JPH0640976A - Production of phenols - Google Patents

Production of phenols

Info

Publication number
JPH0640976A
JPH0640976A JP5114494A JP11449493A JPH0640976A JP H0640976 A JPH0640976 A JP H0640976A JP 5114494 A JP5114494 A JP 5114494A JP 11449493 A JP11449493 A JP 11449493A JP H0640976 A JPH0640976 A JP H0640976A
Authority
JP
Japan
Prior art keywords
reaction
catalyst
vanadium
hydrogen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5114494A
Other languages
Japanese (ja)
Other versions
JP3619902B2 (en
Inventor
Michiyuki Hamada
道幸 濱田
Hideyuki Niwa
英之 丹羽
Takanori Miyake
孝典 三宅
Shoji Arai
昭治 荒井
Toshihiro Saito
寿広 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP11449493A priority Critical patent/JP3619902B2/en
Publication of JPH0640976A publication Critical patent/JPH0640976A/en
Application granted granted Critical
Publication of JP3619902B2 publication Critical patent/JP3619902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce a phenolic compound in high selectivity by efficiently oxidizing an aromatic compound. CONSTITUTION:A phenolic compound is produced by the liquid-phase oxidization of an aromatic compound in the presence of a catalyst produced by supporting a noble metal of the group VIII and the oxide of one or more base metals selected from the groups III a, IV a, Va, VIa, VIIa, IIb, IVb and Vb of the periodic table on a carrier in a system containing a vanadium compound in dissolved state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アニリン、ビスフェノ
ール類、アルキルフェノール類およびフェノール樹脂の
中間体等として化学工業において非常に重要な、フェノ
ール類の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing phenols which is very important in the chemical industry as an intermediate for aniline, bisphenols, alkylphenols and phenol resins.

【0002】[0002]

【従来の技術】芳香環にヒドロキシル基を有するフェノ
ール類のうち、最も代表的な化合物であるフェノール
は、その大部分がキュメン法により製造されている。し
かしキュメン法フェノール製造プロセスは、アルキル
化、酸化、分解等の多段の工程からなり、またフェノー
ルと等モルのアセトンを副生するといった問題を抱えて
いる。
2. Description of the Related Art Most of phenols having a hydroxyl group in an aromatic ring are phenols, most of which are produced by the cumene method. However, the cumene method phenol production process has a problem that it is composed of multiple steps such as alkylation, oxidation, and decomposition, and that acetone of the same mole as phenol is by-produced.

【0003】このキュメン法に代わるものとしては、ベ
ンゼンからクロルベンゼンを経るラシッヒ法、トルエン
から安息香酸を経るトルエン酸化法などのプロセスがあ
り、工業化されている。しかしこれらの既存プロセス
も、装置の腐食、多段工程による設備費の増加、固体や
スラリーを扱うための煩雑さ等の問題がある。
As an alternative to the cumene method, there are processes such as the Raschig method in which benzene is converted to chlorobenzene and the toluene oxidation method in which toluene is converted to benzoic acid, which have been industrialized. However, these existing processes also have problems such as corrosion of equipment, increase in equipment cost due to multi-step process, and complexity of handling solids and slurries.

【0004】また、芳香環にヒドロキシル基を有する多
環式芳香族化合物に関しては、非縮合環式化合物である
ジフェニルや、縮合環式化合物であるナフタレンを原料
にスルホン化し、それぞれフェニルフェノールやナフト
ールを製造する方法が工業的に確立されている。しか
し、このプロセスでも同様に酸、アルカリによる装置の
腐食等の問題がある。
Regarding polycyclic aromatic compounds having a hydroxyl group on the aromatic ring, diphenyl, which is a non-condensed cyclic compound, and naphthalene, which is a condensed cyclic compound, are sulfonated to produce phenylphenol and naphthol, respectively. The manufacturing method is industrially established. However, this process also has problems such as corrosion of the device due to acid and alkali.

【0005】この様に、ヒドロキシル基を有する芳香族
化合物の既存プロセスは多くの問題点がある為、対応す
る芳香族化合物を直接酸化して、目的とするフェノール
類を得ようとする試みが成されてきた。例えば、フェノ
ール類の最も代表的化合物であるフェノールを得る方法
として、ベンゼンを600℃前後の高温で酸化する方法
や、室温付近の温和な条件で酸化する反応も報告されて
いる。例えば、特開昭56−87527号公報は、燐お
よび亜鉛等、あるいは燐、銀および亜鉛等の金属酸化
物、又は燐酸塩を触媒としてメタノール共存下で直接酸
化しフェノールを製造している。また、特開昭61−8
5338号公報は液相中、金属ポルフィリン、イミダゾ
ール、白金および水素存在下、ベンゼンと酸素を反応さ
せフェノールを製造する方法を開示している。
As described above, the existing processes for the aromatic compound having a hydroxyl group have many problems. Therefore, it has been attempted to directly oxidize the corresponding aromatic compound to obtain the desired phenols. It has been. For example, as a method of obtaining phenol, which is the most representative compound of phenols, a method of oxidizing benzene at a high temperature of about 600 ° C. and a reaction of oxidizing it under mild conditions near room temperature have been reported. For example, in JP-A-56-87527, phenol is produced by direct oxidation in the presence of methanol using a metal oxide such as phosphorus and zinc or a metal oxide such as phosphorus, silver and zinc or a phosphate as a catalyst. In addition, JP-A-61-8
Japanese Patent No. 5338 discloses a method for producing phenol by reacting benzene with oxygen in the presence of metal porphyrin, imidazole, platinum and hydrogen in a liquid phase.

【0006】[0006]

【発明が解決しようとする課題】前述のように、既存プ
ロセスに代わって芳香族化合物を直接酸化することによ
りフェノール類を製造する方法について、従来より種々
提案されているが、対応するフェノール類への転化率や
選択率等については、未だ多くの改良すべき点が残って
いる。
As described above, various methods for producing phenols by directly oxidizing aromatic compounds instead of existing processes have been proposed in the past. There are still many points that need to be improved regarding the conversion rate and selectivity of.

【0007】そこで、本発明の目的は効率よく芳香族類
の酸化を行ない、高選択率でフェノール類を製造する方
法を提供することにある。
Therefore, it is an object of the present invention to provide a method for efficiently oxidizing aromatics to produce phenols with high selectivity.

【0008】[0008]

【課題を解決するための手段】このような現状に鑑み、
本発明者らは、芳香族化合物類の酸化を効率よく行なう
方法につき鋭意研究を進め、本発明を完成するに至っ
た。
[Means for Solving the Problems] In view of such a current situation,
The present inventors have conducted intensive studies on a method of efficiently oxidizing aromatic compounds, and have completed the present invention.

【0009】即ち、本発明は、芳香族化合物を酸素と水
素を含む混合ガスと反応させるか又は、交互に含酸素ガ
スと含水素ガスと反応させ、液相でフェノール類を製造
するにあたり、周期律表第VIII族の貴金属を担体に
担持した触媒、あるいは、周期律表第VIII族の貴金
属と、IIIa,IVa,Va,VIa,VIIa,I
Ib,IVbおよびVb族より選ばれた一種以上からな
る卑金属酸化物を担体に担持した触媒の存在下、バナジ
ウム化合物が系内において溶存していることを特徴とす
るフェノール類の製造方法、および、これを液相流通反
応で行なうフェノール類の製造方法に関する。
That is, according to the present invention, when an aromatic compound is reacted with a mixed gas containing oxygen and hydrogen or alternately with an oxygen-containing gas and a hydrogen-containing gas to produce phenols in a liquid phase, A catalyst in which a noble metal of Group VIII of the Periodic Table is supported on a carrier, or a noble metal of Group VIII of the Periodic Table and IIIa, IVa, Va, VIa, VIIa, I
A method for producing phenols, characterized in that a vanadium compound is dissolved in the system in the presence of a catalyst in which a base material oxide composed of one or more selected from the group consisting of Ib, IVb and Vb is supported on a carrier, and The present invention relates to a method for producing phenols in which a liquid phase flow reaction is performed.

【0010】以下に本発明について、更に詳細に説明す
る。
The present invention will be described in more detail below.

【0011】本発明の方法において、担体に担持させる
周期律表第VIII族の貴金属としては、ルテニウム、
ロジウム、パラジウム、イリジウム、白金およびこれら
の混合物を挙げることができる。これらのうち、パラジ
ウム、白金が好ましい。これらの貴金属は担体に担持さ
れ、触媒に調製される。これらの貴金属を担体に担持す
る方法に特に制限はないが、例えば含浸法で担持するこ
とができる。この場合、VIII族の貴金属の原料とし
ては、各種の無機、有機の化合物、例えば、ハロゲン化
物、硝酸塩、硫酸塩、無機錯塩、有機酸塩等を用いるこ
とができる。
In the method of the present invention, the noble metal of Group VIII of the Periodic Table to be supported on the carrier is ruthenium,
Mention may be made of rhodium, palladium, iridium, platinum and mixtures thereof. Of these, palladium and platinum are preferable. These noble metals are supported on a carrier and prepared into a catalyst. The method of supporting these noble metals on the carrier is not particularly limited, but they can be supported by, for example, an impregnation method. In this case, various inorganic and organic compounds such as halides, nitrates, sulfates, inorganic complex salts and organic acid salts can be used as the raw material of the Group VIII noble metal.

【0012】例えば、パラジウムの場合、塩化パラジウ
ム、硝酸パラジウム、硫酸パラジウム等各種の無機酸
塩、テトラアンミンジクロロパラジウム等の無機錯体、
酢酸パラジウム等の有機酸塩が挙げられる。
For example, in the case of palladium, various inorganic acid salts such as palladium chloride, palladium nitrate and palladium sulfate, inorganic complexes such as tetraamminedichloropalladium,
Organic acid salts such as palladium acetate may be mentioned.

【0013】また、これらの貴金属の原料を担持する際
に使用される溶媒としては、例えば水、塩酸水溶液、ア
ンモニア水溶液、水酸化ナトリウム水溶液、酢酸、ベン
ゼン、アルコール、アセトン等があげられる。
Examples of the solvent used for supporting these noble metal raw materials include water, hydrochloric acid aqueous solution, ammonia aqueous solution, sodium hydroxide aqueous solution, acetic acid, benzene, alcohol and acetone.

【0014】本発明の方法において、担体に担持された
VIII族の貴金属は、フェノール類生成反応中に金属
状態であることが必要である。この為、上記の担体に担
持された貴金属の原料は使用される前に、還元処理が施
される。この還元処理は触媒調製工程で行なっても、反
応系中で還元しても差し支えない。この還元方法に特に
制限はないが、通常の方法、例えばギ酸ナトリウム、ホ
ルムアルデヒドやヒドラジン等の溶液で行なう湿式還元
法、または、水素や一酸化炭素等を窒素やヘリウム等の
不活性ガスで希釈した還元性ガスにより気相で行なう乾
式還元法を用いることができる。還元処理温度は周期律
表第VIII族の貴金属が還元されれば特に制限はない
が、通常、湿式還元法では0〜200℃、乾式還元法で
は0〜500℃で行なえばよい。
In the method of the present invention, the noble metal of Group VIII supported on the carrier needs to be in a metallic state during the phenol-forming reaction. Therefore, the raw material of the noble metal supported on the carrier is subjected to a reduction treatment before being used. This reduction treatment may be carried out in the catalyst preparation step or in the reaction system. This reduction method is not particularly limited, but a conventional method, for example, a wet reduction method performed with a solution of sodium formate, formaldehyde, hydrazine, or the like, or hydrogen or carbon monoxide or the like diluted with an inert gas such as nitrogen or helium A dry reduction method performed in a gas phase with a reducing gas can be used. The reduction temperature is not particularly limited as long as the noble metal of Group VIII of the periodic table is reduced, but it is usually 0 to 200 ° C. in the wet reduction method and 0 to 500 ° C. in the dry reduction method.

【0015】これら貴金属の担持量は、全触媒重量に対
し、金属として通常0.01〜20重量%であり、好ま
しくは0.1〜10重量%である。担持する貴金属の量
が20重量%を越えると、反応速度が大きくなる傾向が
あるものの、高価な貴金属を多量に使用するため、製造
コストの上昇を招くことになる。一方、貴金属が0.0
1重量%より少ないと反応速度が遅くなり、工業プロセ
ス上経済性が失われる。
The amount of these noble metals supported is usually 0.01 to 20% by weight, preferably 0.1 to 10% by weight, as metal, based on the total weight of the catalyst. When the amount of the noble metal to be supported exceeds 20% by weight, the reaction rate tends to increase, but a large amount of expensive noble metal is used, resulting in an increase in manufacturing cost. On the other hand, the precious metal is 0.0
If it is less than 1% by weight, the reaction rate becomes slow and the economical efficiency in the industrial process is lost.

【0016】本発明の方法において、さらに、周期律表
第VIII族の貴金属と、周期律表第IIIa,IV
a,Va,VIa,VIIa,IIb,IVbおよびV
b族の卑金属酸化物より選ばれた一種以上を担体に担持
した触媒を使用することができる。
In the method of the present invention, a noble metal of Group VIII of the periodic table and IIIa and IV of the periodic table are further added.
a, Va, VIa, VIIa, IIb, IVb and V
A catalyst in which one or more kinds selected from group b base metal oxides are supported on a carrier can be used.

【0017】担持される卑金属酸化物としては、例えば
周期律表IIIa族の酸化イットリウム、酸化ランタ
ン、酸化セリウム、IVa族の酸化ジルコニウム、Va
族の五酸化バナジウム、酸化ニオブ、VIa族の酸化ク
ロム、酸化モリブデン、酸化タングステン、VIIa族
の酸化マンガン、IIb族の酸化亜鉛、IVb族の酸化
すず、Vb族の酸化ビスマス等の単一成分の卑金属酸化
物や、酸化モリブデン−酸化ビスマス等の二種以上の卑
金属酸化物から成るもの、また酸化モリブデン−酸化リ
ンなどの卑金属酸化物と他の酸化物から成るものが挙げ
られる。これらの卑金属酸化物のうち酸化バナジウム、
酸化イットリウム、酸化ランタン、酸化ジルコニウム、
酸化モリブデン、酸化タングステン、酸化ニオブがより
好ましく用いられる。
Examples of the base metal oxide to be supported include yttrium oxide, lanthanum oxide, cerium oxide, group IVa zirconium oxide and Va of the periodic table.
Group Vanadium Pentoxide, Niobium Oxide, Group VIa Chromium Oxide, Molybdenum Oxide, Tungsten Oxide, Group VIIa Manganese Oxide, Group IIb Zinc Oxide, Group IVb Tin Oxide, Group Vb Bismuth Oxide, etc. Examples include base metal oxides, those composed of two or more base metal oxides such as molybdenum oxide-bismuth oxide, and those composed of base metal oxides such as molybdenum oxide-phosphorus oxide and other oxides. Of these base metal oxides, vanadium oxide,
Yttrium oxide, lanthanum oxide, zirconium oxide,
Molybdenum oxide, tungsten oxide, and niobium oxide are more preferably used.

【0018】卑金属酸化物を担体に担持する方法に特に
制限はなく、例えば含浸法で担持することができる。卑
金属酸化物の原料としては、例えば、アンモニウム塩、
硝酸塩、塩化物、無機酸塩、酢酸塩、酸化物等が利用で
きる。これらの例としては、メタバナジン酸アンモニウ
ム、モリブデン酸アンモニウム、パラタングステン酸ア
ンモニウム、硝酸イットリウム、硝酸ランタン、硝酸亜
鉛、硝酸ビスマス、オキシ硝酸ジルコニウム、塩化クロ
ム、塩化スズ、酢酸マンガン、酸化ニオブ等が挙げられ
る。
The method of supporting the base metal oxide on the carrier is not particularly limited, and it can be carried by, for example, an impregnation method. Examples of base metal oxide raw materials include ammonium salts,
Nitrate, chloride, inorganic acid salt, acetate, oxide and the like can be used. Examples of these include ammonium metavanadate, ammonium molybdate, ammonium paratungstate, yttrium nitrate, lanthanum nitrate, zinc nitrate, bismuth nitrate, zirconium oxynitrate, chromium chloride, tin chloride, manganese acetate, niobium oxide and the like. .

【0019】これらの卑金属酸化物の原料は常法によ
り、例えば前記の貴金属の原料の担持に用いられた溶媒
を用いて担持し、その後、熱処理して対応する卑金属酸
化物となる。最終的に卑金属酸化物が得られれば上記熱
処理の方法に特に制限はないが、通常、酸素含有ガス等
の流通下あるいは非流通下において、200〜1000
℃の温度で熱処理が行なわれる。卑金属酸化物を担体に
担持する場合その担持量は全触媒重量に対し卑金属酸化
物として、通常0.1〜99重量%で好ましくは0.3
〜20重量%である。
These base metal oxide raw materials are supported by a conventional method, for example, by using the solvent used for supporting the above-mentioned noble metal raw materials, and then heat treated to form the corresponding base metal oxide. The method of the heat treatment is not particularly limited as long as a base metal oxide is finally obtained, but it is usually 200 to 1000 under the circulation or non-circulation of an oxygen-containing gas.
The heat treatment is performed at a temperature of ° C. When the base metal oxide is supported on the carrier, the supported amount is usually 0.1 to 99% by weight, preferably 0.3% as the base metal oxide based on the total weight of the catalyst.
Is about 20% by weight.

【0020】本発明の方法において、上記の貴金属と卑
金属酸化物の担持の順序に特に制限はなく、いずれかを
先に担持、あるいは、同時に担持することもできる。そ
の場合、VIII族の貴金属を先に又は同時に担持した
場合には、まず熱処理を行ない、次に、還元処理を行な
う。その方法は前述の態様で行なうことができる。本発
明の方法においては、所定の担体に上記卑金属化合物を
担持し、熱処理を行ない、しかる後に貴金属化合物を担
持し、還元処理を行なう方法がより好ましい。
In the method of the present invention, the order of loading the above-mentioned noble metal and base metal oxide is not particularly limited, and either of them can be loaded first or simultaneously. In that case, when the Group VIII noble metal is loaded first or simultaneously, heat treatment is first performed, and then reduction treatment is performed. The method can be performed in the manner described above. In the method of the present invention, a method in which the base metal compound is supported on a predetermined carrier, a heat treatment is carried out, and then a noble metal compound is carried thereon, and a reduction treatment is carried out is more preferable.

【0021】本発明の方法において担体が使用される
が、一般に担体として使用されているものであれば特に
制限はなく使用できる。例えば、シリカ、アルミナ、チ
タニア、ジルコニアあるいはこれらの複合酸化物、ゼオ
ライト、および、ヤシガラ活性炭などの炭素系担体を例
示できる。担体として前記卑金属酸化物が用いられる場
合もあるが、担体と同じ卑金属酸化物が担持されても何
ら差し支えない。
A carrier is used in the method of the present invention, but any carrier generally used can be used without particular limitation. For example, silica, alumina, titania, zirconia or a composite oxide thereof, zeolite, and a carbon-based carrier such as coconut husk activated carbon can be exemplified. The base metal oxide may be used as the carrier, but the same base metal oxide as the carrier may be supported.

【0022】本発明の方法において、触媒は反応系内に
バナジウム化合物を溶存させ使用される。バナジウム化
合物を反応系内に共存させる方法にはとくに制限はな
く、例えば、バナジウム化合物を溶媒や反応原料に溶解
し、反応液中に供給したり、バナジウム化合物を反応液
中に懸濁させ徐々に反応液中にバナジウム化合物を溶出
させても良い。本反応において、反応系内に溶存される
バナジウム化合物は前記調製触媒の存在下にいわゆる助
触媒として作用し、フェノール類の生成活性を飛躍的に
増大させる。又、液相流通反応において、貴金属と卑金
属酸化物を担持した触媒では、しばしば担持した卑金属
酸化物が反応液中に溶出し、触媒活性が劣化することが
あるが、この場合、バナジウム化合物を連続的に反応系
内に供給することにより触媒活性の劣化を抑制すること
ができる。
In the method of the present invention, the catalyst is used by dissolving the vanadium compound in the reaction system. There is no particular limitation on the method for allowing the vanadium compound to coexist in the reaction system.For example, the vanadium compound is dissolved in a solvent or a reaction raw material and supplied into the reaction solution, or the vanadium compound is gradually suspended in the reaction solution. The vanadium compound may be eluted in the reaction solution. In this reaction, the vanadium compound dissolved in the reaction system acts as a so-called co-catalyst in the presence of the prepared catalyst, and dramatically increases the phenol-forming activity. Further, in the liquid phase flow reaction, in the catalyst supporting the noble metal and the base metal oxide, the supported base metal oxide is often eluted in the reaction solution, and the catalytic activity may deteriorate, but in this case, the vanadium compound is continuously added. By effectively supplying into the reaction system, deterioration of the catalytic activity can be suppressed.

【0023】バナジウム化合物の原料としては酸化物、
ハロゲン化物、硝酸塩、硫酸塩、シュウ酸塩、アンモニ
ウム塩、無機錯塩、有機酸塩等が挙げられる。例えば、
五酸化バナジウム、三塩化バナジウム、オキシ三塩化バ
ナジウム、メタバナジン酸アンモニウム、バナジウム
(III)アセチルアセトネート、酸化バナジウムアセ
チルアセトネート、硫酸バナジル、シュウ酸バナジル等
が例示できる。反応系内に溶存させるバナジウムの濃度
は、反応形式によって異なるが、通常バナジウムとして
1ppm〜5%であり、好ましくは5ppm〜2%であ
る。溶存するバナジウムの量が1ppmより少ないと反
応速度が遅くなりバナジウム化合物の添加効果は著しく
小さくなる。一方、バナジウムが5%以上では、製造コ
ストの上昇を招くことになる。
An oxide is used as a raw material for the vanadium compound,
Examples thereof include halides, nitrates, sulfates, oxalates, ammonium salts, inorganic complex salts and organic acid salts. For example,
Examples thereof include vanadium pentoxide, vanadium trichloride, vanadium oxytrichloride, ammonium metavanadate, vanadium (III) acetylacetonate, vanadium oxide acetylacetonate, vanadyl sulfate and vanadyl oxalate. The concentration of vanadium dissolved in the reaction system varies depending on the reaction mode, but is usually 1 ppm to 5% as vanadium, and preferably 5 ppm to 2%. When the amount of dissolved vanadium is less than 1 ppm, the reaction rate becomes slow and the addition effect of the vanadium compound becomes significantly small. On the other hand, if the vanadium content is 5% or more, the manufacturing cost will increase.

【0024】反応に使用する触媒量は、反応形式によっ
て異なるが、連続式に行なう場合には反応速度や熱収支
により決定される為、一概に規定することは難しい。ま
た、回分式あるいは半回分式に反応を行なう場合には、
反応溶液に対して0.01〜30重量%で良く、この範
囲より多く用いると反応液の攪拌に支障をきたす場合が
ある。
The amount of the catalyst used in the reaction varies depending on the reaction mode, but in the case of continuous reaction, it is difficult to unconditionally specify it, because it is determined by the reaction rate and heat balance. Also, when performing the reaction in a batch system or a semi-batch system,
It may be 0.01 to 30% by weight with respect to the reaction solution, and if it is used in excess of this range, stirring of the reaction solution may be hindered.

【0025】本発明の方法において、原料として使用で
きる芳香族化合物は、少なくとも1つ以上の芳香環を有
する芳香族化合物であり、これらは、アルキル基、ヒド
ロキシル基等の置換基で置換されていてもよい。このよ
うな、芳香族化合物として、例えば、ベンゼン、トルエ
ン、キシレンおよびアニソール等の単環式芳香族化合
物、ジフェニル、ジフェニルメタン、ジフェニルエーテ
ル等の非縮合多環式芳香族化合物、ナフタレン、インデ
ン等の縮合多環式芳香族化合物を挙げることができる。
In the method of the present invention, the aromatic compound that can be used as a raw material is an aromatic compound having at least one aromatic ring, which is substituted with a substituent such as an alkyl group or a hydroxyl group. Good. Examples of such aromatic compounds include monocyclic aromatic compounds such as benzene, toluene, xylene, and anisole, non-condensed polycyclic aromatic compounds such as diphenyl, diphenylmethane, diphenyl ether, and condensed polycyclic compounds such as naphthalene and indene. Mention may be made of cyclic aromatic compounds.

【0026】本発明の方法においては、反応は液相で行
なうが、必要なら溶媒を用いてもよい。溶媒としては、
原料である芳香族化合物それ自体を溶媒としてもよい
し、または、他の適当な溶媒を用いてもよい。溶媒とし
て使用できるものとしては、例えば、有機溶媒としては
ペンタン、シクロヘキサンなどの飽和炭化水素類、アセ
トニトリルなどのニトリル類、メチルエーテル、エチル
エーテルなどのエーテル類、アセトン、メチルエチルケ
トンなどのケトン類、酢酸エチル、酢酸ブチルなどのエ
ステル類、アセトアミド、N,N−ジメチルアセトアミ
ドなどのアミド類、ギ酸、酢酸、プロピオン酸などの有
機酸が挙げられ、これらのいずれか一種あるいは二種以
上を混合して溶媒とすることもできる。また、本反応は
溶媒として水を使用することもできる。勿論、前述した
有機溶媒類に水を混合して用いても良い。
In the method of the present invention, the reaction is carried out in the liquid phase, but a solvent may be used if necessary. As a solvent,
The aromatic compound itself as a raw material may be used as a solvent, or another suitable solvent may be used. Examples of the solvent that can be used as the solvent include pentane, saturated hydrocarbons such as cyclohexane, nitriles such as acetonitrile, ethers such as methyl ether and ethyl ether, ketones such as acetone and methyl ethyl ketone, and ethyl acetate as the organic solvent. , Esters such as butyl acetate, amides such as acetamide and N, N-dimethylacetamide, and organic acids such as formic acid, acetic acid, and propionic acid. Any one or a mixture of two or more of these may be used as a solvent. You can also do it. In addition, water can be used as a solvent in this reaction. Of course, water may be mixed with the above-mentioned organic solvents.

【0027】また、これらの反応溶媒に必要なら無機酸
を添加することもできる。添加できる酸としては、リン
酸、硫酸、硝酸などの無機酸を挙げることができる。無
機酸を添加する場合には、触媒の成分の溶出、装置の腐
蝕等の問題から0.5N以下の濃度となるように用いる
のが好ましい。溶媒の量にとくに制限はないが、多すぎ
る場合は反応速度が遅くなるので、好ましくは溶媒濃度
が反応溶液全体の1〜60重量%となるように添加量を
調整する。
If necessary, an inorganic acid may be added to these reaction solvents. Examples of the acid that can be added include inorganic acids such as phosphoric acid, sulfuric acid and nitric acid. When an inorganic acid is added, it is preferable to use it at a concentration of 0.5 N or less in view of problems such as elution of catalyst components and apparatus corrosion. The amount of the solvent is not particularly limited, but if it is too large, the reaction rate will be slow, so the amount added is preferably adjusted so that the solvent concentration is 1 to 60% by weight of the entire reaction solution.

【0028】本発明の方法においては、反応方法に特に
制限はなく、例えば、反応は原料である芳香族化合物、
触媒、酸素、水素及び必要であれば溶媒を一度に反応装
置に仕込む回分式であっても、反応装置に酸素及び/又
は水素を連続的に吹込む半回分式であっても、あるい
は、芳香族化合物、酸素、水素等を連続的に供給すると
共に未反応ガス及び、反応液を連続的に抜出す連続式で
あってもよい。
In the method of the present invention, the reaction method is not particularly limited. For example, the reaction is an aromatic compound as a raw material,
A batch system in which a catalyst, oxygen, hydrogen and, if necessary, a solvent are charged to a reactor at one time, a semi-batch system in which oxygen and / or hydrogen are continuously blown into the reactor, or an aroma A continuous system in which the group compound, oxygen, hydrogen and the like are continuously supplied and the unreacted gas and the reaction liquid are continuously extracted may be used.

【0029】また、本反応において供給する酸素および
水素ガスは、窒素、へリウム、アルゴン、二酸化炭素等
の不活性ガスで希釈されていても構わない。酸素は空気
を利用することもできる。酸素の供給量は、反応方法や
反応条件により変化するので、一概には決められない
が、通常、触媒単位重量(g)当りの酸素供給量は0.
01ml/min〜1000ml/minで行なわれ
る。0.01ml/min未満では生産性が不充分とな
り、また、1000ml/minを越えると、ガスの転
化率が小さくなり経済的でなくなる。酸素と水素の割合
には特に制限はなく任意に変えることができるが、水素
/酸素(モル比)は好ましくは0.1〜10である。
The oxygen and hydrogen gases supplied in this reaction may be diluted with an inert gas such as nitrogen, helium, argon or carbon dioxide. Air can also be used as oxygen. The amount of oxygen supplied varies depending on the reaction method and reaction conditions, so it cannot be determined unconditionally, but normally the amount of oxygen supplied per unit weight (g) of the catalyst is 0.
It is performed at 01 ml / min to 1000 ml / min. If it is less than 0.01 ml / min, the productivity will be insufficient, and if it exceeds 1000 ml / min, the gas conversion rate will be small and it will be uneconomical. The ratio of oxygen and hydrogen is not particularly limited and can be arbitrarily changed, but hydrogen / oxygen (molar ratio) is preferably 0.1 to 10.

【0030】芳香族化合物を連続的に供給する場合、触
媒単位重量(g)当りの芳香族化合物供給速度は1×1
-5g/min〜102g/minで良い。1×10-5
g/min未満では生産性が不充分となり、また、10
2g/minを越えると、未反応芳香族化合物の量が多
くなり、経済的に不都合となる場合がある。
When the aromatic compound is continuously supplied, the aromatic compound supply rate per unit weight (g) of the catalyst is 1 × 1.
0 be a -5 g / min~10 2 g / min . 1 x 10 -5
If it is less than g / min, the productivity will be insufficient and 10
If it exceeds 2 g / min, the amount of unreacted aromatic compound increases, which may be economically inconvenient.

【0031】反応温度及び圧力は原料である反応溶液が
反応中に液相であれば特に制限されない。反応速度を速
くする為に反応温度を高くする場合には、加圧下での反
応を行なえばよい。実用的な温度範囲としては常温〜2
00℃である。反応温度が常温より低いと、芳香族化合
物の転化率が低くなり、一方、反応温度を200℃より
高くすると、生成物の選択率が低くなる場合がある。ま
た、圧力は通常、常圧〜200Kg/cm2であるが、
好ましくは常圧〜50Kg/cm2である。
The reaction temperature and pressure are not particularly limited as long as the reaction solution as a raw material is in the liquid phase during the reaction. When the reaction temperature is increased to increase the reaction rate, the reaction may be performed under pressure. The practical temperature range is room temperature to 2
It is 00 ° C. If the reaction temperature is lower than room temperature, the conversion of the aromatic compound will be low, while if the reaction temperature is higher than 200 ° C., the selectivity of the product may be low. The pressure is usually from atmospheric pressure to 200 Kg / cm 2 ,
It is preferably normal pressure to 50 Kg / cm 2 .

【0032】[0032]

【実施例】以下に実施例を用いて本発明を具体的に説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0033】実施例1 テトラアンミンジクロロ白金41.5mgを蒸留水18
mlに溶かし、ここにシリカ(CARiACT−15,
100〜200mesh;富士デヴィソン(株)製)
4.51gを加えた。湯浴上で蒸発乾固したのち、10
%−水素(残り窒素)流通下150℃で1時間還元して
0.5重量%−Pt/シリカ触媒を調製した。
Example 1 Tetraamminedichloroplatinum (41.5 mg) was added to distilled water (18).
Dissolve it in ml and add silica (CARiACT-15,
100-200 mesh; manufactured by Fuji Davison Co., Ltd.
4.51 g was added. After evaporating to dryness on a hot water bath, 10
% -Hydrogen (remaining nitrogen) was passed through at 150 ° C. for 1 hour for reduction to prepare a 0.5 wt% -Pt / silica catalyst.

【0034】還流冷却器を取付けた100mlガラス製
反応器に反応溶液として、ベンゼン20ml、酢酸25
ml、バナジウム(III)アセチルアセトネート5.
9mgを入れ、ここに上記の0.5重量%−Pt/シリ
カ触媒0.10gを加えた。溶液の温度を60℃とし
て、マグネチックスターラーで撹拌しながら水素40m
l/minを30分間供給して、触媒の活性化を行なっ
た。続いて、水素24ml/min,空気38ml/m
inを同時に供給し、1時間後に溶液中の生成物をガス
クロマトグラフィーで分析した。結果を表1に示す。
In a 100 ml glass reactor equipped with a reflux condenser, 20 ml of benzene and 25 ml of acetic acid were used as a reaction solution.
ml, vanadium (III) acetylacetonate 5.
9 mg was added, and 0.10 g of the above 0.5 wt% Pt / silica catalyst was added thereto. The temperature of the solution is set to 60 ° C, and 40 m of hydrogen is stirred with a magnetic stirrer.
The catalyst was activated by supplying 1 / min for 30 minutes. Subsequently, hydrogen 24 ml / min, air 38 ml / m
In was simultaneously supplied, and after 1 hour, the product in the solution was analyzed by gas chromatography. The results are shown in Table 1.

【0035】実施例2 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりにオキシ三塩化バナジウム6.0mg
を用いた以外は実施例1と全く同様にして、触媒を調製
し反応を行なった。結果を表1に示す。
Example 2 In Example 1, 6.0 mg of vanadium oxytrichloride was used instead of vanadium (III) acetylacetonate.
A catalyst was prepared and a reaction was performed in exactly the same manner as in Example 1 except that was used. The results are shown in Table 1.

【0036】実施例3 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりにメタバナジン酸アンモニウム3.8
mgを用いた以外は実施例1と全く同様にして、触媒を
調製し反応を行なった。結果を表1に示す。
Example 3 In Example 1, ammonium metavanadate 3.8 was used instead of vanadium (III) acetylacetonate.
A catalyst was prepared and a reaction was carried out in the same manner as in Example 1 except that mg was used. The results are shown in Table 1.

【0037】実施例4 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりに三塩化バナジウム5.6mgを用い
た以外は実施例1と全く同様にして、触媒を調製し反応
を行なった。結果を表1に示す。
Example 4 A catalyst was prepared and a reaction was carried out in the same manner as in Example 1 except that 5.6 mg of vanadium trichloride was used instead of vanadium (III) acetylacetonate. The results are shown in Table 1.

【0038】実施例5 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりに酸化バナジウムアセチルアセトネー
ト9.2mgを用いた以外は実施例1と全く同様にし
て、触媒を調製し反応を行なった。結果を表1に示す。
Example 5 A catalyst was prepared and the reaction was carried out in the same manner as in Example 1 except that 9.2 mg of vanadium oxide acetylacetonate was used instead of vanadium (III) acetylacetonate. It was The results are shown in Table 1.

【0039】実施例6 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりに硫酸バナジル7.9mgを用いた以
外は実施例1と全く同様にして、触媒を調製し反応を行
なった。結果を表1に示す。
Example 6 A catalyst was prepared and a reaction was carried out in the same manner as in Example 1 except that 7.9 mg of vanadyl sulfate was used instead of vanadium (III) acetylacetonate. The results are shown in Table 1.

【0040】実施例7 実施例1において、バナジウム(III)アセチルアセ
トネートの代わりにシュウ酸バナジル8.2mgを用い
た以外は実施例1と全く同様にして、触媒を調製し反応
を行なった。結果を表1に示す。
Example 7 A catalyst was prepared and reacted in exactly the same manner as in Example 1 except that 8.2 mg of vanadyl oxalate was used instead of vanadium (III) acetylacetonate. The results are shown in Table 1.

【0041】実施例8 塩化ロジウム(III)三水和物19.2mgを蒸留水
6mlに溶かし、ここにシリカ(CARiACT−1
5,100〜200mesh;富士デヴィソン(株)
製)1.50gを加えた。湯浴上で蒸発乾固したのち、
10%−水素(残り窒素)流通下150℃で2時間還元
して、0.5重量%−Rh/シリカ触媒を調製した。
Example 8 19.2 mg of rhodium (III) chloride trihydrate was dissolved in 6 ml of distilled water, and silica (CARiACT-1) was added thereto.
5,100-200 mesh; Fuji Devison Co., Ltd.
1.50 g) was added. After evaporating to dryness on a hot water bath,
Reduction was carried out at 150 ° C. for 2 hours under a flow of 10% -hydrogen (remaining nitrogen) to prepare a 0.5 wt% -Rh / silica catalyst.

【0042】実施例1において、バナジウム(III)
アセチルアセトネートを5.8mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Rh/
シリカ触媒0.10gを用いた以外は実施例1と全く同
様にして反応を行なった。結果を表1に示す。
In Example 1, vanadium (III)
Acetylacetonate 5.8 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Rh /
The reaction was carried out in exactly the same manner as in Example 1 except that 0.10 g of the silica catalyst was used. The results are shown in Table 1.

【0043】実施例9 テトラアンミンジクロロ白金18.2mgを蒸留水8m
lに溶かし、ここにアルミナ(Neobead−C,2
00mesh以下;水澤化学工業(株)製)2.00g
を加えた。湯浴上で蒸発乾固したのち、10%−水素
(残り窒素)流通下250℃で1時間還元して0.5重
量%−Pt/アルミナ触媒を調製した。
Example 9 Tetraamminedichloroplatinum (18.2 mg) was added to distilled water (8 m).
1 and dissolved in alumina (Neobead-C, 2
00 mesh or less; Mizusawa Chemical Co., Ltd.) 2.00 g
Was added. After evaporating to dryness on a hot water bath, reduction was carried out at 250 ° C. for 1 hour under a flow of 10% -hydrogen (remaining nitrogen) to prepare a 0.5 wt% -Pt / alumina catalyst.

【0044】実施例1において、バナジウム(III)
アセチルアセトネートを6.0mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Pt/
アルミナ触媒0.10gを用いた以外は実施例1と全く
同様にして反応を行なった。結果を表1に示す。
In Example 1, vanadium (III)
Acetylacetonate 6.0 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Pt /
The reaction was carried out in exactly the same manner as in Example 1 except that 0.10 g of the alumina catalyst was used. The results are shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】表中、acacはアセチルアセトネート基
を示す。
In the table, acac represents an acetylacetonate group.

【0047】実施例10 テトラアンミンジクロロ白金20.9mgを蒸留水9m
lに溶かし、ここにチタニア(200mesh以下;堺
化学工業(株)製)2.28gを加えた。湯浴上で蒸発
乾固したのち、10%−水素(残り窒素)流通下250
℃で1時間還元して0.5重量%−Pt/チタニア触媒
を調製した。
Example 10 Tetraamminedichloroplatinum (20.9 mg) was added to distilled water (9 m).
It was dissolved in 1, and 2.28 g of titania (200 mesh or less; manufactured by Sakai Chemical Industry Co., Ltd.) was added thereto. After evaporating to dryness on a hot water bath, 250% with 10% hydrogen (remaining nitrogen) flowing
A 0.5 wt% Pt / titania catalyst was prepared by reducing at 0 ° C. for 1 hour.

【0048】実施例1において、バナジウム(III)
アセチルアセトネートを6.1mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Pt/
チタニア触媒0.10gを用いた以外は実施例1と全く
同様にして反応を行なった。結果を表2に示す。
In Example 1, vanadium (III)
Acetylacetonate 6.1 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Pt /
The reaction was carried out in exactly the same manner as in Example 1 except that 0.10 g of the titania catalyst was used. The results are shown in Table 2.

【0049】実施例11 テトラアンミンジクロロ白金12.5mgを蒸留水5m
lに溶かし、ここにジルコニア(90m2/g,200
mesh以下;ノートン(株)製)1.36gを加え
た。湯浴上で蒸発乾固したのち、10%−水素(残り窒
素)流通下250℃で1時間還元して0.5重量%−P
t/ジルコニア触媒を調製した。
Example 11 Tetraamminedichloroplatinum (12.5 mg) was added to distilled water (5 m).
It is dissolved in 1, and zirconia (90 m 2 / g, 200
1.36 g of less than mesh; manufactured by Norton Co., Ltd. was added. After evaporating to dryness on a hot water bath, the product was reduced at 250 ° C for 1 hour under a flow of 10% -hydrogen (remaining nitrogen) to give 0.5% by weight-P.
A t / zirconia catalyst was prepared.

【0050】実施例1において、バナジウム(III)
アセチルアセトネートを6.3mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Pt/
ジルコニア触媒0.10gを用いた以外は実施例1と全
く同様にして反応を行なった。結果を表2に示す。
In Example 1, vanadium (III)
Acetylacetonate 6.3 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Pt /
The reaction was carried out in exactly the same manner as in Example 1 except that 0.10 g of the zirconia catalyst was used. The results are shown in Table 2.

【0051】実施例12 テトラアンミンジクロロ白金18.2mgを蒸留水8m
lに溶かし、ここにH−ZSM−5(200mesh以
下;東ソー(株)製)1.99gを加えた。湯浴上で蒸
発乾固したのち、10%−水素(残り窒素)流通下25
0℃で1時間還元して0.5重量%−Pt/H−ZSM
−5触媒を調製した。
Example 12 Tetraamminedichloroplatinum (18.2 mg) was added to distilled water (8 m).
It was melt | dissolved in 1, and H-ZSM-5 (200 mesh or less; Tosoh Corporation make) 1.99g was added here. After evaporating to dryness on a hot water bath, under 10% -hydrogen (remaining nitrogen) flow 25
0.5 wt% -Pt / H-ZSM reduced at 0 ° C for 1 hour
-5 catalyst was prepared.

【0052】実施例1において、バナジウム(III)
アセチルアセトネートを6.2mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Pt/
H−ZSM−5触媒0.10gを用いた以外は実施例1
と全く同様にして反応を行なった。結果を表2に示す。
In Example 1, vanadium (III)
Acetylacetonate 6.2 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Pt /
Example 1 except that 0.10 g of H-ZSM-5 catalyst was used.
The reaction was carried out in exactly the same manner as. The results are shown in Table 2.

【0053】実施例13 テトラアンミンジクロロ白金22.9mgを蒸留水10
mlに溶かし、ここにマクロポアカーボン(200me
sh以下;三菱化成工業(株)製)2.49gを加え
た。湯浴上で蒸発乾固したのち、10%−水素(残り窒
素)流通下250℃で1時間還元して0.5重量%−P
t/マクロポアカーボン触媒を調製した。
Example 13 22.9 mg of tetraamminedichloroplatinum was added to 10 parts of distilled water.
Dissolve it in ml and add Macropore Carbon (200me
sh or less; 2.49 g of Mitsubishi Kasei Co., Ltd.) was added. After evaporating to dryness on a hot water bath, the product was reduced at 250 ° C for 1 hour under a flow of 10% -hydrogen (remaining nitrogen) to give 0.5% by weight-P.
A t / macropore carbon catalyst was prepared.

【0054】実施例1において、バナジウム(III)
アセチルアセトネートを6.0mg、0.5重量%−P
t/シリカ触媒の代わりに上記の0.5重量%−Pt/
マクロポアカーボン触媒0.10gを用いた以外は実施
例1と全く同様にして反応を行なった。結果を表2に示
す。
In Example 1, vanadium (III)
Acetylacetonate 6.0 mg, 0.5 wt% -P
t / silica catalyst instead of 0.5 wt% -Pt /
The reaction was carried out in exactly the same manner as in Example 1 except that 0.10 g of macropore carbon catalyst was used. The results are shown in Table 2.

【0055】実施例14 テトラアンミンジクロロ白金41.5mgを蒸留水18
mlに溶かし、ここにシリカ(CARiACT−15,
100〜200mesh;富士デヴィソン(株)製)
4.51gを加えた。湯浴上で蒸発乾固したのち、10
%−水素(残り窒素)流通下150℃で1時間還元して
0.5重量%−Pt/シリカ触媒を調製した。
Example 14 Tetraamminedichloroplatinum (41.5 mg) was added to distilled water (18).
Dissolve it in ml and add silica (CARiACT-15,
100-200 mesh; manufactured by Fuji Davison Co., Ltd.
4.51 g was added. After evaporating to dryness on a hot water bath, 10
% -Hydrogen (remaining nitrogen) was passed through at 150 ° C. for 1 hour for reduction to prepare a 0.5 wt% -Pt / silica catalyst.

【0056】還流冷却器を取付けた100mlガラス製
反応器に反応溶液として、ベンゼン20ml、酢酸25
ml、バナジウム(III)アセチルアセトネート1.
0mgを入れ、ここに上記の0.5重量%−Pt/シリ
カ触媒0.10gを加えた。溶液の温度を60℃として
マグネチックスターラーで撹拌しながら水素40ml/
minを30分間供給して触媒の活性化を行なった。続
いて、水素24ml/min,空気38ml/minを
同時に供給し、1時間後に溶液中の生成物をガスクロマ
トグラフィーで分析した。結果を表2に示す。
In a 100 ml glass reactor equipped with a reflux condenser, 20 ml of benzene and 25 ml of acetic acid were used as a reaction solution.
ml, vanadium (III) acetylacetonate 1.
0 mg was added, and 0.10 g of the above 0.5 wt% Pt / silica catalyst was added thereto. The temperature of the solution is set to 60 ° C., while stirring with a magnetic stirrer, 40 ml of hydrogen /
The catalyst was activated by supplying min for 30 minutes. Subsequently, 24 ml / min of hydrogen and 38 ml / min of air were simultaneously supplied, and after 1 hour, the product in the solution was analyzed by gas chromatography. The results are shown in Table 2.

【0057】実施例15 実施例14において、バナジウム(III)アセチルア
セトネート118mgを用いた以外は実施例14と全く
同様にして、触媒を調製し反応を行なった。結果を表2
に示す。
Example 15 A catalyst was prepared and the reaction was carried out in the same manner as in Example 14 except that 118 mg of vanadium (III) acetylacetonate was used. The results are shown in Table 2.
Shown in.

【0058】実施例16 テトラアンミンジクロロ白金12.5mgを蒸留水5m
lに溶かし、ここにジルコニア(90m2/g,200
mesh以下;ノートン(株)製)1.36gを加え
た。湯浴上で蒸発乾固したのち、10%−水素(残り窒
素)流通下250℃で1時間還元して0.5重量%−P
t/ジルコニア触媒を調製した。
Example 16 Tetraamminedichloroplatinum (12.5 mg) was added to distilled water (5 m).
It is dissolved in 1, and zirconia (90 m 2 / g, 200
1.36 g of less than mesh; manufactured by Norton Co., Ltd. was added. After evaporating to dryness on a hot water bath, the product was reduced at 250 ° C for 1 hour under a flow of 10% -hydrogen (remaining nitrogen) to give 0.5% by weight-P.
A t / zirconia catalyst was prepared.

【0059】還流冷却器を取付けた100mlガラス製
反応器に反応溶液として、ベンゼン20ml、酢酸25
ml、バナジウム(III)アセチルアセトネート1.
0mgを入れ、ここに上記の0.5重量%−Pt/ジル
コニア触媒0.10gを加えた。溶液の温度を60℃と
して、マグネチックスターラーで撹拌しながら水素40
ml/minを30分間供給して、触媒の活性化を行な
った。続いて、水素24ml/min,空気38ml/
minを同時に供給し、1時間後に溶液中の生成物をガ
スクロマトグラフィーで分析した。結果を表2に示す。
In a 100 ml glass reactor equipped with a reflux condenser, 20 ml of benzene and 25 ml of acetic acid were used as a reaction solution.
ml, vanadium (III) acetylacetonate 1.
0 mg was added thereto, and 0.10 g of the above 0.5 wt% Pt / zirconia catalyst was added thereto. The temperature of the solution is set to 60 ° C., and hydrogen is stirred while stirring with a magnetic stirrer.
The catalyst was activated by supplying ml / min for 30 minutes. Subsequently, hydrogen 24 ml / min, air 38 ml /
min was simultaneously supplied, and after 1 hour, the product in the solution was analyzed by gas chromatography. The results are shown in Table 2.

【0060】実施例17 実施例16において、バナジウム(III)アセチルア
セトネート118mgを用いた以外は実施例16と全く
同様にして、触媒を調製し反応を行なった。結果を表2
に示す。
Example 17 A catalyst was prepared and the reaction was carried out in the same manner as in Example 16 except that 118 mg of vanadium (III) acetylacetonate was used. The results are shown in Table 2.
Shown in.

【0061】比較例1 実施例1において、バナジウム(III)アセチルアセ
トネートを用いなかった以外は実施例1と全く同様にし
て、触媒を調製し反応を行なった。結果を表2に示す。
Comparative Example 1 A catalyst was prepared and a reaction was carried out in the same manner as in Example 1 except that vanadium (III) acetylacetonate was not used. The results are shown in Table 2.

【0062】[0062]

【表2】 [Table 2]

【0063】表中、acacはアセチルアセトネート基
を示す。
In the table, acac represents an acetylacetonate group.

【0064】実施例18 テトラアンミンジクロロ白金45.5mgを蒸留水20
mlに溶かし、ここにシリカ(CARiACT−15,
10〜20mesh;富士デヴィソン(株)製)5.0
0gを加えた。湯浴上で蒸発乾固したのち、10%−水
素(残り窒素)流通下150℃で2時間還元して0.5
重量%−Pt/シリカ触媒を調製した。
Example 18 Tetraamminedichloroplatinum (45.5 mg) was added to distilled water (20).
Dissolve it in ml and add silica (CARiACT-15,
10-20 mesh; manufactured by Fuji Davison Co., Ltd.) 5.0
0 g was added. After evaporating to dryness on a hot water bath, reducing it to 150 ° C. for 2 hours under a flow of 10% hydrogen (remaining nitrogen), and reducing it to 0.5.
A wt% -Pt / silica catalyst was prepared.

【0065】内径8mmのガラス製反応管に上記の触媒
1.50gを充填し、反応温度60℃において、反応管
の下部からメタバナジン酸アンモニウムをバナジウム換
算で38ppm溶解した40重量%−ベンゼン/酢酸溶
液として0.25ml/min、さらに水素24ml/
min、空気38ml/minを同時に供給し反応を行
なった。反応管上部の溶液中の生成物をガスクロマトグ
ラフィーで分析した。結果を表3に示す。
A glass reaction tube having an inner diameter of 8 mm was charged with 1.50 g of the above catalyst, and at a reaction temperature of 60 ° C., a 40 wt% benzene / acetic acid solution in which 38 ppm of ammonium metavanadate in terms of vanadium was dissolved from the bottom of the reaction tube. 0.25 ml / min, hydrogen 24 ml /
min and air 38 ml / min were simultaneously supplied to carry out the reaction. The products in the solution above the reaction tube were analyzed by gas chromatography. The results are shown in Table 3.

【0066】[0066]

【表3】 [Table 3]

【0067】実施例19 メタバナジン酸アンモニウム0.13gとシュウ酸0.
13gを蒸留水40mlに溶かし、ここにシリカ(CA
RiACT−15,10〜20mesh;富士デヴィソ
ン化学(株)製)10.00gを加えた。湯浴上で蒸発
乾固したのち、空気流通下500℃で3時間加熱分解し
て、1重量%V25/シリカを調製した。
Example 19 0.13 g of ammonium metavanadate and 0.1% of oxalic acid.
Dissolve 13 g in 40 ml of distilled water and add silica (CA
RiACT-15, 10 to 20 mesh; Fuji Devison Chemical Co., Ltd. product) 10.00 g was added. After evaporating to dryness on a hot water bath, it was thermally decomposed at 500 ° C. for 3 hours under air flow to prepare 1 wt% V 2 O 5 / silica.

【0068】テトラアンミンジクロロ白金18.2mg
を蒸留水8mlに溶かしたものに上記の1重量%V25
/シリカ2.00gを浸漬し湯浴上で蒸発乾固したの
ち、10%−水素(残り窒素)流通下250℃で2時間
還元して0.5重量%−Pt/1重量%V25/シリカ
触媒を調製した。
Tetraamminedichloroplatinum 18.2 mg
Was dissolved in 8 ml of distilled water and added to the above 1 wt% V 2 O 5
/2.00 g of silica was evaporated and evaporated to dryness on a hot water bath, and then reduced at 250 ° C. for 2 hours under a flow of 10% -hydrogen (remaining nitrogen) to give 0.5% by weight-Pt / 1% by weight V 2 O. A 5 / silica catalyst was prepared.

【0069】内径8mmのガラス製反応管に上記の触媒
1.50gを充填し、反応温度60℃において、反応管
の下部から40重量%−ベンゼン/酢酸溶液を0.25
ml/min、さらに水素24ml/min、空気38
ml/minを同時に供給し反応を行なった。反応が2
5時間経過したところで、40重量%−ベンゼン/酢酸
溶液の代わりに、メタバナジン酸アンモニウムをバナジ
ウム換算で38ppm溶解した40重量%−ベンゼン/
酢酸溶液を供給し、反応を行なった。反応管上部の溶液
中の生成物をガスクロマトグラフィーで分析した。結果
を表4に示す。
A glass reaction tube having an inner diameter of 8 mm was charged with 1.50 g of the above catalyst, and at a reaction temperature of 60 ° C., 40% by weight of benzene / acetic acid solution was added from the bottom of the reaction tube at 0.25.
ml / min, hydrogen 24 ml / min, air 38
The reaction was performed by simultaneously supplying ml / min. Reaction is 2
After 5 hours, instead of the 40 wt% -benzene / acetic acid solution, 40 wt% -benzene / ammonium metavanadate dissolved 38 ppm in terms of vanadium was dissolved.
The acetic acid solution was supplied and the reaction was carried out. The products in the solution above the reaction tube were analyzed by gas chromatography. The results are shown in Table 4.

【0070】[0070]

【表4】 [Table 4]

【0071】実施例20 実施例18において、メタバナジン酸アンモニウムをバ
ナジウム換算で38ppm溶解した40重量%−ベンゼ
ン/酢酸溶液の代わりに、バナジウム(III)アセチ
ルアセトネートをバナジウム換算で3.4ppm溶解し
た40重量%−ベンゼン/酢酸溶液を用いた以外は実施
例18と全く同様にして、触媒を調製し反応を行なっ
た。結果を表5に示す。
Example 20 In Example 18, vanadium (III) acetylacetonate was dissolved in an amount of 3.4 ppm in terms of vanadium in place of the 40 wt% benzene / acetic acid solution in which ammonium metavanadate was dissolved in an amount of 38 ppm in terms of vanadium 40. A catalyst was prepared and the reaction was carried out in the same manner as in Example 18 except that a wt% -benzene / acetic acid solution was used. The results are shown in Table 5.

【0072】[0072]

【表5】 [Table 5]

【0073】比較例2 実施例19において、メタバナジン酸アンモニウムを4
0重量%−ベンゼン/酢酸溶液に溶解させなかった以外
は実施例19と全く同様にして、触媒を調製し反応を行
なった。結果を表6に示す。
Comparative Example 2 In Example 19, ammonium metavanadate 4 was added.
A catalyst was prepared and the reaction was carried out in the same manner as in Example 19 except that the catalyst was not dissolved in a 0 wt% -benzene / acetic acid solution. The results are shown in Table 6.

【0074】[0074]

【表6】 [Table 6]

【0075】[0075]

【発明の効果】本発明によれば効率良く芳香族類の酸化
を行い、高選択率でフェノ−ル類を製造することができ
る。
According to the present invention, it is possible to efficiently oxidize aromatic compounds to produce phenols with high selectivity.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】芳香族化合物を酸素と水素を含む混合ガス
と反応させるか又は、交互に含酸素ガスと含水素ガスと
反応させ、液相でフェノール類を製造するにあたり、周
期律表第VIII族の貴金属を担体に担持した触媒の存
在下、バナジウム化合物が系内において溶存しているこ
とを特徴とするフェノール類の製造方法。
1. An aromatic compound is reacted with a mixed gas containing oxygen and hydrogen, or is alternately reacted with an oxygen-containing gas and a hydrogen-containing gas to produce a phenol in a liquid phase. A method for producing phenols, characterized in that a vanadium compound is dissolved in the system in the presence of a catalyst in which a noble metal of Group III is supported on a carrier.
【請求項2】芳香族化合物を酸素と水素を含む混合ガス
と反応させるか又は、交互に含酸素ガスと含水素ガスと
反応させ、液相でフェノール類を製造するにあたり、周
期律表第VIII族の貴金属と、IIIa,IVa,V
a,VIa,VIIa,IIb,IVbおよびVb族よ
り選ばれた一種以上からなる卑金属酸化物を担体に担持
した触媒の存在下、バナジウム化合物が系内において溶
存していることを特徴とするフェノール類の製造方法。
2. An aromatic compound is reacted with a mixed gas containing oxygen and hydrogen, or is alternately reacted with an oxygen-containing gas and a hydrogen-containing gas to produce a phenol in a liquid phase. Group noble metals and IIIa, IVa, V
a, VIa, VIIa, IIb, IVb and Vb, a vanadium compound dissolved in the system in the presence of a catalyst having a base metal oxide consisting of at least one selected from the group consisting of a, VIa, VIIa, IIb, IVb and Vb. Manufacturing method.
【請求項3】反応方法が、液相流通反応である請求項1
又は2に記載の製造方法。
3. The reaction method is a liquid phase flow reaction.
Or the manufacturing method according to 2.
JP11449493A 1992-05-25 1993-05-17 Production of phenols Expired - Fee Related JP3619902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11449493A JP3619902B2 (en) 1992-05-25 1993-05-17 Production of phenols

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-156146 1992-05-25
JP15614692 1992-05-25
JP11449493A JP3619902B2 (en) 1992-05-25 1993-05-17 Production of phenols

Publications (2)

Publication Number Publication Date
JPH0640976A true JPH0640976A (en) 1994-02-15
JP3619902B2 JP3619902B2 (en) 2005-02-16

Family

ID=26453223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11449493A Expired - Fee Related JP3619902B2 (en) 1992-05-25 1993-05-17 Production of phenols

Country Status (1)

Country Link
JP (1) JP3619902B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638536A1 (en) * 1993-08-10 1995-02-15 Tosoh Corporation Process for producing phenols
JP2016513626A (en) * 2013-03-12 2016-05-16 ザ プロクター アンド ギャンブル カンパニー Method for converting a methoxylated aromatic compound to a simple aromatic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638536A1 (en) * 1993-08-10 1995-02-15 Tosoh Corporation Process for producing phenols
EP0885865A1 (en) * 1993-08-10 1998-12-23 Tosoh Corporation Process for producing phenols
JP2016513626A (en) * 2013-03-12 2016-05-16 ザ プロクター アンド ギャンブル カンパニー Method for converting a methoxylated aromatic compound to a simple aromatic compound

Also Published As

Publication number Publication date
JP3619902B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
EP1160196B1 (en) Catalyst and process for the direct synthesis of hydrogen peroxide
EP0978316A1 (en) New catalyst, process for the production of hydrogen peroxide and its use in oxidation processes
JP2009536662A (en) Method for producing aromatic carboxylic acid in water
JP4169070B2 (en) Method for producing phenol
JP5055262B2 (en) Method for producing p-toluic acid by liquid phase oxidation of p-xylene in water
JP2010163412A (en) Method for producing carbonyl compound
JP3619902B2 (en) Production of phenols
JP3123157B2 (en) Method for producing phenols
JP3161035B2 (en) Production of phenols
JP3211371B2 (en) Method for producing phenols
US4347383A (en) Process for producing benzophenone-azines
JP3479991B2 (en) Method for hydroxylating aromatic compounds
US6958407B2 (en) Process for producing phenyl ester, and catalyst
JPH07238042A (en) Production of phenols
JP3473037B2 (en) Method for hydroxylating aromatic compounds
JPH07238052A (en) Production of hydroxy benzoic acid
JP3313217B2 (en) Method for producing glyoxylic acid
US20070038000A1 (en) Method for oxidation of aromatic compound having alkyl substituent, method for production of aromatic aldehyde compound, and method for production of aromatic carboxylic acid ester
JPH08151346A (en) Production of ketomalonic acid
JP4479240B2 (en) Method for producing chlorobenzene
JP2507026B2 (en) Aromatic compound oxidation method
JPH06157416A (en) Production of glyoxylic acid ester
EP1728778B1 (en) Process for the production of trimellitic acid
JPH0160461B2 (en)
JP2005008561A (en) Method for producing phenyl ester

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040728

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees