JP2001071119A - Preform and method for inserting preform - Google Patents

Preform and method for inserting preform

Info

Publication number
JP2001071119A
JP2001071119A JP25173799A JP25173799A JP2001071119A JP 2001071119 A JP2001071119 A JP 2001071119A JP 25173799 A JP25173799 A JP 25173799A JP 25173799 A JP25173799 A JP 25173799A JP 2001071119 A JP2001071119 A JP 2001071119A
Authority
JP
Japan
Prior art keywords
preform
core
cast
salt core
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP25173799A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yoshimoto
和幸 吉本
Nobuyuki Oda
信行 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP25173799A priority Critical patent/JP2001071119A/en
Publication of JP2001071119A publication Critical patent/JP2001071119A/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To reduce the tensile stress caused by high cycle fatigue by disposing a shrinkage restraining member which is abutted on an insered core and restrains the thermal shrinkage of the core, and pouring molten metal. SOLUTION: The shrinkage restraining member 42 for restraining the thermal- shrinkage of the salt core 26 is joined with a preform 41 for lip part, and after separately heating up the salt core 26 and the preform 41 for lip part, the salt core 26 is fitted to the shrinkage restraining member 42 to be held to pour molten metal. The salt core 26 having thermal-expansion coefficient larger than that of the preform 41 for lip part is inserted in the state of adding the residual stress. The preform 41 is inserted into the lip part in a combustion chamber formed at the tip part of a piston in an engine for car, and it is desirable to insert the other preform 41 into the groove part of a piston ring. The preheating temperature is 300-600 deg.C and the temperature when it is disposed into a mold, is desirable to be (the preheating temperature -50 deg.C) to (the preheating temperature -300 deg.C).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車のエ
ンジン用ピストンに形成された燃焼室のピストンリップ
部やピストンリング溝を強化するために鋳包む予備成形
体並びに該予備成形体の鋳包み方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preformed body to be cast in order to strengthen a piston lip portion or a piston ring groove of a combustion chamber formed in, for example, an engine piston of an automobile, and a method of casting the preformed body. About.

【0002】[0002]

【従来の技術】アルミニウム合金は軽量で熱伝導性が良
好なため、自動車用エンジン部品に多く用いられてい
る。
2. Description of the Related Art Aluminum alloys are widely used in automobile engine parts because of their light weight and good thermal conductivity.

【0003】そして、自動車用ピストンをアルミニウム
合金で鋳造する際には、多孔質の予備成形体に溶湯を含
浸させて鋳包むことにより、ピストンリップ部やピスト
ンリング溝等を強化する場合がある。
When an automotive piston is cast from an aluminum alloy, a porous preform may be impregnated with a molten metal and then cast to reinforce the piston lip portion, the piston ring groove, and the like.

【0004】この予備成形体を鋳包む技術として、特開
平9−253827号公報には、予備成形体よりも熱膨
張率の大きな中子を用い、予熱により中子を膨張させて
予備成形体の内周に保持させる手法が開示されている。
[0004] As a technique for casting the preformed body, Japanese Patent Application Laid-Open No. 9-253827 discloses that a core having a larger coefficient of thermal expansion than the preformed body is used, and the core is expanded by preheating to form the preformed body. There is disclosed a method of holding the inner circumference.

【0005】[0005]

【発明が解決しようとする課題】ところで、ディーゼル
エンジン用ピストンを例にとると、図14に示すよう
に、ディーゼルエンジンが高出力化される程、ディーゼ
ルエンジン用ピストンの頂面部に形成される燃焼室に
は、高サイクル疲労として爆発力Gが燃焼室を拡げるよ
うに作用することによりピストンピンに直交する方向に
引張応力F1が繰り返し作用する。このため、燃焼室を
形成する頂面部に作用する引張応力F1を低減する必要
がある。
By the way, taking a piston for a diesel engine as an example, as shown in FIG. 14, the higher the output of the diesel engine, the more the combustion formed on the top surface of the piston for the diesel engine. In the chamber, the explosive force G acts as a high cycle fatigue to expand the combustion chamber, whereby the tensile stress F1 repeatedly acts in a direction orthogonal to the piston pin. Therefore, it is necessary to reduce the tensile stress F1 acting on the top surface forming the combustion chamber.

【0006】本発明は、予備成形体に圧縮残留応力を付
与した状態で鋳包んで、高サイクル疲労による引張応力
を低減できる予備成形体並びに該予備成形体の鋳包み方
法の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a preform that can be cast in a state where a compressive residual stress is applied to the preform and reduce tensile stress due to high cycle fatigue, and a method of casting the preform. .

【0007】[0007]

【課題を解決するための手段】上述の課題を解決し、目
的を達成するため、本発明の予備成形体は、予備成形体
より熱膨張率の大きい中子が予熱後に係止され、溶湯を
型内に流し込んで溶湯を含浸させて鋳包まれる予備成形
体において、前記中子に当接して該中子の熱収縮を抑制
する収縮抑制部材を配設した。
In order to solve the above-mentioned problems and achieve the object, the preformed body of the present invention has a core having a higher coefficient of thermal expansion than that of the preformed body, which is locked after preheating, and melts the molten metal. In a preform which is poured into a mold, impregnated with a molten metal, and cast, a shrinkage suppressing member which abuts on the core and suppresses thermal shrinkage of the core is provided.

【0008】また、好ましくは、前記予備成形体と中子
とは別体で予熱される。
[0008] Preferably, the preform and the core are preheated separately.

【0009】また、本発明の予備成形体の鋳包み方法
は、予備成形体と、該予備成形体より熱膨張率の大きい
中子とを予熱し、前記中子の熱収縮が抑制され得る状態
で、該中子を前記予備成形体に係止させ、前記中子が係
止された予備成形体を型内に配置し、溶湯を型内に流し
込んで該予備成形体に溶湯を含浸させて鋳包む。
Further, the method of casting and casting a preform of the present invention preheats a preform and a core having a higher coefficient of thermal expansion than the preform so that the heat shrinkage of the core can be suppressed. Then, the core is locked to the preformed body, the preformed body in which the core is locked is arranged in a mold, and a molten metal is poured into the mold to impregnate the molten metal into the preformed body. Cast in.

【0010】また、好ましくは、前記中子は、前記予備
成形体に設けられた収縮抑制部材に係止される。
Preferably, the core is locked to a shrinkage suppressing member provided on the preform.

【0011】また、好ましくは、前記予備成形体は、自
動車用エンジンのピストン頂部に形成される燃焼室のリ
ップ部に鋳包まれ、ピストンリング溝部には別の予備成
形体が鋳包まれる。
Preferably, the preform is cast in a lip portion of a combustion chamber formed on the top of a piston of an automobile engine, and another preform is cast in a piston ring groove.

【0012】また、好ましくは、前記各予備成形体は別
体で予熱される。
Preferably, each of the preforms is preheated separately.

【0013】[0013]

【発明の効果】以上のように、請求項1の発明によれ
ば、予備成形体より熱膨張率の大きい中子に当接して中
子の熱収縮を抑制する収縮抑制部材を配設したことによ
り、予備成形体に圧縮残留応力を付与した状態で鋳包ん
で、高サイクル疲労による引張応力を低減できる。ま
た、中子を容易に保持できる。
As described above, according to the first aspect of the present invention, the shrinkage suppressing member for suppressing the heat shrinkage of the core by contacting the core having a higher coefficient of thermal expansion than the preformed body is provided. As a result, the preform can be cast in a state where a compressive residual stress is applied, and the tensile stress due to high cycle fatigue can be reduced. Further, the core can be easily held.

【0014】請求項2の発明によれば、予備成形体と中
子とは別体で予熱されることにより、熱収縮量の異なる
中子により予備成形体に圧縮残留応力を容易に付与でき
る。
According to the second aspect of the present invention, since the preformed body and the core are preheated separately, it is possible to easily apply a compressive residual stress to the preformed body by the cores having different heat shrinkage amounts.

【0015】請求項3の発明によれば、予備成形体と、
該予備成形体より熱膨張率の大きい中子とを予熱し、中
子の熱収縮が抑制され得る状態で、該中子を前記予備成
形体に係止させ、中子が係止された予備成形体を型内に
配置し、溶湯を型内に流し込んで該予備成形体に溶湯を
含浸させて鋳包むことにより、予備成形体に圧縮残留応
力を付与した状態で鋳包んで、高サイクル疲労による引
張応力を低減できる。また、中子を容易に保持できる。
According to the third aspect of the present invention, the preform is
A core having a larger coefficient of thermal expansion than the preformed body is preheated, and the core is locked to the preformed body in a state where thermal contraction of the core can be suppressed. The molded body is placed in a mold, the molten metal is poured into the mold, and the preformed body is impregnated with the molten metal and cast. Tensile stress can be reduced. Further, the core can be easily held.

【0016】請求項4の発明によれば、中子は、予備成
形体に設けられた収縮抑制部材に係止されることによ
り、予備成形体に圧縮残留応力を付与した状態で鋳包ん
で、高サイクル疲労による引張応力を低減できる。ま
た、中子を容易に保持できる。
According to the fourth aspect of the present invention, the core is engaged with the shrinkage suppressing member provided on the preformed body, so that the core is cast in a state where a compressive residual stress is applied to the preformed body. Tensile stress due to high cycle fatigue can be reduced. Further, the core can be easily held.

【0017】請求項5の発明によれば、予備成形体は、
自動車用エンジンのピストン頂部に形成される燃焼室の
リップ部に鋳包まれ、ピストンリング溝部には別の予備
成形体が鋳包まれることにより、リップ部に対して圧縮
残留応力を付与すると共に、ピストンリング溝部を強化
できる。
According to the invention of claim 5, the preform is
By being cast in the lip of the combustion chamber formed on the top of the piston of the automobile engine and another preform in the piston ring groove, compressive residual stress is applied to the lip, The piston ring groove can be strengthened.

【0018】請求項6の発明によれば、各予備成形体は
別体で予熱されることにより、予備成形体と中子とは別
体で予熱されることにより、各予備成形体に応じた最適
な予熱条件にて予熱できる。
According to the invention of claim 6, each preform is preheated separately, so that the preform and the core are preheated separately, so that each preform is adapted to each preform. Preheating can be performed under optimal preheating conditions.

【0019】[0019]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて添付図面を参照して詳細に説明する。 [鋳包み部材]図1は、本実施形態の予備成形体が鋳包
まれたディーゼルエンジン用ピストンの部分断面図であ
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. [Cast-In Member] FIG. 1 is a partial cross-sectional view of a piston for a diesel engine in which the preform of the present embodiment is cast-in.

【0020】図1に示すように、本実施形態の鋳包み部
材として例示されたアルミニウム合金製ピストン1(以
下、ピストン1と略称)は後述する気体加圧鋳造装置に
より製造され、ピストン本体2の外周部には、トップリ
ングを嵌装するトップリング溝3と、セカンダリリング
を嵌装するセカンダリリング溝4と、オイルリングを嵌
装するオイルリング溝5とが夫々形成されている。ま
た、冷却用オイル通路7が、トップリング溝3に近接し
て、ピストン本体2の径方向内側に形成されている。ま
た、ピストン1は直噴式ディーゼルエンジン用であり、
ピストン頂面部には環状に一様に所定形状の溝が形成さ
れた燃焼室30が形成されている。また、燃焼室30に
は、その開口端縁が軸心方向にわずかに突設された燃焼
室30への出入口を規定する環状のリップ部31が形成
されている。ピストン1には、直径方向に沿ってピスト
ン本体2を貫通するピストンピン挿入孔8が形成されて
いる。
As shown in FIG. 1, an aluminum alloy piston 1 (hereinafter abbreviated as piston 1) exemplified as a cast-in member of the present embodiment is manufactured by a gas pressure casting apparatus described later, A top ring groove 3 for fitting a top ring, a secondary ring groove 4 for fitting a secondary ring, and an oil ring groove 5 for fitting an oil ring are formed in the outer peripheral portion. Further, a cooling oil passage 7 is formed near the top ring groove 3 and radially inside the piston main body 2. The piston 1 is for a direct injection diesel engine,
A combustion chamber 30 in which a groove of a predetermined shape is formed annularly and uniformly is formed on the top surface of the piston. Further, the combustion chamber 30 is formed with an annular lip portion 31 whose opening edge slightly protrudes in the axial direction and defines an entrance to the combustion chamber 30. The piston 1 is formed with a piston pin insertion hole 8 that penetrates the piston body 2 along the diametric direction.

【0021】ピストン1のトップリング溝3は、後述の
ように鋳包み部6として円環状のリング溝用予備成形体
40と一体的に鋳包まれ、ピストン1のリップ部31も
後述のように鋳包み部32として円環状のリップ部用予
備成形体41と一体的に鋳包まれ、トップリング溝3と
リップ部31以外のピストン本体2はアルミニウム合金
によって鋳造される。
The top ring groove 3 of the piston 1 is integrally cast with the annular ring groove preform 40 as a cast-in portion 6 as described later, and the lip portion 31 of the piston 1 is also formed as described later. The piston body 2 other than the top ring groove 3 and the lip part 31 is cast with an aluminum alloy as a cast-in part 32 integrally with the annular lip part preform 41.

【0022】トップリング溝3の鋳包み部6は、例えば
多孔質のセラミック粒子/繊維成形体から構成された予
備成形体を型内に配置してアルミニウム合金溶湯を含浸
させて凝固させることにより形成される。
The cast-in portion 6 of the top ring groove 3 is formed, for example, by arranging a pre-formed body composed of porous ceramic particles / fibrous formed body in a mold, impregnating with an aluminum alloy melt, and solidifying. Is done.

【0023】リップ部31の鋳包み部32は、ステンレ
ス等からなる金属繊維材を含有する予備成形体を型内に
配置してアルミニウム合金溶湯を含浸させて凝固させる
ことにより形成される。
The cast-in portion 32 of the lip portion 31 is formed by placing a preform containing a metal fiber material made of stainless steel or the like in a mold, impregnating with an aluminum alloy melt, and solidifying.

【0024】尚、トップリング溝3の鋳包み部6を金属
繊維材を含有する予備成形体により複合化してもよい。
Incidentally, the cast-in portion 6 of the top ring groove 3 may be compounded with a preform containing a metal fiber material.

【0025】また、金属繊維材としてはステンレス以外
に、タングステン、モリブデン、炭素鋼等もあるが、ス
テンレス繊維材が最も強度が高くしかも安価なので実用
的である。 [気体加圧鋳造装置]上記ピストン1は、図2及び図3
に示す気体加圧鋳造装置により製造される。図2及び図
3は本実施形態の気体加圧鋳造装置の互いに直交する方
向の概略断面図である。
As the metal fiber material, besides stainless steel, there are tungsten, molybdenum, carbon steel and the like, but stainless steel fiber material is practical since it has the highest strength and is inexpensive. [Gas Pressure Casting Apparatus] The piston 1 is shown in FIGS.
It is manufactured by the gas pressure casting apparatus shown in FIG. 2 and 3 are schematic cross-sectional views of the gas pressure casting apparatus of the present embodiment in directions orthogonal to each other.

【0026】図2及び図3に示すように、本実施形態の
気体加圧鋳造装置10は、鋳型11として左右に分割さ
れる割型である外型12L、12Rと、下方に配置され
た中型13と、上方に配置された押湯部14aを有する
上型14とを備え、内部に製品部キャビティ15が形成
されている。この鋳型11内のトップリング溝3に対応
する部位にリング溝用予備成形体40、リップ部31に
対応する部位にリップ部用予備成形体41が夫々配置さ
れ、上型14に形成された押湯部14aには、エアによ
る加圧をこの押湯部14aから行なう場合のパイプ16
が取り付けられている。17はピストンピン挿入孔を形
成する鋳抜きピンである。
As shown in FIGS. 2 and 3, a gas pressure casting apparatus 10 of the present embodiment includes outer molds 12L and 12R which are split molds which are divided into right and left molds 11 and a middle mold arranged below. 13 and an upper die 14 having a feeder portion 14a disposed above, and a product part cavity 15 is formed therein. In the mold 11, a ring groove preform 40 is disposed at a location corresponding to the top ring groove 3, and a lip preform 41 is disposed at a location corresponding to the lip 31. The hot water portion 14a has a pipe 16 for applying air pressure from the hot water portion 14a.
Is attached. Reference numeral 17 denotes a cast pin for forming a piston pin insertion hole.

【0027】また、外型12L、12Rは外型用シリン
ダ18L、18Rによって、中型13は中型用シリンダ
19によって、上型14は上型用シリンダ20によって
それぞれ駆動可能とされる。
The outer dies 12L and 12R can be driven by outer cylinders 18L and 18R, the middle die 13 can be driven by a middle cylinder 19, and the upper die 14 can be driven by an upper cylinder 20.

【0028】パイプ16の途中には、押湯部14aを加
圧エア源と大気とに選択的に連通させるバルブ27が設
けられ、押湯部14aをバルブ27を通じて大気に開放
した状態で、湯口22からアルミニウム合金の溶湯を注
湯後、水冷銅塊28のような冷却機構を設けたカバー2
3を下げて湯口22を密閉すると同時に、バルブ27を
操作してパイプ16を加圧エア源に連通させ、パイプ1
6から、工場エアを注入して溶湯を加圧するようにすれ
ばよい。この構成では鋳包み部付近を効果的に加圧でき
る利点がある。
In the middle of the pipe 16, there is provided a valve 27 for selectively communicating the feeder section 14a with a pressurized air source and the atmosphere. A cover 2 provided with a cooling mechanism such as a water-cooled copper lump 28
3, the gate 22 is closed, and at the same time, the valve 16 is operated to connect the pipe 16 to the pressurized air source.
From 6, the factory air may be injected to pressurize the molten metal. With this configuration, there is an advantage that the vicinity of the cast-in portion can be effectively pressurized.

【0029】尚、25は湯口22から製品部キャビティ
15に通じる湯道、26はピストン内に冷却用オイル通
路を形成するために、後述する抑制手段により熱収縮が
抑制されようにリップ部用予備成形体41に保持された
塩中子である。
Reference numeral 25 designates a runner leading from the gate 22 to the product cavity 15, and reference numeral 26 designates a spare lip portion for suppressing heat shrinkage by suppressing means to be described later for forming a cooling oil passage in the piston. The salt core held by the molded body 41.

【0030】以上の構成において、湯口22からアルミ
ニウム合金(例えば、JIS規格のAC8A)の溶湯を
注湯後、カバー23を下げて湯口22を密閉すると同時
に、カバー23に設けられたパイプ16から10気圧以
下(例えば、0.5〜10kg/cm2)の圧力を有する工場
エアを注入して溶湯を約50秒〜1分間加圧する。この
エアによる加圧時には、エア抜き溝21内に溶湯の一部
が流れ込み、エア抜き溝21内で冷却凝固されて、エア
抜き溝21がシールされる。そして、エア抜き溝21内
で凝固した溶湯は、鋳型11の分割に伴ってバリとして
除去される。尚、上記エアによる加圧は、注湯後10〜
30秒以内に開始する必要があるが、この時間範囲は、
一般的には、溶湯凝固前の有効に圧力がかけられる時間
範囲に設定すればよい。 [鋳型内への配置]図4は、鋳型内のリング溝用予備成
形体、リップ部用予備成形体及び塩中子の配置を示す断
面図である。図5は、収縮抑制部材による圧縮残留応力
の付加状態を説明する図である。図6は、リップ部用予
備成形体と塩中子との熱収縮量を示す図である。
In the above configuration, after pouring a molten metal of an aluminum alloy (for example, JIS standard AC8A) from the sprue 22, the cover 23 is lowered to seal the sprue 22, and at the same time, the pipes 16 to 10 provided in the cover 23 are provided. Factory air having a pressure of less than atmospheric pressure (for example, 0.5 to 10 kg / cm2) is injected to pressurize the molten metal for about 50 seconds to 1 minute. At the time of pressurization by air, a part of the molten metal flows into the air vent groove 21 and is cooled and solidified in the air vent groove 21 to seal the air vent groove 21. Then, the molten metal solidified in the air vent groove 21 is removed as burrs as the mold 11 is divided. In addition, pressurization by the above air is 10 to 10 minutes after pouring.
It must start within 30 seconds, but this time range
Generally, the time may be set to a time range in which pressure can be effectively applied before solidification of the molten metal. [Arrangement in Mold] FIG. 4 is a sectional view showing the arrangement of the ring groove preform, the lip part preform, and the salt core in the mold. FIG. 5 is a diagram illustrating a state in which a compressive residual stress is applied by the shrinkage suppressing member. FIG. 6 is a diagram showing the amount of heat shrinkage between the lip portion preform and the salt core.

【0031】図4に示すように、塩中子26はリップ部
用予備成形体41に保持され、リング溝用予備成形体4
0とは別々に外型12L、12Rの上端部に配置され
る。
As shown in FIG. 4, the salt core 26 is held by the lip portion preform 41, and the ring groove preform 4 is formed.
0 is disposed separately from the upper ends of the outer dies 12L and 12R.

【0032】塩中子26とリップ部用予備成形体41と
の予熱後でキャビティ内に配置されるまでの間に、塩中
子26とリップ部用予備成形体41の熱収縮量の差によ
ってリップ部用予備成形体41に圧縮残留応力を付加す
る。このため、図4に示すように、塩中子26とリップ
部用予備成形体41とを別々に昇温させ、予熱温度に昇
温した後に塩中子26とリップ部用予備成形体41とを
耐熱性の接着剤で接着する。また、図5に示すように、
リップ部用予備成形体41に塩中子26の熱収縮を抑制
するための収縮抑制部材42を接合し、塩中子26とリ
ップ部用予備成形体41とを別々に昇温させた後、塩中
子26をリップ部用予備成形体41の収縮抑制部材42
に嵌め合い保持させる。
The difference between the heat shrinkage of the salt core 26 and the preformed body 41 for the lip between the salt core 26 and the preformed body 41 for the lip portion after the preheating of the salt core 26 and the preformed body 41 for the lip part is obtained. A compressive residual stress is applied to the lip preform 41. For this reason, as shown in FIG. 4, the temperature of the salt core 26 and the lip portion preform 41 is separately raised, and after the temperature is raised to the preheating temperature, the salt core 26 and the lip portion preform 41 are formed. With a heat-resistant adhesive. Also, as shown in FIG.
After the shrinkage suppressing member 42 for suppressing the thermal shrinkage of the salt core 26 is joined to the lip portion preform 41, and the salt core 26 and the lip portion preform 41 are separately heated, The shrinkage suppressing member 42 of the preformed body 41 for the lip portion is
To be held.

【0033】塩中子26とリップ部用予備成形体41と
は予熱炉から取り出され、鋳型内に配置される間に自然
冷却される。図6に示すように、リップ部用予備成形体
41の熱膨張係数(例えばステンレス繊維の場合)は、
17×10-6/℃、塩中子26の熱膨張係数は45×1
-6/℃で、塩中子の熱膨張率は、リップ部用予備成形
体41より熱収縮量が大きくなっている。
The salt core 26 and the lip preform 41 are taken out of the preheating furnace and are naturally cooled while being placed in the mold. As shown in FIG. 6, the thermal expansion coefficient (for example, in the case of stainless steel fiber) of the lip portion preform 41 is
17 × 10 −6 / ° C., thermal expansion coefficient of salt core 26 is 45 × 1
At 0 −6 / ° C., the thermal expansion coefficient of the salt core is larger than that of the lip preform 41.

【0034】これにより、リップ部用予備成形体41に
自然冷却時に塩中子26の熱収縮による圧縮残留応力を
付加した状態で鋳包むことにより、高サイクル疲労によ
るリップ部に加わる引張応力を低減できる。また、各予
備成形体に応じた最適な予熱条件にて予熱できる。
Thus, the lip portion preform 41 is cast in a state where the compressive residual stress due to the heat shrinkage of the salt core 26 is added during natural cooling, thereby reducing the tensile stress applied to the lip portion due to high cycle fatigue. it can. In addition, preheating can be performed under optimum preheating conditions according to each preform.

【0035】予熱温度は300〜600℃が望ましく、
300℃以下だと鋳包み性が悪化し、600℃を超える
とリップ部用予備成形体41の金属繊維の酸化が進行し
て強度が低下する。鋳型内へ配置する際の温度は、予熱
温度マイナス50℃〜予熱温度マイナス300℃が望ま
しい。予熱温度との差が50℃未満では十分な圧縮残留
応力が付与できず、300℃以上では鋳包み性が悪化し
てしまう。 [塩中子に対する接着剤の塗布]図7は、塩中子への接
着剤の塗布方法を説明する図である。
The preheating temperature is desirably 300 to 600 ° C.
If the temperature is lower than 300 ° C., the cast-in property deteriorates. The temperature at the time of disposing in the mold is preferably a preheating temperature minus 50 ° C to a preheating temperature minus 300 ° C. If the difference from the preheating temperature is less than 50 ° C., sufficient compressive residual stress cannot be applied, and if it is 300 ° C. or more, cast-in property deteriorates. [Application of Adhesive to Salt Core] FIG. 7 is a view for explaining a method of applying an adhesive to the salt core.

【0036】図7に示すように、塩中子とリップ部用予
備成形体とを接着する際、接着剤を塩中子の全面に塗布
することで、塩中子に微細なクラックが残存していて
も、溶湯の差し込みによるバリ7aの発生を防ぐことが
できる。 [リップ部用予備成形体の鋳包み]図8は、リップ部用
予備成形体の鋳包み形状1を示す図である。図9は、図
8のI−I断面図である。図10は、リップ部用予備成
形体の鋳包み形状2を示す図である。
As shown in FIG. 7, when the salt core is bonded to the lip portion preform, an adhesive is applied to the entire surface of the salt core, so that fine cracks remain in the salt core. However, it is possible to prevent the burr 7a from being generated due to the insertion of the molten metal. FIG. 8 is a view showing a cast-in shape 1 of the lip portion preform. FIG. 9 is a sectional view taken along line II of FIG. FIG. 10 is a view showing a cast-in shape 2 of the lip portion preform.

【0037】図8及び図9に示すように、リップ部用予
備成形体41は少なくともピストンピン方向に直交する
方向に配置され、その外縁部が上型14と外型12L、
12Rの型割り面に当接した状態でピストンピン側のリ
ップ部に鋳包まれる。このように配置することで、高サ
イクル疲労として爆発力が燃焼室を拡げるようにピスト
ンピンに直交する方向に作用する引張応力F1を低減で
きる。
As shown in FIGS. 8 and 9, the lip preform 41 is disposed at least in a direction perpendicular to the direction of the piston pin, and the outer edges thereof are the upper die 14 and the outer die 12L,
It is cast in the lip part on the piston pin side in a state of contacting the mold splitting surface of 12R. With this arrangement, the tensile stress F1 acting in a direction perpendicular to the piston pin can be reduced so that the explosive force expands the combustion chamber as high cycle fatigue.

【0038】また、リング溝用予備成形体40とリップ
部用予備成形体41とをキャビティ内で重ね合わせて配
置することにより冷却を抑制できる。
Further, cooling can be suppressed by arranging the ring groove preform 40 and the lip portion preform 41 so as to overlap each other in the cavity.

【0039】また、リップ部用予備成形体41の外縁が
型割り面14bに当接しているので、エア抜き溝21の
代わりに型割り面からのガス抜きが可能となる。
Also, since the outer edge of the lip portion preform 41 is in contact with the parting surface 14b, gas can be released from the parting surface instead of the air vent groove 21.

【0040】尚、図10に示すように、リップ部用予備
成形体41をピストンピン方向に直交する方向にリップ
部の開口縁に沿って配置してもよい。 [実施例1]図11(a)は、実施例1として塩中子と
リップ部用予備成形体の保持状態を示す図、(b)はA
方向から見た図である。
As shown in FIG. 10, the lip preform 41 may be arranged along the opening edge of the lip in a direction perpendicular to the piston pin direction. Example 1 FIG. 11A is a view showing a holding state of a salt core and a preform for a lip portion as Example 1, and FIG.
It is the figure seen from the direction.

【0041】実施例1では、リップ部用予備成形体にス
テンレス繊維成形体、リング溝用予備成形体にTiO2粒子
成形体を用いた。図11に示すように、ステンレス繊維
成形体は円環状で塩中子を位置決めするための凹溝41
aを全周に亘って形成し、ステンレス繊維成形体と塩中
子とを接合せずに予熱炉に入れて400℃に保持した。
400℃に保持した状態で、塩中子の上端面の3箇所2
6a〜26cにMgO-SiO2系粉末ペーストを塗布し、ステ
ンレス繊維成形体を接着させた。別の予熱炉で600℃
に予熱したTiO2粒子成形体を鋳型内に配置した後、ステ
ンレス繊維成形体及び塩中子を予熱炉から取り出して3
00℃まで冷却してから鋳型内に配置し、アルミニウム
合金AC8Aを鋳型に充填してディーゼルエンジン用ピ
ストンを鋳造した。
In Example 1, a stainless steel fiber compact was used as the lip preform and a TiO2 particle compact was used as the ring groove preform. As shown in FIG. 11, the stainless fiber molded body is annular and has a groove 41 for positioning the salt core.
a was formed over the entire circumference, and the stainless steel fiber molded body and the salt core were not joined to each other, but were placed in a preheating furnace and maintained at 400 ° C.
While maintaining the temperature at 400 ° C., three places 2 on the upper end face of the salt core
An MgO-SiO2 powder paste was applied to 6a to 26c, and a stainless fiber molded body was adhered. 600 ° C in another preheating furnace
After placing the preheated TiO2 particle compact in the mold, remove the stainless fiber compact and the salt core from the preheating furnace and remove
After cooling to 00 ° C., it was placed in a mold, and the aluminum alloy AC8A was filled in the mold to cast a piston for a diesel engine.

【0042】実施例1では、TiO2粒子成形体を破損させ
ることなく、製造コストを低減して生産性よく塩中子を
鋳型内に配置でき、リップ部に発生する引張応力を低減
することができた。尚、リップ部用予備成形体に炭素鋼
繊維成形体、リング溝用予備成形体にアルミナ短繊維成
形体を用いた場合も同様の結果が得られた。 [実施例2]実施例2では、リップ部用予備成形体にス
テンレス繊維成形体、リング溝用予備成形体にTiO2粒子
成形体を用いた。図11に示すように、ステンレス繊維
成形体は円環状で塩中子を位置決めするための凹溝41
aを全周に亘って形成し、ステンレス繊維成形体と塩中
子とを接合せずに予熱炉に入れて400℃に保持した。
400℃に保持した状態で、塩中子の全面にMgO-SiO2系
粉末ペーストを塗布し、ステンレス繊維成形体を接着さ
せた。別の予熱炉で600℃に予熱したTiO2粒子成形体
を鋳型内に配置した後、ステンレス繊維成形体及び塩中
子を予熱炉から取り出して300℃まで冷却してから鋳
型内に配置し、アルミニウム合金AC8Aを鋳型に充填
してディーゼルエンジン用ピストンを鋳造した。
In the first embodiment, the salt core can be disposed in the mold with good productivity and the productivity can be reduced without damaging the TiO2 particle molded body, and the tensile stress generated in the lip can be reduced. Was. Similar results were obtained when a carbon steel fiber molded body was used as the lip portion preform and an alumina short fiber molded body was used as the ring groove preform. [Example 2] In Example 2, a stainless fiber molded body was used as the lip preform and a TiO2 particle molded body was used as the ring groove preform. As shown in FIG. 11, the stainless fiber molded body is annular and has a groove 41 for positioning the salt core.
a was formed over the entire circumference, and the stainless steel fiber molded body and the salt core were not joined to each other, but were placed in a preheating furnace and maintained at 400 ° C.
With the temperature maintained at 400 ° C., an MgO—SiO 2 powder paste was applied to the entire surface of the salt core, and the stainless fiber molded body was adhered. After placing the TiO2 particle compact preheated to 600 ° C in another preheating furnace in the mold, the stainless steel fiber compact and the salt core were taken out of the preheating furnace, cooled to 300 ° C, and then placed in the mold, A piston for a diesel engine was cast by filling the mold with alloy AC8A.

【0043】実施例2では、TiO2粒子成形体を破損させ
ることなく、製造コストを低減して生産性よく塩中子を
鋳型内に配置でき、リップ部に発生する引張応力を低減
することができた。また、冷却用オイル通路内のバリの
発生を抑えることができた。 [実施例3]図12(a)は、実施例3として塩中子と
リップ部用予備成形体の保持状態を示す図、(b)はB
方向から見た図である。
In the second embodiment, the salt core can be arranged in the mold with good productivity and the productivity can be reduced without damaging the TiO2 particle molded body, and the tensile stress generated in the lip can be reduced. Was. In addition, generation of burrs in the cooling oil passage could be suppressed. Example 3 FIG. 12 (a) is a view showing a holding state of a salt core and a preform for a lip portion as Example 3, and FIG.
It is the figure seen from the direction.

【0044】実施例3では、リップ部用予備成形体にス
テンレス繊維成形体、リング溝用予備成形体にTiO2粒子
成形体を用いた。図12に示すように、ステンレス繊維
成形体は円環状で塩中子の熱収縮を抑制するための収縮
抑制部材42を設け、ステンレス繊維成形体と塩中子と
を接合せずに予熱炉に入れて400℃に保持した。40
0℃に保持した状態で、3個の収縮抑制部材42a〜4
2cを塩中子の内周面の3箇所に挿入して塩中子を嵌め
合い保持した。別の予熱炉で600℃に予熱したTiO2粒
子成形体を鋳型内に配置した後、ステンレス繊維成形体
及び塩中子を予熱炉から取り出して300℃まで冷却し
てから鋳型内に配置し、アルミニウム合金AC8Aを鋳
型に充填してディーゼルエンジン用ピストンを鋳造し
た。
In Example 3, a stainless steel fiber molded article was used as the lip preform and a TiO2 particle molded article was used as the ring groove preform. As shown in FIG. 12, the stainless fiber molded body is provided in an annular shape and provided with a shrinkage suppressing member 42 for suppressing thermal shrinkage of the salt core, and the stainless steel fiber molded body and the salt core are connected to a preheating furnace without being joined. And kept at 400 ° C. 40
While maintaining the temperature at 0 ° C., the three shrinkage suppressing members 42 a to 4
2c was inserted into three places on the inner peripheral surface of the salt core, and the salt core was fitted and held. After placing the TiO2 particle compact preheated to 600 ° C in another preheating furnace in the mold, the stainless steel fiber compact and the salt core were taken out of the preheating furnace, cooled to 300 ° C, and then placed in the mold, A piston for a diesel engine was cast by filling the mold with alloy AC8A.

【0045】上記実施例1、2により、TiO2粒子成形体
を破損させることなく、製造コストを低減して生産性よ
く塩中子を鋳型内に配置でき、リップ部に発生する引張
応力を低減することができた。尚、リップ部用予備成形
体に炭素鋼繊維成形体、リング溝用予備成形体にアルミ
ナ短繊維成形体を用いた場合も同様の結果が得られた。 [実施例4]図13(a)は、実施例4として塩中子と
リップ部用予備成形体の保持状態を示す図、(b)はC
方向から見た図である。
According to the first and second embodiments, the salt core can be arranged in the mold with good productivity and the productivity can be reduced without damaging the TiO2 particle molded body, and the tensile stress generated in the lip portion can be reduced. I was able to. Similar results were obtained when a carbon steel fiber molded body was used as the lip portion preform and an alumina short fiber molded body was used as the ring groove preform. Example 4 FIG. 13A is a view showing a holding state of a salt core and a preform for a lip portion as Example 4, and FIG.
It is the figure seen from the direction.

【0046】実施例4では、リップ部用予備成形体にス
テンレス繊維成形体、リング溝用予備成形体にTiO2粒子
成形体を用いた。図13に示すように、ステンレス繊維
成形体は短冊状で塩中子の熱収縮を抑制するための収縮
抑制部材42を設け、ステンレス繊維成形体と塩中子と
を接合せずに予熱炉に入れて400℃に保持した。40
0℃に保持した状態で、3個の収縮抑制部材42a〜4
2cを塩中子の内周面の3箇所に挿入して塩中子を嵌め
合い保持した。別の予熱炉で600℃に予熱したTiO2粒
子成形体を鋳型内に配置した後、ステンレス繊維成形体
及び塩中子を予熱炉から取り出して300℃まで冷却し
てから鋳型内に配置し、アルミニウム合金AC8Aを鋳
型に充填してディーゼルエンジン用ピストンを鋳造し
た。
In Example 4, a stainless fiber compact was used as the lip preform and a TiO2 particle compact was used as the ring groove preform. As shown in FIG. 13, the stainless steel fiber molded article is provided in a strip shape and provided with a shrinkage suppressing member 42 for suppressing the thermal shrinkage of the salt core, and the stainless steel fiber molded article and the salt core are not joined to the preheating furnace without joining. And kept at 400 ° C. 40
While maintaining the temperature at 0 ° C., the three shrinkage suppressing members 42 a to 4
2c was inserted into three places on the inner peripheral surface of the salt core, and the salt core was fitted and held. After placing the TiO2 particle compact preheated to 600 ° C in another preheating furnace in the mold, the stainless steel fiber compact and the salt core were taken out of the preheating furnace, cooled to 300 ° C, and then placed in the mold, A piston for a diesel engine was cast by filling the mold with alloy AC8A.

【0047】実施例4では、TiO2粒子成形体を破損させ
ることなく、製造コストを低減して生産性よく塩中子を
鋳型内に配置でき、リップ部に発生する引張応力を低減
することができた。尚、リップ部用予備成形体に炭素鋼
繊維成形体、リング溝用予備成形体にアルミナ短繊維成
形体を用いた場合も同様の結果が得られた。
In the fourth embodiment, the salt core can be disposed in the mold with good productivity and the production cost can be reduced without breaking the TiO2 particle molded body, and the tensile stress generated in the lip can be reduced. Was. Similar results were obtained when a carbon steel fiber molded body was used as the lip portion preform and an alumina short fiber molded body was used as the ring groove preform.

【0048】以上が本発明の実施の形態及び実施例の説
明であるが、本発明により製造されるアルミニウム合金
部材は、上述した実施の形態のような気体加圧鋳造法に
よるディーゼルエンジン用ピストンに限られず、他の鋳
造プロセスによるベアリングキャップ、コンロッド、シ
リンダヘッドの製造にも勿論適用できる。また、本発明
によれば、アルミニウム合金以外に、例えばマグネシウ
ム合金等の他の軽合金鋳物も製造可能である。
The above is a description of the embodiments and examples of the present invention. The aluminum alloy member manufactured according to the present invention is applied to a piston for a diesel engine by the gas pressure casting method as in the above-described embodiment. The present invention is not limited to this, and can of course be applied to the production of bearing caps, connecting rods, and cylinder heads by other casting processes. Further, according to the present invention, other light alloy castings such as a magnesium alloy can be manufactured in addition to the aluminum alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態の予備成形体が鋳包まれたディーゼ
ルエンジン用ピストンの部分断面図である。
FIG. 1 is a partial cross-sectional view of a piston for a diesel engine in which a preform of the present embodiment is cast-in.

【図2】本実施形態の気体加圧鋳造装置の互いに直交す
る方向の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a gas pressure casting apparatus of the present embodiment in a direction orthogonal to each other.

【図3】本実施形態の気体加圧鋳造装置の互いに直交す
る方向の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a gas pressure casting apparatus of the present embodiment in a direction orthogonal to each other.

【図4】鋳型内のリング溝用予備成形体、リップ部用予
備成形体及び塩中子の配置を示す断面図である。
FIG. 4 is a sectional view showing the arrangement of a ring groove preform, a lip portion preform, and a salt core in a mold.

【図5】収縮抑制部材による圧縮残留応力の付加状態を
説明する図である。
FIG. 5 is a diagram illustrating a state in which a compressive residual stress is applied by a shrinkage suppressing member.

【図6】リップ部用予備成形体と塩中子との熱収縮量を
示す図である。
FIG. 6 is a view showing the amount of heat shrinkage between a preform for a lip portion and a salt core.

【図7】塩中子への接着剤の塗布方法を説明する図であ
る。
FIG. 7 is a diagram illustrating a method of applying an adhesive to a salt core.

【図8】リップ部用予備成形体の鋳包み形状1を示す図
である。
FIG. 8 is a view showing a cast-in shape 1 of the lip portion preform.

【図9】図8のI−I断面図である。FIG. 9 is a sectional view taken along the line II of FIG. 8;

【図10】リップ部用予備成形体の鋳包み形状2を示す
図である。
FIG. 10 is a view showing a cast-in shape 2 of the lip portion preform.

【図11】(a)は、実施例1として塩中子とリップ部
用予備成形体の保持状態を示す図、(b)はA方向から
見た図である。
11A is a diagram showing a holding state of a salt core and a preform for a lip portion as Example 1, and FIG. 11B is a diagram viewed from a direction A.

【図12】(a)は、実施例3として塩中子とリップ部
用予備成形体の保持状態を示す図、(b)はB方向から
見た図である。
12A is a view showing a holding state of a salt core and a preform for a lip portion as Example 3, and FIG. 12B is a view seen from a direction B. FIG.

【図13】(a)は、実施例4として塩中子とリップ部
用予備成形体の保持状態を示す図、(b)はC方向から
見た図である。
13A is a diagram showing a holding state of a salt core and a preform for a lip portion as Example 4, and FIG. 13B is a diagram viewed from a direction C. FIG.

【図14】爆発力によりピストンリップ部に付加される
引張応力を説明する図である。
FIG. 14 is a diagram illustrating a tensile stress applied to a piston lip due to an explosive force.

【符号の説明】[Explanation of symbols]

1…アルミニウム合金製ピストン 2…ピストン本体 3…トップリング溝 6…鋳包み部 11…鋳型 12L、12R…外型 12b、14a…押湯部 14…上型 15…製品部キャビティ 16…パイプ 21、24…エア抜き溝 22…湯口 23…カバー 26…塩中子 40…リング溝用予備成形体 41…リップ部用予備成形体 42…収縮抑制部材 DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy piston 2 ... Piston main body 3 ... Top ring groove 6 ... Cast-in part 11 ... Mold 12L, 12R ... Outer mold 12b, 14a ... Feeder part 14 ... Upper mold 15 ... Product part cavity 16 ... Pipe 21, 24 ... air vent groove 22 ... gate 23 ... cover 26 ... salt core 40 ... preformed body for ring groove 41 ... preformed body for lip part 42 ... shrinkage suppressing member

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02F 5/00 F02F 5/00 N Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02F 5/00 F02F 5/00 N

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 予備成形体より熱膨張率の大きい中子が
予熱後に係止され、溶湯を型内に流し込んで溶湯を含浸
させて鋳包まれる予備成形体において、 前記中子に当接して該中子の熱収縮を抑制する収縮抑制
部材を配設したことを特徴とする予備成形体。
1. A preformed body having a larger coefficient of thermal expansion than a preformed body is locked after preheating, and a molten metal is poured into a mold to be impregnated with the molten metal and cast. A preform having a shrinkage suppressing member for suppressing heat shrinkage of the core.
【請求項2】 前記予備成形体と中子とは別体で予熱さ
れることを特徴とする請求項1に記載の予備成形体。
2. The preform according to claim 1, wherein the preform and the core are preheated separately.
【請求項3】 予備成形体と、該予備成形体より熱膨張
率の大きい中子とを予熱し、 前記中子の熱収縮が抑制され得る状態で、該中子を前記
予備成形体に係止させ、 前記中子が係止された予備成形体を型内に配置し、 溶湯を型内に流し込んで該予備成形体に溶湯を含浸させ
て鋳包むことを特徴とする鋳包み方法。
3. A preformed body and a core having a higher thermal expansion coefficient than the preformed body are preheated, and the core is engaged with the preformed body in a state where thermal contraction of the core can be suppressed. A method of casting in which the preform having the core locked thereon is placed in a mold, and a molten metal is poured into the mold to impregnate the preform with the molten metal and cast.
【請求項4】 前記中子は、前記予備成形体に設けられ
た収縮抑制部材に係止されることを特徴とする請求項3
に記載の鋳包み方法。
4. The core according to claim 3, wherein the core is locked to a shrinkage suppressing member provided on the preform.
3. The method of casting in according to 1.
【請求項5】 前記予備成形体は、自動車用エンジンの
ピストン頂部に形成される燃焼室のリップ部に鋳包ま
れ、ピストンリング溝部には別の予備成形体が鋳包まれ
ることを特徴とする請求項3又は4に記載の鋳包み方
法。
5. The preform is cast in a lip of a combustion chamber formed on a top of a piston of an automobile engine, and another preform is cast in a piston ring groove. The cast-in method according to claim 3 or 4.
【請求項6】 前記各予備成形体は別体で予熱されるこ
とを特徴とする請求項5に記載の鋳包み方法。
6. The method according to claim 5, wherein each of the preforms is preheated separately.
JP25173799A 1999-09-06 1999-09-06 Preform and method for inserting preform Abandoned JP2001071119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25173799A JP2001071119A (en) 1999-09-06 1999-09-06 Preform and method for inserting preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25173799A JP2001071119A (en) 1999-09-06 1999-09-06 Preform and method for inserting preform

Publications (1)

Publication Number Publication Date
JP2001071119A true JP2001071119A (en) 2001-03-21

Family

ID=17227198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25173799A Abandoned JP2001071119A (en) 1999-09-06 1999-09-06 Preform and method for inserting preform

Country Status (1)

Country Link
JP (1) JP2001071119A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105980A1 (en) * 2003-05-29 2004-12-09 Kolbenschmidt K.K. Apparatus and method of producing fiber-reinforced aluminum alloy piston
WO2013023866A1 (en) * 2011-08-16 2013-02-21 Federal-Mogul Nürnberg GmbH Method and device for casting a piston for an internal combustion engine
DE102012204480A1 (en) * 2012-03-21 2013-09-26 Mahle International Gmbh Process for the preparation of a cooled ring carrier
CN103624216A (en) * 2013-12-09 2014-03-12 中国兵器工业第五二研究所 Manufacturing method of salt core prefabricated member of internal cooling oil chamber of piston

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105980A1 (en) * 2003-05-29 2004-12-09 Kolbenschmidt K.K. Apparatus and method of producing fiber-reinforced aluminum alloy piston
WO2013023866A1 (en) * 2011-08-16 2013-02-21 Federal-Mogul Nürnberg GmbH Method and device for casting a piston for an internal combustion engine
DE102012204480A1 (en) * 2012-03-21 2013-09-26 Mahle International Gmbh Process for the preparation of a cooled ring carrier
CN103624216A (en) * 2013-12-09 2014-03-12 中国兵器工业第五二研究所 Manufacturing method of salt core prefabricated member of internal cooling oil chamber of piston

Similar Documents

Publication Publication Date Title
JP3212245B2 (en) Casting method, casting apparatus and casting
JP4280322B2 (en) Mold and method for producing hollow metal castings
JP2008128054A (en) Cylinder block and method of manufacturing cylinder block
JP2003326354A (en) Method for manufacturing valve composed of plurality of parts for internal combustion engine
US5355933A (en) Method of squeeze casting metal articles using melt-out metal core
JP2001071119A (en) Preform and method for inserting preform
JPS60166158A (en) Production of piston for internal-combustion engine
JP3126704B2 (en) Casting method for castings with composite materials cast
JP2001071118A (en) Inserting member and inserting method therefor
US6964292B2 (en) Process of fabricating castings provided with inserts, with improved component/inset mechanical cohesion, and an insert usable in the process
JP2000158119A (en) Preliminary formed element to be compounded, and compounded light metal member
JP2008221295A (en) Casting-in method for pipe
JPS60184460A (en) Method for embedding aluminum pipe by casting
US3825055A (en) Method of removing core from diecasting
JP3293420B2 (en) Engine cylinder block and method of manufacturing the same
US7870884B2 (en) Method for casting molded parts
JP3214657B2 (en) Piston for internal combustion engine and method of manufacturing the same
JP4310716B2 (en) Method for manufacturing composite light metal member
JPH10176597A (en) Manufacture of piston for internal combustion engine
JP3023031B2 (en) Method and apparatus for manufacturing cylinder for internal combustion engine
JPH0755366B2 (en) Casting method and apparatus
JP2004136323A (en) Method for producing light alloy composite member
JP3817819B2 (en) COMPOSITE PREFORMED BODY AND METHOD FOR PRODUCING COMPOSITE METAL COMPONENT COMPRISING THE SAME
JP2010059881A (en) Cylinder block manufacturing method
JPH02137662A (en) Production of fiber reinforced metallic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060310

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060310

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060310

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070706