
AU692332B2 (en) | Process and apparatus for forming thin films of metallic compounds | |
KR20140027202A (en) | Improved method of controlling lithium uniformity | |
WO1995018460A1 (en) | Thin film formation method | |
US4961832A (en) | Apparatus for applying film coatings onto substrates in vacuum | |
JPH02138467A (en) | Differential pressure sealing method | |
JPH01204434A (en) | Manufacture of insulating thin film | |
JPH05148634A (en) | Sputtering apparatus | |
JP2001257164A (en) | Device and method for treating substrate and pressure control method | |
JPH09148259A (en) | Lateral reactor | |
JPH02125861A (en) | Formation of coating film on surface of material to be treated | |
JP4770167B2 (en) | Film forming method using surface wave excitation plasma CVD apparatus | |
US20120308714A1 (en) | Reduced pressure deposition apparatus and reduced pressure deposition method | |
JPS61573A (en) | Sputtering apparatus | |
KR20190023487A (en) | Photomask blank and manufacturing method and sputter machine for flat panel display lithography | |
DE4242490C1 (en) | Reactive vacuum treatment for e.g. coating substrates - with gas outflow from substrates partially removed by vacuum pumps | |
JP2006351480A (en) | Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method | |
JPS61152019A (en) | Surface processor | |
JPS62249411A (en) | Processor |