JPH02138233A - Oxidization of aromatic compound - Google Patents

Oxidization of aromatic compound

Info

Publication number
JPH02138233A
JPH02138233A JP1042148A JP4214889A JPH02138233A JP H02138233 A JPH02138233 A JP H02138233A JP 1042148 A JP1042148 A JP 1042148A JP 4214889 A JP4214889 A JP 4214889A JP H02138233 A JPH02138233 A JP H02138233A
Authority
JP
Japan
Prior art keywords
catalyst
compound
reaction
copper
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1042148A
Other languages
Japanese (ja)
Other versions
JP2507026B2 (en
Inventor
Kazuo Sasaki
和夫 佐々木
Atsutaka Kunai
九内 淳尭
Sotaro Ito
井藤 荘太郎
Fumiaki Iwasaki
史哲 岩崎
Michiyuki Hamada
道幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Tosoh Corp
Original Assignee
Tokuyama Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Tosoh Corp filed Critical Tokuyama Corp
Priority to JP1042148A priority Critical patent/JP2507026B2/en
Publication of JPH02138233A publication Critical patent/JPH02138233A/en
Application granted granted Critical
Publication of JP2507026B2 publication Critical patent/JP2507026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To continuously produce an oxidized aromatic compound under mild condition in high efficiency while keeping the activity of an oxidation catalyst in high efficiency by oxidizing an aromatic compound with an O2-containing gas in liquid phase in the presence of a specific oxidation catalyst and a specific reduction catalyst. CONSTITUTION:The objective compound such as phenol is produced by (1) adding an aromatic compound such as benzene to a mixed solvent produced by mixing an acid such as sulfuric acid with a solvent such as acetonitrile containing (A) an oxidation catalyst consisting of copper or a copper compound such as cupric sulfate and (B) a reduction catalyst consisting of a compound capable of reducing cupric ion with H2 gas or a reducing compound having the function comparable to H2 gas (e.g., platinum black deposited on platinum) and (2) oxidizing the aromatic compound at normal temperature -200 deg. while passing CO as a reducing gas and air as an O2-containing gas through the solution. The above oxidation process has merits of low facility and running costs and is suitably applicable for industrial operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芳香族化合物の酸化方法に関し、詳しくは空気
等の含酸素ガスを用いた芳香族化合物の効率のよい酸化
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for oxidizing aromatic compounds, and more particularly to an efficient method for oxidizing aromatic compounds using an oxygen-containing gas such as air.

(従来の技術) 芳香族化合物の直接酸化により製造できるフェノール類
、なかでも特にフェノールは、化学工業において非常に
ffi要な化合物である。そして現在のところこのフェ
ノールの大部分はキュメン法によって製造されている。
(Prior Art) Phenols, especially phenol, which can be produced by direct oxidation of aromatic compounds, are very important compounds in the chemical industry. At present, most of this phenol is produced by the cumene process.

ところでこのキュメン法は、アルキル化、酸化、分解と
いった多段の反応からなる多額の設備を要するプロセス
であり、また、フェノールと等モルのアセトンを副生ず
るといった問題を抱えていることから、より合理的でか
つ安価な設備で足りる代替技術の開発が待たれているの
が現状である。
By the way, the cumene method is a process that requires a large amount of equipment and consists of multiple reactions such as alkylation, oxidation, and decomposition, and also has the problem of producing acetone in the same mole as phenol as a by-product. The current situation is that we are waiting for the development of alternative technology that requires large and inexpensive equipment.

従来、このようなキュメン法に変わる方法としてベンゼ
ンの直接酸化によりフェノールを製造しようとする研究
は精力的に行なわれてきており、例えばNeck氏等は
、酢酸溶液中で酢酸第1銅を触媒として酸素によりベン
ゼンを酸化してフェノールを得る方法につき開示してい
る(tlsP  3718629)。
As an alternative to the cumene method, research has been actively conducted to produce phenol by direct oxidation of benzene. For example, Neck et al. A method for obtaining phenol by oxidizing benzene with oxygen is disclosed (tlsP 3718629).

またFleszar氏等は、ベンゼンの硫酸水溶液に金
属銅を入れて触媒とし、フェノールを得る方法について
開示している(Rocznlkl Chem、50(2
) 、271(1976))。
In addition, Fleszar et al. have disclosed a method for obtaining phenol by adding metallic copper to a benzene sulfuric acid aqueous solution as a catalyst (Rocznlkl Chem, 50 (2)
), 271 (1976)).

更に電解還元によって銅イオンまたはチタンイオンの少
なくとも一部を低原子価に保ち、これを触媒として酸素
含有ガスを送入してベンゼンの酸化を行ないフェノール
を得る方法(特開昭80−9889号公報)、また金属
銅と2価の銅イオンを共存させた触媒を用い、硫酸酸性
下で空気を吹込んでベンゼンの酸化を行なってフェノー
ルを得る方法も開示されている(特開昭6(1−fi7
44Q号公報)。
Further, at least a part of copper ions or titanium ions is kept at a low valence by electrolytic reduction, and oxygen-containing gas is introduced using this as a catalyst to oxidize benzene to obtain phenol (JP-A No. 80-9889). ), and also discloses a method for obtaining phenol by oxidizing benzene by blowing air under acidic sulfuric acid using a catalyst containing metallic copper and divalent copper ions (Japanese Patent Application Laid-Open No. 6 (1983) (1-1)). fi7
Publication No. 44Q).

これらの既に開示されている方法においては、ベンゼン
等の酸化反応における触媒活性種が1価の銅イオンであ
るといわれており、その1価の銅イオンは芳香族化合物
の酸化において2価の銅イオンに変る。したがってこの
反応は銅イオンに関しては触媒的というよりはむしろ量
論的であると考えられている。
In these already disclosed methods, the catalytic active species in the oxidation reaction of benzene, etc. is said to be a monovalent copper ion, and the monovalent copper ion is said to be a monovalent copper ion in the oxidation of aromatic compounds. turns into ion. The reaction is therefore considered to be stoichiometric rather than catalytic with respect to copper ions.

上記ベンゼンの酸化に触媒として寄与した1価の銅イオ
ンは、2価に変って失活すると最早反応に寄与しないか
らそのままでは反応の長期連続化は実現できない。そこ
で反応の連続化を実現する技術が工夫され、例えば上記
特開昭60−9889号公報に記載の方法や、 F L
eszar氏等の方法のように、1!極還元を利用して
銅イオンを低原子価に維持する方法が提案されている。
Monovalent copper ions, which contributed as a catalyst to the oxidation of benzene, no longer contribute to the reaction once they become divalent and are deactivated, so long-term continuous reaction cannot be achieved as is. Therefore, techniques for realizing continuous reaction have been devised, such as the method described in the above-mentioned Japanese Patent Application Laid-Open No. 60-9889, and F L
As in the method of Eszar et al., 1! A method of maintaining copper ions at a low valence using extreme reduction has been proposed.

なお後者の文献では銅イオンの低原子価維持について上
記電極還元性以外の方法の存在の可能性について示唆し
ているが、具体的な記述や実施例については何も記載さ
れていない。
Note that although the latter document suggests the possibility of the existence of methods other than the above-mentioned electrode reducibility for maintaining the low valence of copper ions, it does not include any specific descriptions or examples.

(発明が解決しようとする課題) 上記のように、キュメン法に変わるベンゼンの直接酸化
によるフェノールの製造方法については従来より種々の
ti案はあるものの、これらの従来提案の技術は、実際
には例えば触媒活性が低すぎたり、実質的に触媒成分の
量論反応であったりするため実用に供し難(、あるいは
これを改良した従来提案の技術も、高価な電気エネルギ
ーを使用するため実施のコストが高いという欠点もある
ため、これを工業的な規模でのフェノール製造に利用す
るには、未だ改良すべき点が多く残っているのが実状で
ある。
(Problems to be Solved by the Invention) As mentioned above, although there have been various proposals for producing phenol by direct oxidation of benzene in place of the cumene method, these conventionally proposed techniques have not been practical in practice. For example, the catalytic activity is too low or the reaction is essentially stoichiometric between the catalytic components, making it difficult to put it to practical use. Since it also has the disadvantage of high phenol production, there are still many points that need to be improved before it can be used for phenol production on an industrial scale.

以上のような従来技術の現状の下で、本発明者は、ベン
ゼン類の酸化を効率よく行なうことができる方法につき
鋭意研究を進め、本発明を開発するに至ったものである
Under the current state of the prior art as described above, the present inventor has conducted intensive research on a method that can efficiently oxidize benzenes, and has developed the present invention.

すなわち本発明の目的は、酸化触媒である金属銅又は銅
化合物の存在下、液相中で含酸素ガスにより芳香族化合
物を直接酸化する方法において、新規な方法により酸化
触媒の活性を効率よく維持することを可能とし、これに
より高効率で連続的なフェノール類およびベンゾキノン
類の製造を実現できる芳香族化合物の酸化方法を提供す
るところにある。
That is, an object of the present invention is to efficiently maintain the activity of an oxidation catalyst by a novel method in a method of directly oxidizing an aromatic compound with an oxygen-containing gas in a liquid phase in the presence of metallic copper or a copper compound as an oxidation catalyst. An object of the present invention is to provide a method for oxidizing aromatic compounds, which enables highly efficient and continuous production of phenols and benzoquinones.

また本発明の他の目的は、製造設備、実施コストが安価
で、工業的な実施に好適に応用できる新規な芳香族化合
物の酸化方法を提供するところにある。
Another object of the present invention is to provide a novel method for oxidizing aromatic compounds that requires low manufacturing equipment and implementation costs and can be suitably applied to industrial implementation.

(課題を解決するための手段) 而して、かかる目的の実現のためになされた本発明方法
の特徴は、酸化触媒としての銅又は銅化合物の存在下、
液相中で芳香族化合物を含酸素ガスにより酸化させる方
法において、水素ガスないしこれと同等の機能を有する
還元性化合物によって、2価の銅イオンを還元する活性
を有する還元性触媒を共存させるようにしたところにあ
る。さらに、本発明方法の他の特徴は、上記の混合物の
触媒の一成分として、鉄又は鉄化合物を共存させること
により酸化生成物の増加を図ることにある。
(Means for Solving the Problems) Therefore, the feature of the method of the present invention, which was made to achieve the above object, is that in the presence of copper or a copper compound as an oxidation catalyst,
In a method of oxidizing aromatic compounds with oxygen-containing gas in a liquid phase, a reducing catalyst having an activity of reducing divalent copper ions is coexisting with hydrogen gas or a reducing compound with an equivalent function. It's located where I left it. Furthermore, another feature of the method of the present invention is that the amount of oxidation products is increased by coexisting iron or an iron compound as a component of the catalyst in the above-mentioned mixture.

本発明方法において、上記のように共存されて複合的に
使用される触媒の一方を構成する酸化触媒は、金属銅で
ある場合の他、銅化合物として各種のものを使用するこ
とができる。例えば銅化合物である銅塩の例としては、
硫酸銅、塩化銅、過塩素酸銅などの無機酸塩あるいは、
酢酸銅、ギ酸銅などの有機酸塩を挙げることができる。
In the method of the present invention, the oxidation catalyst constituting one of the catalysts coexisting and used in a composite manner as described above is not only metal copper, but also various copper compounds can be used. For example, as an example of copper salt, which is a copper compound,
Inorganic acid salts such as copper sulfate, copper chloride, copper perchlorate, or
Examples include organic acid salts such as copper acetate and copper formate.

なお酸化触媒として使用できる銅については、反応中に
0価からより高い酸化状態である1価あるいは2偏にな
るため、出発原料として0価であればよい、また、本発
明の触媒系に共存させる鉄又は鉄化合物としては、例え
ば還元鉄(粉)、硫酸鉄、硝酸鉄、塩化鉄などの無機酸
塩、あるいは蓚酸鉄、フマル酸鉄などの有m酸塩が挙げ
られ、上記の酸化触媒に対して量論的に一般に等モル以
下の範囲で用いることが好ましい。
Copper that can be used as an oxidation catalyst changes from zero valence to monovalent or divalent, which is a higher oxidation state, during the reaction, so it is sufficient as a starting material to have zero valence. Examples of iron or iron compounds include reduced iron (powder), inorganic acid salts such as iron sulfate, iron nitrate, and iron chloride, and organic acid salts such as iron oxalate and iron fumarate. Generally, it is preferable to use the amount in a stoichiometrically equimolar range or less.

鉄又は鉄化合物の共存は、後述する還元触媒としての作
用効果を果すのみならず、芳香族化合物の酸化機構に関
与し、その活性を増加させるため、還元触媒として、鉄
又は鉄化合物以外の物質を用いた場合、別途鉄又は鉄化
合物を添加し、共存せしめるのが好ましい。
The coexistence of iron or iron compounds not only functions as a reduction catalyst as described below, but also participates in the oxidation mechanism of aromatic compounds and increases its activity. Therefore, substances other than iron or iron compounds may be used as reduction catalysts. When using iron or iron, it is preferable to separately add iron or an iron compound so that they coexist.

次に本発明方法において、複合的に使用される触媒の他
方を構成する還元触媒は、上記酸化触媒の活性を維持す
るために使用されるものである。このような還元触媒と
しては例えば周期律表■族の貴金属および卑金属あるい
はこれらの化合物を挙げることができ、具体的にはPd
、Rh、Ptなどの貴金属およびそれらの塩、Fe、G
oなどの卑金属およびそれらの塩を例示することができ
る他、非金属の活性炭やポリアニリンなども用いること
ができる。これらのうち貴金属または貴金属の塩のよう
な貴金属化合物は特に好ましく使用される。
Next, in the method of the present invention, the reduction catalyst constituting the other of the catalysts used in combination is used to maintain the activity of the oxidation catalyst. Such reduction catalysts include, for example, noble metals and base metals of group I of the periodic table, or compounds thereof; specifically, Pd
, Rh, Pt and other noble metals and their salts, Fe, G
In addition to base metals such as O and their salts, nonmetallic activated carbon, polyaniline, and the like can also be used. Among these, noble metals or noble metal compounds such as noble metal salts are particularly preferably used.

この還元触媒は、上記酸化触媒の活性を維持するのに有
効であることを必要な条件として使用されるものであっ
て、還元触媒の量が多くなるほど反応速度が大きくなる
傾向があり、工業的な装置3反応の設計に適するように
必要な範囲で多量の還元触媒を用いることが一般的には
望ましいが、例えば上記■族の貴金属は比較的高価であ
るから多量に使用すると製造コストの上昇を招くことに
なる。したがって工業的には酸化触媒に対し量論的に等
モル量以下程度の範囲で使用することが好ましい場合が
多い。
This reduction catalyst is used under the necessary condition that it is effective in maintaining the activity of the oxidation catalyst, and the reaction rate tends to increase as the amount of reduction catalyst increases. It is generally desirable to use a large amount of reducing catalyst within the range necessary to suit the design of the reactor 3 reaction, but for example, the noble metals of group Ⅰ mentioned above are relatively expensive, so using a large amount will increase production costs. will be invited. Therefore, industrially, it is often preferable to use it in a stoichiometrically equimolar amount or less relative to the oxidation catalyst.

本発明の方法において、酸化触媒とこれの活性を維持す
るのに用いられる還元触媒とは、その還元反応に有効で
ある関係をもつように共存されることが必要であり、こ
のためにこれら両者の触媒は、水素ガスないしこれと同
等の機能を有する還元性化合物が、還元触媒の存在下で
2価の銅イオンを還元できる状態に存在しなければなら
ない。従って、還元触媒と酸化触媒が少なくとも部分的
に原子レベルで互いに隣接し得る状態にあるかあるいは
その状態になり得るという関係で用いられることが必要
である。
In the method of the present invention, it is necessary that the oxidation catalyst and the reduction catalyst used to maintain the activity of the oxidation catalyst coexist in such a manner that they have an effective relationship for the reduction reaction. The catalyst must be in a state where hydrogen gas or a reducing compound having an equivalent function can reduce divalent copper ions in the presence of the reducing catalyst. Therefore, it is necessary that the reduction catalyst and the oxidation catalyst be used in such a manner that they are or can be at least partially adjacent to each other at the atomic level.

したがって両者の触媒は、上記条件を必要十分な条件と
して満足する限り、酸化触媒および還元触媒の一方ある
いは双方を適宜の担体に担持させた形式で使用すること
もできる。このような担体として使用できるものとして
は、例えばシリカ、アルミナ、マグネシアあるいはこれ
らの複合酸化物を例示することができる。これらの担体
に触媒成分を担持させる方法は特に限定されるものでは
なく、全触媒成分を同時に担持させる方法、あるいは触
媒成分を多段に分けて担持させる方法のいずれによって
もよい。
Therefore, both catalysts can also be used in a form in which one or both of the oxidation catalyst and the reduction catalyst are supported on a suitable carrier, as long as the above conditions are satisfied as necessary and sufficient conditions. Examples of carriers that can be used include silica, alumina, magnesia, and composite oxides thereof. The method of supporting the catalyst components on these carriers is not particularly limited, and may be either a method of supporting all the catalyst components at the same time or a method of supporting the catalyst components in multiple stages.

本発明方法の反応は液相中で行なわれる。溶媒としては
、原料である芳香族化合物それ自体を溶媒として用いて
もよいし、あるいは他の適当な溶媒を用いてもよい、こ
のような溶媒として使用できるものとしては例えば、水
、アセトニトリル、ベンゾニトリルなどのニトリル類、
アセトアミド、N、N−ジメチルホルムアミドなどのア
ミド類、アセトン、メチルエチルケトンなどのケトン類
、ヘキサン、シクロヘキサンなどの飽和炭化水素類、酢
酸エチルなどのエステル類、メタノール、エタノール、
ターシャリ−ブタノールなどのアルコール類、プロピレ
ンカーボネートなどのカーボネート類を挙げることがで
き、これらのいずれか一種あるいは二種以上を混合して
溶媒とすることができる。特にアセトニトリルなどの配
位効果のある化合物を添加することにより、反応中に生
成する1価の銅イオンを安定化することができる。また
、反応原料に酸を添加して反応を行なわせることもでき
、このような添加する酸としては、硫酸、硝酸、リン酸
などの無機酸、あるいは酢酸、ギ酸などの有機酸を挙げ
ることができる。
The reaction of the process according to the invention is carried out in the liquid phase. As the solvent, the raw aromatic compound itself may be used as a solvent, or other suitable solvents may be used. Examples of solvents that can be used include water, acetonitrile, and benzene. Nitriles such as nitrile,
Amides such as acetamide, N,N-dimethylformamide, ketones such as acetone and methyl ethyl ketone, saturated hydrocarbons such as hexane and cyclohexane, esters such as ethyl acetate, methanol, ethanol,
Examples include alcohols such as tertiary-butanol and carbonates such as propylene carbonate, and any one of these or a mixture of two or more thereof can be used as a solvent. In particular, by adding a compound having a coordination effect such as acetonitrile, monovalent copper ions generated during the reaction can be stabilized. Furthermore, the reaction can be carried out by adding an acid to the reaction raw materials, and examples of such added acids include inorganic acids such as sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid and formic acid. can.

本発明の反応は代表的には、上記溶媒中に触媒および原
料物質を添加し、含酸素ガスを、溶媒、触媒及び原料物
質からなる反応混合物中に吹き込むと共に、水素ガスを
該反応混合物中に吹き込むかあるいは還元触媒の存在下
で酸化触媒に対する還元性を有する点で水素と同等の化
合物(以下、これらを総称して「水素等」という場合が
ある)を該反応混合物中に吹き込むことで連続的に行な
われる。しかしながら特に上記の反応形式に限定される
ことなく、触媒を含む反応混合物を水素等を用いて還元
した後、含酸素ガスにより芳香族化合物を酸化する反応
を同一反応器内で交互に行なうようにしてもよいし、あ
るいは水素等による酸化触媒の還元を行なう反応器と、
含酸素ガスにより芳香族化合物の酸化を行なう反応器が
別々のものであってもよい。
Typically, in the reaction of the present invention, a catalyst and a raw material are added to the above solvent, an oxygen-containing gas is blown into a reaction mixture consisting of the solvent, a catalyst, and a raw material, and hydrogen gas is introduced into the reaction mixture. Continuously by blowing into the reaction mixture a compound equivalent to hydrogen in terms of reducing properties to the oxidation catalyst (hereinafter, these may be collectively referred to as "hydrogen, etc.") in the presence of a reducing catalyst. It is carried out in a regular manner. However, the reaction is not limited to the above reaction format, and the reaction mixture containing the catalyst may be reduced using hydrogen or the like, and then the aromatic compound may be oxidized using an oxygen-containing gas, which may be carried out alternately in the same reactor. Alternatively, a reactor for reducing the oxidation catalyst with hydrogen or the like,
A separate reactor may be used to oxidize the aromatic compound with an oxygen-containing gas.

本発明方法の反応において使用される水素等としては、
水素ガス、−酸化炭素、オレフィンを例示することがで
きる。
Hydrogen etc. used in the reaction of the method of the present invention include:
Examples include hydrogen gas, -carbon oxide, and olefin.

また含酸素ガスとしては酸素を含有するものであれば特
に制限されないが、工業的には空気が好適に使用される
The oxygen-containing gas is not particularly limited as long as it contains oxygen, but air is preferably used industrially.

反応の温度は、原料である芳香族化合物が反応中におい
て液相であれば特に制限されず、反応速度を挙げるため
に反応温度を高くする場合には加圧下で反応を行なって
もよい。実用的な温度範囲としては常温〜2oo℃、好
ましくは常温〜175℃であることが適する場合が多い
The reaction temperature is not particularly limited as long as the aromatic compound as a raw material is in a liquid phase during the reaction, and when the reaction temperature is raised to increase the reaction rate, the reaction may be carried out under pressure. The practical temperature range is often room temperature to 200°C, preferably room temperature to 175°C.

本発明方法が適用されて酸化される芳香族化合物として
は、少なくとも1以上のベンゼン環を有する化合物、あ
るいは多環式化合物が例示され、これらはまた環に結合
している水素原子の1つ以上が、アルキル基、ヒドロキ
シル基等の置換基により置換されているものであても差
支えない、このような芳香族化合物の代表的なものとし
ては、ベンゼン、ナフタレン、トルエン、フェノールを
例示することができる。また目的に応じてこれらの化合
物の混合原料を対象とすることも可能である。
Examples of aromatic compounds to be oxidized by the method of the present invention include compounds having at least one benzene ring or polycyclic compounds, which also have one or more hydrogen atoms bonded to the ring. However, there is no problem even if it is substituted with a substituent such as an alkyl group or a hydroxyl group. Representative examples of such aromatic compounds include benzene, naphthalene, toluene, and phenol. . It is also possible to use mixed raw materials of these compounds depending on the purpose.

(発明の効果) 本発明方法によれば、酸化触媒である金属銅又は銅化合
物の存在下、液相中で含酸素ガスにより芳香族化合物が
酸化され、還元触媒が共存することで酸化触媒の活性が
効率よく維持されるので、温和な反応条件下で効率的に
また、連続的に芳香族化合物の酸化が行なわれるという
効果が得られる。
(Effects of the Invention) According to the method of the present invention, an aromatic compound is oxidized by an oxygen-containing gas in a liquid phase in the presence of metallic copper or a copper compound as an oxidation catalyst, and the oxidation catalyst is Since the activity is efficiently maintained, it is possible to oxidize aromatic compounds efficiently and continuously under mild reaction conditions.

また本発明方法は、従来のキュメン法等に比べ、製造設
備、実施コストが安価であり、特に工業的な実施に好適
に応用できるという効果がある。
Furthermore, the method of the present invention requires less manufacturing equipment and implementation costs than the conventional cumene method, etc., and has the advantage that it can be particularly suitably applied to industrial implementation.

(実施例) 以下に実bI例を用いて本発明を具体的に説明するが、
本発明がこれらの実施例のものに限定される趣旨のもの
でないことは言うまでもない。
(Example) The present invention will be specifically explained below using an actual bI example.
It goes without saying that the present invention is not limited to these examples.

実施例1 還元触媒として活性炭(片山工業製) 1.5g、酸化
触媒は銅塩として硫酸第二銅10 mmoR/ Il、
をそれぞれ用いて触媒とした。
Example 1 1.5 g of activated carbon (manufactured by Katayama Kogyo) was used as a reduction catalyst, 10 mmoR/Il of cupric sulfate was used as an oxidation catalyst as a copper salt,
were used as catalysts.

溶媒は0.1N H2SO4とアセトニトリルを9=1
の容二比で混合したものを10 mR用いた。
Solvent: 0.1N H2SO4 and acetonitrile, 9=1
A mixture of 10 mR and 2 volumes was used.

上記触媒を添加した溶媒中にベンゼン1  mlを加え
、還元性ガスとして一酸化炭素、および酸素含有ガスと
して空気を吹込みながら、25℃で6時間反応させた。
1 ml of benzene was added to the solvent to which the above catalyst had been added, and the mixture was reacted at 25° C. for 6 hours while blowing carbon monoxide as a reducing gas and air as an oxygen-containing gas.

生成物を高速液体クロマトグラフィーで分析したところ
、0.OIB7mtaol/ ILのフェノールが確認
された。
When the product was analyzed by high performance liquid chromatography, it was found to be 0. Phenol in OIB7mtaol/IL was confirmed.

実施例2 還元触媒として白金ブラック付き白金を使用した。本例
で用いたこの白金ブラック付き白金は、塩化白金酸6永
和物1.0gを、26.38 mlの水に溶かし、これ
に酢酸鉛0.0045gを加え、少量の塩酸を加えた溶
液をメツキ液とし、コイル状の白金線と対極をメツキ液
中に2cmの間隔をおいて固定し、この状態で電気メツ
キを行なうことで調製した。
Example 2 Platinum with platinum black was used as a reduction catalyst. The platinum with platinum black used in this example was prepared by dissolving 1.0 g of chloroplatinic acid 6-eternal hydrate in 26.38 ml of water, adding 0.0045 g of lead acetate, and adding a small amount of hydrochloric acid. A plating solution was prepared by fixing a coiled platinum wire and a counter electrode in the plating solution at a distance of 2 cm, and performing electroplating in this state.

酸化触媒は銅塩として硫酸第二銅10 mmoJ2/ 
II。
The oxidation catalyst is cupric sulfate 10 mmoJ2/ as a copper salt.
II.

を用いた; 溶媒は0.IN HzSO4とアセトニトリルを9:1
の容量比で混合したものを10mj!用いた。
was used; the solvent was 0. IN HzSO4 and acetonitrile 9:1
10 mj of the mixture with a volume ratio of ! Using.

上記触媒を添加した溶媒中に更に塩化ナトリウム5 m
moJl/ Itを加え、これにベンゼン1m文を加え
、還元性ガスとして水素、酸素含有ガスとして空気を吹
込みながら2時間反応させた。
Add 5 m of sodium chloride to the solvent to which the above catalyst was added.
moJl/It was added thereto, 1 m of benzene was added thereto, and the mixture was reacted for 2 hours while blowing hydrogen as a reducing gas and air as an oxygen-containing gas.

生成物を分析した結果、1.5951rnal/ It
のフェノールが確認された。
As a result of analyzing the product, 1.5951rnal/It
of phenol was confirmed.

実施例3〜5 還元触媒として白金ブラック付き白金を使用した。本例
のこの白金ブラック付き白金は、塩酸を少量加えた塩化
白金酸溶液1.501rnl  (Pt1.931mm
ol/ IL )に、ホルマリン(35%)2.825
社を加え、約−1θ℃に冷却して激しく攪拌した後、温
度を5℃以下に保ちながらKOH溶液(50%)  7
.911 m、Qを少しづつ滴下し、白金ブラックの沈
澱をr過し十分水洗洗浄、乾燥して得た。
Examples 3 to 5 Platinum with platinum black was used as a reduction catalyst. This platinum with platinum black in this example was prepared using a chloroplatinic acid solution of 1.501rnl (Pt1.931mm) containing a small amount of hydrochloric acid.
ol/IL), formalin (35%) 2.825
After cooling to about -1θ℃ and stirring vigorously, add KOH solution (50%) while keeping the temperature below 5℃.
.. 911 m and Q were added dropwise little by little, and the platinum black precipitate was filtered, thoroughly washed with water, and dried to obtain a solution.

酸化触媒としては銅塩として硫酸第二銅lOmmof/
jlを用いた。
As an oxidation catalyst, cupric sulfate lOmmof/ as a copper salt is used.
jl was used.

溶媒は0.1N H2SO4とアセトニトリルを9:1
の容量比で混合したものを10II+1用いた。
Solvent: 0.1N H2SO4 and acetonitrile 9:1
A mixture with a volume ratio of 10II+1 was used.

上記白金ブラックをそれぞれ10mg、 20mg、 
30II1gを添加した溶媒に、それぞれベンゼン3m
Nを加え、水素と空気を吹込んで1時間反応させた。そ
の結果を下記表1に示した。
10 mg and 20 mg of the above platinum black, respectively.
Add 3 m of benzene to each solvent to which 1 g of 30II was added.
N was added, hydrogen and air were blown into the mixture, and the mixture was reacted for 1 hour. The results are shown in Table 1 below.

表   1 実施例6 還元触媒として、銅イオンでイオン交換したモルデナイ
ト(TSZ60ONAE;東ソー■社製)を250℃で
3時間水素還元したもの5g  (銅担持率5 、 :
]w t%)を用い、また酸化触媒は銅塩として硫酸第
二銅10mmoffi/ Itを用いた。
Table 1 Example 6 As a reduction catalyst, 5 g of mordenite (TSZ60ONAE; manufactured by Tosoh Corporation) ion-exchanged with copper ions was reduced with hydrogen at 250°C for 3 hours (copper loading rate: 5).
]wt%), and as the oxidation catalyst, cupric sulfate (10 mmoffi/It) was used as a copper salt.

溶媒は0.1N )+2504とアセトニトリルを9:
1の容量比で混合したものを10+n店用いた。
The solvent is 0.1N)+2504 and acetonitrile at 9:
A mixture with a volume ratio of 1 was used in 10+n stores.

上記触媒を添加した溶媒中にベンゼン1 raIlを加
え、水素と空気を吹込んで!、5時間反応させた。
Add 1 raI of benzene to the solvent containing the above catalyst, and blow in hydrogen and air! , and reacted for 5 hours.

生成物の分析の結果、フェノール生成量は0.13%m
ol/ Itであった。
As a result of product analysis, the amount of phenol produced was 0.13% m
It was ol/It.

実施例7 還元触媒として白金ブラック付きゼオライトを使用した
。本例のこの白金ブラック付きゼオライトは、塩化白金
酸6水和物1.0gを15m1の水に溶解させ、これに
ゼオライト(ゼオロン−900−Na;ツートン社製)
 37.28gを加え、さらに室温でホルマリン(35
%)を6m文加え、この後、50%のカセイソーダ溶液
をとベットで徐々に加えた。得られた白金ブラック付き
ゼオライトを十分水洗し、 110℃で乾燥した。ゼオ
ライトの白金の担持率は1 wt零とした。
Example 7 Zeolite with platinum black was used as a reduction catalyst. This platinum black-coated zeolite in this example was prepared by dissolving 1.0 g of chloroplatinic acid hexahydrate in 15 ml of water, and adding zeolite (Zeolon-900-Na; manufactured by Two-Tone) to the solution.
Add 37.28g and further add formalin (35g) at room temperature.
%) was added for 6 m, and then a 50% caustic soda solution was gradually added in a bed. The obtained platinum black-coated zeolite was thoroughly washed with water and dried at 110°C. The platinum loading rate of the zeolite was set to 1 wt zero.

この白金ブラック付きゼオライト 2.0gと、硫酸第
二銅10IIIIIio!l/iを触媒として用い、ま
た溶媒は0.1N H2SO4とアセトニトリルを9=
1の容量比で混合したものを10m、Q用いた。
2.0g of this platinum black zeolite and 10IIIio of cupric sulfate! l/i was used as a catalyst, and the solvent was 0.1N H2SO4 and acetonitrile at 9 =
10 m and Q of the mixture at a volume ratio of 1 were used.

上記触媒を添加した溶媒中にベンゼン1  mlを加え
、水素と空気を吹込んで1時間反応させたところ、フェ
ノール0.945 mmol!/ J2、ヒドロキノン
0.387 ma+offi/ Ilが生成していた。
When 1 ml of benzene was added to the solvent containing the above catalyst, hydrogen and air were blown into the solvent, and the reaction was allowed to proceed for 1 hour, 0.945 mmol of phenol was produced! / J2, hydroquinone 0.387 ma+offi/Il was produced.

実施例8 塩化パラジウム 0.1mmol/ fl、硫酸第二銅
10mIIol/iを触媒とし、これを0.IN(DH
NO3とアセトニトリルを9:1の容量比で混合した溶
媒1011142中に入れた。
Example 8 Palladium chloride 0.1 mmol/fl and cupric sulfate 10 mIIol/i were used as catalysts. IN(DH
It was placed in solvent 1011142, which was a mixture of NO3 and acetonitrile in a volume ratio of 9:1.

この溶媒中にベンゼン1miを加え、水素と空気を吹込
んで1時間反応させたところ、フェノール0.8Dl 
mmo又/Iが生成していた。
When 1 ml of benzene was added to this solvent, hydrogen and air were blown into the solvent, and the reaction was carried out for 1 hour, 0.8 Dl of phenol was added.
mmomata/I was generated.

実施例9 蒸留水中にシリカゲル2g、塩化パラジウム 0.1m
mo又を入れ、加温攪拌した。ここに2mmofiの硫
酸第二銅を加え、十分攪拌しながら乾燥して触媒を調製
した。こうして調製した触媒をベンゼン20+nJj中
に入れ、水素と空気を同時に供給して反応させた。反応
開始後3時間目のフェノール生成量は3!1.3Pmo
交であった。
Example 9 2 g of silica gel, 0.1 m of palladium chloride in distilled water
Add the momata and stir while heating. 2 mmof of cupric sulfate was added thereto, and the mixture was dried with sufficient stirring to prepare a catalyst. The catalyst thus prepared was placed in 20+nJj of benzene, and hydrogen and air were simultaneously supplied to cause a reaction. The amount of phenol produced 3 hours after the start of the reaction was 3!1.3Pmo
It was a cross.

実施例10 水素と空気を30分ごとに交互に供給した以外は実施例
9と全く同様に反応させた。
Example 10 The reaction was carried out in the same manner as in Example 9 except that hydrogen and air were alternately supplied every 30 minutes.

反応開始後6時間目までの結果を下記表2に示した。The results up to 6 hours after the start of the reaction are shown in Table 2 below.

表    2 実施例11 実施例9の反応液に、酢酸1.0gを追加した以外は実
施例9と全く同様にして反応を行なった。反応開始後1
時間目のフェノール生成量は83μmO文であった。
Table 2 Example 11 A reaction was carried out in exactly the same manner as in Example 9, except that 1.0 g of acetic acid was added to the reaction solution of Example 9. After starting the reaction 1
The amount of phenol produced at the hour was 83 μmO.

実施例12 シリカゲル2gに塩化パラジウム0.1 mmoMを担
持させ、乾燥後、2 mmouの硫酸第二銅を担持させ
る二段担持法によって′!1lil製した触媒を用いた
以外は実施例10と全く同様にして反応を行なった0反
応開始後3時間目には、35μmofiのフェノールが
生成していた。
Example 12 A two-step loading method was used in which 2 g of silica gel was loaded with 0.1 mmoM of palladium chloride, and after drying, 2 mmou of cupric sulfate was loaded on it. The reaction was carried out in exactly the same manner as in Example 10, except that 1 liter of catalyst was used. 3 hours after the start of the reaction, 35 μmofi of phenol was produced.

実施例13 塩化パラジウムの担持量を0.2mmofiにした以外
は実施例9と全く同様にして反応を行なった。反応開始
後1時間目のフェノール生成量は50PIIlo9.で
あった。
Example 13 The reaction was carried out in the same manner as in Example 9 except that the amount of palladium chloride supported was 0.2 mmofi. The amount of phenol produced 1 hour after the start of the reaction was 50PIIlo9. Met.

実施例14 塩化パラジウムの代りに、塩化白金酸を用いた以外は実
施例9と全く同様にして反応を行なつた。反応開始10
分後のフェノール生成量は4.4μmo!lであった。
Example 14 The reaction was carried out in exactly the same manner as in Example 9 except that chloroplatinic acid was used instead of palladium chloride. Reaction start 10
The amount of phenol produced after minutes was 4.4μmo! It was l.

実施例15 蒸留水中にシリカゲル10g、塩化パラジウム 0.5
 mmorl、および酢酸第二銅10mmoLlを加え
、十分攪拌しながら乾燥して触媒を調製した。こうして
調製した触媒をベンゼン 100 ml中に加え、酢酸
10gを添加し、3気圧の水素下で2時間還元後、3気
圧の酸素下で1時間反応させたところ、フェノール11
9μmoJlおよびベンゾキノン 114μmolが生
成していた。
Example 15 10 g of silica gel, 0.5 palladium chloride in distilled water
mmoll and 10 mmoll of cupric acetate were added and dried with sufficient stirring to prepare a catalyst. The catalyst thus prepared was added to 100 ml of benzene, 10 g of acetic acid was added, and after reduction under 3 atm of hydrogen for 2 hours, the reaction was carried out under 3 atm of oxygen for 1 hour.
9 μmoJl and 114 μmol of benzoquinone were produced.

実施例16 10m交のベンゼンを10m′!1のシクロヘキサンに
溶解し、ここに実施例9と全く同様にして調製した触媒
2.34gを加えた。この触媒を含む反応液に水素を2
時間供給した後、さらに、空気を1時間供給してベンゼ
ンの酸化反応を行なったところ、19.4μmofiの
フェノールが生成していた。
Example 16 10m of benzene! 1 was dissolved in cyclohexane, and 2.34 g of a catalyst prepared in exactly the same manner as in Example 9 was added thereto. Add 2 hydrogen to the reaction solution containing this catalyst.
After supplying the mixture for an hour, air was further supplied for 1 hour to carry out the oxidation reaction of benzene, and as a result, 19.4 μmofi of phenol was produced.

実施例17 ナフタリン16mmoRを20Jのシクロヘキサンに溶
解した溶液を用いた以外は、実施例16と全く同様にし
て反応を行なったところ、0.53μm02のα−ナフ
トールが生成していた。
Example 17 The reaction was carried out in exactly the same manner as in Example 16, except that a solution of 16 mmol of naphthalene dissolved in 20 J of cyclohexane was used, and 0.53 μm02 of α-naphthol was produced.

比較例1 実施例9で塩化パラジウムを使用しなかった以外は実施
例9と全く同様にして反応を行なったところ、フェノー
ルの生成は認められなかった。
Comparative Example 1 A reaction was carried out in exactly the same manner as in Example 9 except that palladium chloride was not used in Example 9, and no formation of phenol was observed.

比較例2 実施例9で硫酸第二銅を使用しなかった以外は実施例9
と全く同様にして反応を行なったところ、フェノールの
生成は認められなかった。
Comparative Example 2 Example 9 except that cupric sulfate was not used in Example 9
When the reaction was carried out in exactly the same manner as above, no formation of phenol was observed.

実施例18 シリカゲル1gに塩化パラジウム(1、1mmoQを担
持させ、乾燥後、室温で2時間水素還元して(パラジウ
ム担持率twt!I;)調製した還元触媒と、酸化触媒
として酢酸第二銅1 mno父を用いた。
Example 18 A reduction catalyst prepared by supporting palladium chloride (1,1 mmoQ on 1 g of silica gel, drying, and hydrogen reduction at room temperature for 2 hours (palladium support rate twt!I;), and an oxidation catalyst containing cupric acetate 1 mno father was used.

溶液はアセトニトリル、水、酢酸を6.5.6.5゜8
7の容量比で混合したものにビフェニルlQmmo交を
溶解した溶液20+n51を用いた。
The solution is acetonitrile, water, and acetic acid at 6.5.6.5°8.
A solution of 20+n51 in which biphenyl lQmmo was dissolved in a mixture at a volume ratio of 20+n51 was used.

上記触媒を添加した反応液に水素と空気を20分ごとに
交互に供給した。
Hydrogen and air were alternately supplied every 20 minutes to the reaction solution to which the catalyst had been added.

反応開始後2時間目には、13.3μmofの0−フェ
ニルフェノール、および11.6μll1O文のm、p
−フェニルフェノールが生成した。
Two hours after the start of the reaction, 13.3 μm of 0-phenylphenol and 11.6 μm of m, p
-Phenylphenol was produced.

実施例19 シリカゲルの量を2gに、ナフタリン10mmouを溶
解した容液20+++Jjを用い、水素を20分、空気
を3時間供給した以外は実施例18と全く同様に反応さ
せたところ、1−ナフトール6.92μmol、2−ナ
フトール0.7071Lmo交、1.4−ナフトキノン
8.75終mo交が生成した。
Example 19 A reaction was carried out in exactly the same manner as in Example 18, except that the amount of silica gel was 2 g, 10 mmou of naphthalene was dissolved in 20+++Jj, and hydrogen was supplied for 20 minutes and air was supplied for 3 hours. .92 μmol, 0.7071 L of 2-naphthol, and 8.75 L of 1,4-naphthoquinone were produced.

実施例20 シリカゲル1gに塩化パラジウム0.05mmo、Q。Example 20 Palladium chloride 0.05 mmo to 1 g of silica gel, Q.

硫酸第二銅1 mmoJlを担持させ、乾燥後、室温で
2時間水素還元してパラジウムを還元した。
1 mmoJl of cupric sulfate was supported, and after drying, hydrogen reduction was performed at room temperature for 2 hours to reduce palladium.

上記触媒を添加した反応液に水素を2時間供給した後、
さらに、空気を24時間供給した以外は実施例19と全
く同様にして反応を行ったところ1−ナフトール7.0
2μff1of、2−ナフトール0.51pmo、Q、
1,4−ナフトキノン3.46 JLrnolが生成し
た。
After supplying hydrogen for 2 hours to the reaction solution to which the above catalyst was added,
Furthermore, the reaction was carried out in exactly the same manner as in Example 19 except that air was supplied for 24 hours.
2μff1of, 2-naphthol 0.51pmo, Q,
3.46 JLrnol of 1,4-naphthoquinone was produced.

実施例21 実施例20と同一の触媒1.(186gにさらにシリカ
ゲル1gに塩化パラジウム0.1 mmo文を担持させ
水素還元した触媒を追加して、水素を1時間供給した後
、さらに、空気を22時間供給した以外は実施例2oと
全く同様にして反応を行ったところ、1−ナフトール1
4.87 μmoL  2−ナフトール0 、90pm
ol!、1.4−ナフトキノン5.88μmO文が生成
した。
Example 21 Same catalyst as Example 20 1. (Exactly the same as Example 2o except that 1 g of silica gel supported 0.1 mmol of palladium chloride and hydrogen-reduced catalyst was added to 186 g, hydrogen was supplied for 1 hour, and then air was supplied for 22 hours. When the reaction was carried out, 1-naphthol 1
4.87 μmoL 2-naphthol 0, 90pm
ol! , 5.88 μmO of 1,4-naphthoquinone was produced.

実施例22 蒸留水中にシリカゲル2g、塩化パラジウム0.1 m
moJlおよび酢酸第二銅0.5 mmofiを加えて
十分に攪拌しながら乾燥して触媒を調製した。
Example 22 2 g silica gel, 0.1 m palladium chloride in distilled water
A catalyst was prepared by adding moJl and 0.5 mmof cupric acetate and drying with thorough stirring.

この触媒をベンゼン20mR中に加え、さらに酢酸1g
を添加して、水素ガスの存在下に2時間還元後、空気を
吹込んで1時間反応させた結果、フェノール22.3μ
mo文、ベンゾキノン5.3井mofiの生成を確認し
た。
Add this catalyst to 20mR of benzene, and add 1g of acetic acid.
was added, reduced in the presence of hydrogen gas for 2 hours, and reacted for 1 hour by blowing in air. As a result, phenol 22.3μ
The production of benzoquinone 5.3 well mofi was confirmed.

実施例23 実施例22の触媒成分に硫酸鉄(111) 0.015
mmo又を加え、他は同様に触媒を調製した。この触媒
をベンゼン20m9.中に加え、さらに酢酸1gを添加
して30分分間光した6次いで、アセトニトリル0.4
mlを添加し、さらに水素ガスの存在下に30分分間光
した後、空気を吹込んで、1時間反応させた結果、フェ
ノール27.8μmo文、ベンゾキノン18.9μmo
lの生成を確認した。
Example 23 Iron sulfate (111) 0.015 as catalyst component of Example 22
A catalyst was prepared in the same manner except that mmo-mata was added. This catalyst was mixed with 20m9 of benzene. In addition, 1 g of acetic acid was added and exposed for 30 minutes. Then, 0.4 g of acetonitrile was added.
ml was added, and after being exposed to light for 30 minutes in the presence of hydrogen gas, air was blown in and reacted for 1 hour. As a result, 27.8 μmo of phenol and 18.9 μmo of benzoquinone were added.
The production of 1 was confirmed.

実施例24 実施例23において、硫酸鉄(II+ )を0.05μ
molとした以外は全く同様に触媒を調製し、反応に供
した結果、フェノール32.9μmoi、ベンゾキノン
30.9ILmolの生成を確認した。
Example 24 In Example 23, iron sulfate (II+) was added to 0.05μ
A catalyst was prepared in exactly the same manner except that the mol was used, and as a result of the reaction, it was confirmed that 32.9 μmoi of phenol and 30.9 ILmol of benzoquinone were produced.

1巳 4′?S1 snake 4′? S

Claims (1)

【特許請求の範囲】 1 酸化触媒としての銅又は銅化合物の存在下液相中で
、芳香族化合物を含酸素ガスにより酸化させる方法にお
いて、水素ガスないしこれと同等の機能を有する還元性
化合物によって、2価の銅イオンを還元する活性を有す
る還元性触媒を共存させることを特徴とする芳香族化合
物の酸化方法。 2 特許請求の範囲第1項において触媒の一成分として
鉄粉又は鉄化合物を共存させることを特徴とする芳香族
化合物の酸化方法。
[Scope of Claims] 1. A method of oxidizing an aromatic compound with an oxygen-containing gas in the presence of copper or a copper compound as an oxidation catalyst in a liquid phase using hydrogen gas or a reducing compound having an equivalent function. A method for oxidizing an aromatic compound, which comprises coexisting a reducing catalyst having an activity of reducing divalent copper ions. 2. A method for oxidizing an aromatic compound as set forth in claim 1, characterized in that iron powder or an iron compound is present as a component of the catalyst.
JP1042148A 1988-08-09 1989-02-22 Aromatic compound oxidation method Expired - Fee Related JP2507026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042148A JP2507026B2 (en) 1988-08-09 1989-02-22 Aromatic compound oxidation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-198620 1988-08-09
JP19862088 1988-08-09
JP1042148A JP2507026B2 (en) 1988-08-09 1989-02-22 Aromatic compound oxidation method

Publications (2)

Publication Number Publication Date
JPH02138233A true JPH02138233A (en) 1990-05-28
JP2507026B2 JP2507026B2 (en) 1996-06-12

Family

ID=26381804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042148A Expired - Fee Related JP2507026B2 (en) 1988-08-09 1989-02-22 Aromatic compound oxidation method

Country Status (1)

Country Link
JP (1) JP2507026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095510A (en) * 2008-09-19 2010-04-30 Oita Univ Method for catalytically partially oxidizing hydrocarbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175030A (en) * 1974-12-26 1976-06-29 Ube Industries Nikafuenooruno seiho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175030A (en) * 1974-12-26 1976-06-29 Ube Industries Nikafuenooruno seiho

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095510A (en) * 2008-09-19 2010-04-30 Oita Univ Method for catalytically partially oxidizing hydrocarbon

Also Published As

Publication number Publication date
JP2507026B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
US3870731A (en) Oxidation of phenols and alkyl substituted phenols to their corresponding para-benzoquinone
JP4169070B2 (en) Method for producing phenol
NL8503090A (en) METHOD FOR PREPARING MOUNTED CATALYST SYSTEMS
JPH02138233A (en) Oxidization of aromatic compound
JP2001151721A (en) Method for producing 2,3,5-trimethyl-p-benzoquinone
KR950010785B1 (en) Method for preparing cyclohexanol and cyclohexanon and catalpt for preparing same
US4347383A (en) Process for producing benzophenone-azines
US6399838B1 (en) Process for preparing 2,6-dimethylphenol
US6071848A (en) Process for the hydroxylation of aromatic hydrocarbons
EP1408023A1 (en) Process for producing adamantanol and adamantanone
WO2004014832A2 (en) Redox process particularly for the production of menadione and use of polyoxometalates
JP4294209B2 (en) Process for producing ortho-position alkylated hydroxyaromatic compounds
JP3211371B2 (en) Method for producing phenols
JPH05310623A (en) Production of phenol compound
US3927045A (en) Process for the preparation of trimethyl-para-benzaquinone
JPS63174950A (en) Production of aromatic ester
JPH0640976A (en) Production of phenols
US6075170A (en) Process for preparing cyclohexanol and cyclohexanone
US4481374A (en) Process for the preparation of hydroxybenzaldehydes
JP3313217B2 (en) Method for producing glyoxylic acid
JP2010064972A (en) Method for producing oxygen-containing compound
EP1669340A1 (en) Method for oxidizing aromatic compound having alkyl substituent, method for producing aromatic aldehyde compound and method for producing aromatic carboxylic acid ester
JPH08259529A (en) Production of arylalkylhydroperoxide compounds
JP2008013476A (en) Process for preparing phenols
JPH0311057A (en) Production of sec-butyltoluene hydroperoxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees