JPH02137662A - Production of fiber reinforced metallic parts - Google Patents

Production of fiber reinforced metallic parts

Info

Publication number
JPH02137662A
JPH02137662A JP29073988A JP29073988A JPH02137662A JP H02137662 A JPH02137662 A JP H02137662A JP 29073988 A JP29073988 A JP 29073988A JP 29073988 A JP29073988 A JP 29073988A JP H02137662 A JPH02137662 A JP H02137662A
Authority
JP
Japan
Prior art keywords
piston
fiber
mold
molding
fiber molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29073988A
Other languages
Japanese (ja)
Inventor
Masayoshi Sasaki
佐々木 政義
Masato Sasaki
正登 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP29073988A priority Critical patent/JPH02137662A/en
Publication of JPH02137662A publication Critical patent/JPH02137662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of cracks which are the cause for the degradation of strength on the surface of a fiber molding by previously applying a sealing agent onto at least the part, which constitutes the product as it is, of the entire surface of the fiber molding in contact with a mold. CONSTITUTION:Ceramics fibers, such as alumina fibers, are first compressively molded to form the fiber molding 1 having the shape approximate to the shape of a piston at the time of producing, for example, the piston of an internal combustion engine. Curable silicone is then applied by dipping as the sealing agent on the surface, which is in contact with the metallic mold, on the inner side of the fiber molding 1, i.e., the surface in contact with the core mold 3, and thereafter, the silicone is dried to form a thin curable silicone layer 11. This fiber molding q is preheated to the temp. at which the curable silicone is not converted to ceramics. The heated molding is set in the core mold 3 of the metallic mold 2 of a high-pressure casting device. The molten metal of an Mg or Al alloy is immediately poured into the cavity 4 and is solidified while the molten metal is pressurized up to a prescribed pressure by a pressurizing punch 5. The required parts, such as the outer peripheral surface and peak surface, of the resulted molding are machined and piston ring grooves 6, etc., are machined thereto, by which the piston is completed in the final.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アルミニウム合金やマグネシウム合金等を
セラミックス繊維にて強化した繊維強化従来の技術 従来から、アルミニウム合金やマグネシウム合金の強度
や耐摩耗性を高めるために、これらをマトリクス金属と
し、かつアルミナ等のセラミックス繊維や金属繊維等を
配合して繊維強化金属複合材料とすることが行われてい
る。
[Detailed Description of the Invention] Industrial Field of Application This invention is a fiber reinforced technology in which aluminum alloys, magnesium alloys, etc. are reinforced with ceramic fibers. Therefore, these materials are used as a matrix metal, and ceramic fibers such as alumina, metal fibers, etc. are blended to form a fiber-reinforced metal composite material.

例えば内燃機関のピストンには、アルミニウム合金やマ
グネシウム合金をマトリクス金属とした繊維強化金属が
用いられつつあるが、その製造方法としては、先ずアル
ミナ繊維等のセラミックス繊維を圧縮成形して、第4図
に示すようなピストン形状に近似した繊維成形体1を形
成する。そして、この繊維成形体1を加熱した状態で高
圧鋳造装置の金型2、詳しくはそのコア型3にセットす
る。次いで、この金型2のキャビティ4内にアルミニウ
ム合金もしくはマグネシウム合金の溶湯を注湯し、かつ
加圧ポンチ5により加圧して、そのまま凝固させる。
For example, fiber-reinforced metals with aluminum alloys or magnesium alloys as matrix metals are being used for internal combustion engine pistons, but the manufacturing method is to first compression-mold ceramic fibers such as alumina fibers, as shown in Figure 4. A fiber molded body 1 having a shape similar to that of a piston is formed as shown in FIG. Then, this fiber molded body 1 is set in a heated state in a mold 2 of a high-pressure casting apparatus, more specifically, in a core mold 3 thereof. Next, a molten aluminum alloy or magnesium alloy is poured into the cavity 4 of the mold 2, and is pressurized by a pressure punch 5 to solidify as it is.

これにより、所望のピストン形状に略沿った成形品が得
られるので、その外周面や頂面等の必要部位を機械加工
し、かつ第5図に示すようにピストンリング溝6等の機
械加工を施して最終的にピストンが完成する(例えば特
開昭61−133359号公報等)。
As a result, a molded product that roughly follows the desired piston shape is obtained, so the necessary parts such as the outer peripheral surface and top surface are machined, and the piston ring groove 6 and other parts are machined as shown in FIG. Finally, the piston is completed (for example, Japanese Patent Laid-Open No. 133359/1983).

発明が解決しようとする課題 例えば、上記のようなピストンにおいては、その内側面
には特に機械加工が施されることはなく、鋳造品の表面
がそのまま製品表面となる。更に詳しくは、この内側表
面は繊維成形体Iの表面がそのまま露出した形となる。
Problems to be Solved by the Invention For example, in the piston as described above, the inner surface thereof is not particularly machined, and the surface of the cast product becomes the product surface as it is. More specifically, this inner surface has a shape in which the surface of the fiber molded body I is exposed as it is.

しかしながら、実際には、繊維成形体lをコア型3にセ
ットする際に成形体1と型面とが完全には一致せず、多
少の隙間7が生じるので、そこに溶湯が侵入し、最終的
には、繊維成形体1つまり繊維強化複合材料部分の表面
にマトリクス金属のみからなる薄い金属層8(第5図参
照)が生じてしまう。
However, in reality, when setting the fiber molded body l in the core mold 3, the molded body 1 and the mold surface do not completely match, and some gaps 7 are created, so the molten metal enters there and the final Specifically, a thin metal layer 8 (see FIG. 5) consisting only of matrix metal is formed on the surface of the fiber molded body 1, that is, the fiber-reinforced composite material portion.

この金属層8は薄くかつ当然のことながら強度が低いの
で、ピストンの使用時に、繊維強化金属層との界面の剥
離等によって容易に亀裂が生じ、更にこの亀裂が繊維強
化金属層に伝播して、ピストン全体の強度を低下させて
しまう虞れがある。
This metal layer 8 is thin and naturally has low strength, so when the piston is used, cracks easily occur due to peeling at the interface with the fiber-reinforced metal layer, and these cracks further propagate to the fiber-reinforced metal layer. , there is a risk of reducing the strength of the entire piston.

尚、鋳造後に機械加工を施す表面部分には、上記のよう
な薄い金属層が生じていても、勿論何隻差一 し支えない。
Incidentally, even if a thin metal layer as described above is formed on the surface portion to be machined after casting, it will of course not make any difference to the number of ships.

課題を解決するための手段 そこで、この発明は、セラミックス等の繊維を所定形状
に成形してなる繊維成形体を金型内にセットし、これに
マトリクス金属の溶湯を注湯して一体に成形するように
した繊維強化金属部品の製造方法において、上記繊維成
形体の金型当接面の少なくともそのまま製品表面となる
部分に、予め硬化性シリコンや耐熱樹脂等の封孔剤を塗
布するようにしたことを特徴としている。
Means for Solving the Problems Therefore, the present invention involves setting a fiber molded body made by molding fibers such as ceramics into a predetermined shape in a mold, pouring molten matrix metal into it, and molding it into one piece. In the method for manufacturing fiber-reinforced metal parts, a sealing agent such as hardening silicone or heat-resistant resin is applied in advance to at least a portion of the mold contacting surface of the fiber molded body that will become the product surface as it is. It is characterized by what it did.

作用 本発明では、繊維成形体を金型内にセットする前に封孔
剤が塗布される。この封孔剤によって繊維成形体の表面
が薄く覆われた状態となるので、仮に封孔剤層表面と金
型表面との間に多少の隙間があったとしても、成形後の
繊維強化金属層表面にマトリクス金属のみの金属層が付
着するようなことがない。
Function: In the present invention, a pore sealant is applied to the fiber molded article before it is set in the mold. Since the surface of the fiber molded body is thinly covered with this sealant, even if there is some gap between the surface of the sealant layer and the mold surface, the fiber reinforced metal layer after molding will A metal layer consisting only of matrix metal does not adhere to the surface.

実施例 以下、この発明の一実施例を第1.2図に基づいて説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIG. 1.2.

この実施例は、内燃機関のピストンの製造に本発明を適
用したものであって、先ずアルミナ繊維等のセラミック
ス繊維を圧縮成形して、ピストン形状に近似した繊維成
形体lを形成する。次に、この繊維成形体1の内側の金
型当接面つまりコア型3と接する而に、封孔剤として硬
化性シリコンをディッピングにて塗布し、かつ乾燥させ
て、薄い硬化性シリコン層11を形成する。
In this embodiment, the present invention is applied to the production of a piston for an internal combustion engine, and first, ceramic fibers such as alumina fibers are compression-molded to form a fiber molded body l that approximates the shape of a piston. Next, curable silicone is applied as a sealant by dipping to the inner mold contacting surface of the fiber molded body 1, that is, the area in contact with the core mold 3, and dried to form a thin curable silicone layer 11. form.

次に、この繊維成形体lを、硬化性シリコンがセラミッ
クス化しない温度で予熱し、it;77圧鋳造装置の金
型2、詳しくはそのコア型3にセットする。
Next, this fiber molded body 1 is preheated at a temperature at which the curable silicon does not turn into a ceramic, and is set in the mold 2 of an IT;77 pressure casting machine, specifically, in the core mold 3 thereof.

そして、直ちにマグネシウム合金あるいはアルミニウム
合金の溶湯をキャビティ4内に注湯し、かつ加圧ポンチ
5により所定圧力にまで加圧しながら凝固させる。
Immediately, molten magnesium alloy or aluminum alloy is poured into the cavity 4 and solidified while being pressurized to a predetermined pressure using a pressure punch 5.

そして、得られた成形品の外周面や頂面等の必要部位を
機械加工し、かつピストンリング溝6等の機械加工を施
して、最終的に第2図に示すようなピストンが完成する
。尚、内側面の硬化性シリコン層11は適当な加熱処理
等によって除去すれば良い。
Then, necessary parts such as the outer circumferential surface and the top surface of the obtained molded product are machined, and the piston ring grooves 6 and the like are machined, and finally a piston as shown in FIG. 2 is completed. Incidentally, the curable silicon layer 11 on the inner surface may be removed by suitable heat treatment or the like.

このようにして成形されたピストンを切断して複合状態
を検査したところ、コア型3と接していた内側面に、マ
トリクス金属のみの金属層は全く認められなかった。
When the piston thus formed was cut and the composite state was inspected, no metal layer consisting only of matrix metal was observed on the inner surface that was in contact with the core mold 3.

すなわち、上記のように封孔剤例えば硬化性シリコンを
塗布しておくことによって、コア型3との密着性が向−
1−シ、溶湯が侵入する隙間が生じにくくなる。しかも
、仮に硬化性シリコン層11と型面との間に、若干の隙
間があったとしても、繊維成形体1表面が硬化性シリコ
ン層11によって封孔されているので、マトリクス金属
層の付着が阻止されるのである。
That is, by applying a pore sealant such as curable silicone as described above, the adhesion with the core mold 3 can be improved.
1-C. It becomes difficult for the molten metal to enter into gaps. Moreover, even if there is a slight gap between the curable silicone layer 11 and the mold surface, since the surface of the fiber molded body 1 is sealed by the curable silicone layer 11, the adhesion of the matrix metal layer will be prevented. It will be blocked.

次に、第3図は、コア型3と接する繊維成形体I内側面
に比較的浅いアンダーカット部分12を有する場合の例
を示している。
Next, FIG. 3 shows an example in which a relatively shallow undercut portion 12 is provided on the inner surface of the fiber molded body I in contact with the core mold 3.

この場合には、繊維成形体1内側面に封孔剤例えば硬化
性シリコンを塗布することによって、アンダーカット部
分12が略平坦もしくは凹凸か弱められた状態となる。
In this case, by applying a sealant such as curable silicone to the inner surface of the fiber molded body 1, the undercut portion 12 becomes substantially flat or has a weakened unevenness.

そして、コア型3としては、アンダーカット部分を備え
ていない形状のものが用いられる。
As the core mold 3, one having a shape without an undercut portion is used.

このようにして、溶湯の注湯、加圧を行えば、アンダー
カット部分12では溶湯が繊維成形体l内部のみに浸透
し、硬化性シリコン層11によってコア型3側への漏出
が阻止されるので、繊維成形体1の成形形状に沿ったア
ンダーカット形状を確実に得ることができる。
When the molten metal is poured and pressurized in this way, the molten metal penetrates only into the fiber molded body l at the undercut portion 12, and the curable silicone layer 11 prevents it from leaking to the core mold 3 side. Therefore, an undercut shape that conforms to the molded shape of the fiber molded body 1 can be reliably obtained.

すなわち、分割したコア型を用いずとも、アンダーカッ
ト形状の成形を容易に行うことが可能となる。
That is, it is possible to easily form an undercut shape without using a divided core mold.

尚、この発明は上述したピストン以外に種々の繊維強化
金属部品の製造に応用できるのは勿論である。
It goes without saying that this invention can be applied to the manufacture of various fiber-reinforced metal parts other than the above-mentioned piston.

発明の効果 以上の説明で明らかなように、この発明に係る繊維強化
金属部品の製造方法によれば、繊維成形体表面つまり繊
維強化金属層表面に、マトリクス金属のみからなる薄い
金属層が形成されることがない。そのため、強度低下の
原因となる亀裂の発生を防止できる。
Effects of the Invention As is clear from the above explanation, according to the method for manufacturing fiber-reinforced metal parts according to the present invention, a thin metal layer made only of matrix metal is formed on the surface of the fiber molded article, that is, the surface of the fiber-reinforced metal layer. Never. Therefore, it is possible to prevent the occurrence of cracks that cause a decrease in strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る製造方法の一実施例を示す説明
図、第2図はこの製造方法によって製造されたピストン
の断面図、第3図はアンダーカット部分を有する場合の
実施例を示す説明図、第4図は従来の製造方法を示す説
明図、第5図はこの製造方法による従来のピストンの断
面図である。 1・・・繊維成形体、3・・・コア型、11・・・硬化
性シリコン層。
Fig. 1 is an explanatory diagram showing an embodiment of the manufacturing method according to the present invention, Fig. 2 is a cross-sectional view of a piston manufactured by this manufacturing method, and Fig. 3 shows an example in which the piston has an undercut portion. FIG. 4 is an explanatory diagram showing a conventional manufacturing method, and FIG. 5 is a sectional view of a conventional piston produced by this manufacturing method. DESCRIPTION OF SYMBOLS 1... Fiber molded object, 3... Core mold, 11... Curable silicone layer.

Claims (1)

【特許請求の範囲】[Claims] (1)セラミックス等の繊維を所定形状に成形してなる
繊維成形体を金型内にセットし、これにマトリクス金属
の溶湯を注湯して一体に成形するようにした繊維強化金
属部品の製造方法において、上記繊維成形体の金型当接
面の少なくともそのまま製品表面となる部分に、予め封
孔剤を塗布することを特徴とする繊維強化金属部品の製
造方法。
(1) Manufacture of fiber-reinforced metal parts in which a fiber molded body made by molding ceramic fibers into a predetermined shape is set in a mold, and molten matrix metal is poured into the molded body and molded into one piece. A method for manufacturing a fiber-reinforced metal component, characterized in that a pore sealant is applied in advance to at least a portion of the mold contacting surface of the fiber molded body that will become the product surface as it is.
JP29073988A 1988-11-17 1988-11-17 Production of fiber reinforced metallic parts Pending JPH02137662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29073988A JPH02137662A (en) 1988-11-17 1988-11-17 Production of fiber reinforced metallic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29073988A JPH02137662A (en) 1988-11-17 1988-11-17 Production of fiber reinforced metallic parts

Publications (1)

Publication Number Publication Date
JPH02137662A true JPH02137662A (en) 1990-05-25

Family

ID=17759899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29073988A Pending JPH02137662A (en) 1988-11-17 1988-11-17 Production of fiber reinforced metallic parts

Country Status (1)

Country Link
JP (1) JPH02137662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164454A (en) * 2014-05-23 2016-11-23 丰田自动车株式会社 Piston for internal combustion engine
US10208703B2 (en) 2015-03-17 2019-02-19 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, internal combustion engine including this piston, and manufacturing method of this piston

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164454A (en) * 2014-05-23 2016-11-23 丰田自动车株式会社 Piston for internal combustion engine
US20170122250A1 (en) * 2014-05-23 2017-05-04 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine
US9932928B2 (en) * 2014-05-23 2018-04-03 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine
CN106164454B (en) * 2014-05-23 2018-07-20 丰田自动车株式会社 Piston for internal combustion engine
US10208703B2 (en) 2015-03-17 2019-02-19 Toyota Jidosha Kabushiki Kaisha Piston for internal combustion engine, internal combustion engine including this piston, and manufacturing method of this piston

Similar Documents

Publication Publication Date Title
JPH071023B2 (en) Cylinder liner for internal combustion engine
WO2005038073A3 (en) Cylinder lining comprising an exterior coating of two layers and method for sealing or embedding said lining to form a composite body
JPH02137662A (en) Production of fiber reinforced metallic parts
US3847204A (en) Method of casting aluminum cylinder
JPS6261754A (en) Casting method using composite core mold
JP2001071119A (en) Preform and method for inserting preform
JPS6330168A (en) Production of ceramic-metal composite body
JPH0236917A (en) Injection molding method for fluororesin
JPS63248554A (en) Sand core for pressure casting
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
KR20030021079A (en) Manufacturing method of cylinder block for engine
JP4154754B2 (en) Method for manufacturing composite metal member
JP2001071118A (en) Inserting member and inserting method therefor
US3797556A (en) Methods of producing accurate bore surfaces
JPH02307658A (en) Manufacture of cylinder block
JPH02224862A (en) Method and apparatus for forging molten metal
JPH08174178A (en) Method for preheating die in die casting machine
JPS63248552A (en) Sand core for pressure casting
JPH09256902A (en) Piston for internal combustion engine and manufacture thereof
JPH06122040A (en) Manufacture of mold
JPH07100583A (en) Casting mold
JPH10137917A (en) Production of composite casting
JPH04203383A (en) Screw rotor
JPH11320076A (en) Production of cylinder block made of metallic composite material
JP2898309B2 (en) Concrete production method