JPH02136824A - Liquid crystal panel driving circuit - Google Patents

Liquid crystal panel driving circuit

Info

Publication number
JPH02136824A
JPH02136824A JP29151288A JP29151288A JPH02136824A JP H02136824 A JPH02136824 A JP H02136824A JP 29151288 A JP29151288 A JP 29151288A JP 29151288 A JP29151288 A JP 29151288A JP H02136824 A JPH02136824 A JP H02136824A
Authority
JP
Japan
Prior art keywords
liquid crystal
gate
voltage
crystal panel
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29151288A
Other languages
Japanese (ja)
Inventor
Masahide Uchida
雅秀 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29151288A priority Critical patent/JPH02136824A/en
Publication of JPH02136824A publication Critical patent/JPH02136824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To remove a DC component impressed upon a liquid crystal layer and to eliminate such troubles as after images, uneven displays, and other defective displays by changing either one or both of selective voltages and nonselective voltages to be applied across gate electrodes of thin-film transistors synchronously to the period subjected to AC for driving liquid crystal. CONSTITUTION:The positive voltage 121 and negative voltage 122 (corresponding to the selective and nonselective voltages of a gate) of a Y-driver IC driving system which has been fixed voltages are changed synchronously to a period signal (FR) 123 subjected to an AC for liquid crystal by means of a voltage control circuit 115. Namely, a gate positive field turning-on and gate positive level turning-off levels and gate negative field turning-on and gate negative field turning-off levels are respectively impressed upon the Y-driver driving system and liquid crystal panel gate lines 116 at the time of a positive and negative fields. Therefore, such troubles as after images, uneven displays, and other defective displays associated with a liquid crystal panel can be eliminated.

Description

【発明の詳細な説明】 [産業上のIll用分野1 本発明は薄III トランジスタ素子を用いた、いわゆ
るアクデイプマトリックス液晶パネルの駆動回路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field 1] The present invention relates to a drive circuit for a so-called ac-deep matrix liquid crystal panel using thin III transistor elements.

[従来の技術1 アクティブマトリックス方式の液晶パネルは、最初ボケ
ッl−T V用のデイスプレィとし7て商品イヒが図ら
れ、現在は各種計器、計1Ill1機器のデイスプレィ
、型番こプロジェクションTV、ビューフ戸インク等へ
の幅広い応用が実施、検討されている。
[Conventional technology 1] Active matrix type liquid crystal panels were first used as displays for blurry TVs, and are now used as displays for various instruments, displays for a total of 111 devices, model number 1 projection TVs, and Buffet inks. A wide range of applications are being implemented and considered.

第3図(a)はN型薄股トランジスタ素子を用いた液晶
パネルの等価回路図である。
FIG. 3(a) is an equivalent circuit diagram of a liquid crystal panel using N-type thin transistor elements.

図において、301はゲート1忙302はソース領域、
303はドレインGn域、304は透明画素電極、30
5は対向基扱電陽であり基(デミ位を与^る。30Gは
液晶層である。ソース線がら入力されIIIII−ラン
ジスタを介し、M記透明画累電榛304に印加された(
3号電圧と、iii記対向基板;極305の基41!電
位との電圧差により液晶層306のオンオフを制御卸し
、光の透過量を制御卸することにより、表示を実現する
In the figure, 301 is a gate 1 region, 302 is a source region,
303 is a drain Gn region, 304 is a transparent pixel electrode, 30
5 is an electric current handling the opposite group and gives a demi position. 30G is a liquid crystal layer. It is input from the source line and applied to the M transparent image accumulation electric field 304 via the III transistor (
No. 3 voltage and iii counter substrate; base 41 of pole 305! Display is realized by controlling the on/off state of the liquid crystal layer 306 and controlling the amount of light transmitted through the liquid crystal layer 306 based on the voltage difference between the potential and the potential.

第2図は、litに用いられでいる。ゲート印7111
電圧、及びソース印加N圧の経略変化を示すタイミンク
図である。(図は画面中央部の薄膜トランジスタの例で
ある。)液晶はその特性上、交流駆動する必要があり、
よってソース線には、対向電極電位に対し、上側のフィ
ールド(正フィールド)の電圧と下側のフィールド(負
フィールド)の電圧を交互に印加する。この切換りの周
期を液晶駆動交流化周期と呼ぶ。画素毎1引304には
対応する。1IInI+−ランジスタのゲート301の
電圧がオンレベル(選択レベル)である時のソース線信
号が印加され1次にゲートが選択レベルとなるまでの間
(ゲートが非選択レベルである間)、前記ソース領域3
02とドレイン領域303が高抵抗となることにより、
信号レベルを保持し、画像情報を表示する。
FIG. 2 is used for lit. Gate mark 7111
FIG. 2 is a timing diagram showing approximate changes in voltage and source applied N pressure over time. (The figure shows an example of a thin film transistor in the center of the screen.)Due to its characteristics, liquid crystals must be driven with alternating current.
Therefore, an upper field (positive field) voltage and a lower field (negative field) voltage are alternately applied to the source line with respect to the counter electrode potential. This switching period is called the liquid crystal drive alternating current period. This corresponds to the 1-pull-by-pixel 304. 1IInI+- When the voltage at the gate 301 of the transistor is on level (selection level), the source line signal is applied until the gate becomes the selection level (while the gate is at the non-selection level). Area 3
02 and the drain region 303 have high resistance,
Maintain signal level and display image information.

[発明が解決しようとする課題] 以下に従来技術の問題点を述べる。第3図(b)は薄膜
トランジスタのゲート301、ソース領域302間型位
差V。、と、ソース領域302とドレイン領域303間
に一定電圧(以後v03)を印加した時、同fil域間
を流れる電流量の関係を示すグラフノー例である。I 
osはVamOV−1゜Vの範囲で急激に上昇し、更に
高電圧側でも飽和せず徐々に増加する。又逆バイアス側
でも、その機構は明らかではないが、逆バイアスを高く
すると電流量It’sも急激に増加する。これを、実際
の駆動状態にあてはめて考えると、負フイールドゲート
オン状態でのV。が16V〜20Vであるのに対し、正
フイールドゲートオン状態でのV。SはlO〜14Vと
なる。すなわち第3図(b)より、正フィールドでのソ
ースドレイン間オン抵抗が約4MΩ(V、、=4V、I
 。、= I O−’A) テするのに対し、負フィー
ルドでは、約400にΩとなる。この差は、比較的小型
の(少雨素数の)液晶パネルの場合には問題とならない
が、ゲートのぶ択期間の短かい、大型の(高精細の)液
晶パネルの場合、薄膜トランジスタを介し、画素電極3
04に印加される電圧のソース領域302に加えられた
印加電圧(信号電圧)に対する割合が、負フィールドに
比べ正フィールドでは顕著に低くなってしまう0次に選
択期間に画素電極304に印加した電圧を保持する特性
について述べる。第2図より、負フィールドではゲート
オフ時V、、=O〜4V、正フィールドではVas” 
 6〜 IOVであるので、J膜トランジスタのオフ抵
抗は、負フィールドでは4TΩであるのに対し、正フィ
ールドでは最高40GΩとなってしまう。つまり対向電
極305の電位を基準電位として、正フイールド時には
負フイールド時に比べ、(8号電圧を画素毎極304に
印加しに<<、又印加した電圧をリークしやすいという
特性をもつ。結果、対向電極電位に対し、画素電極電位
は対称性を失い、液晶層306に直流成分が印加される
ことになる。この状態が顕著な場合、液晶パネルは残像
、表示ムラ、その他の表示不良をひき起こすことが報告
されており、この問題の解決が液晶パネルの重大な課題
の一つとなっている。
[Problems to be Solved by the Invention] The problems of the prior art will be described below. FIG. 3(b) shows the potential difference V between the gate 301 and source region 302 of the thin film transistor. , is an example graph showing the relationship between the amount of current flowing between the same fil regions when a constant voltage (hereinafter referred to as v03) is applied between the source region 302 and the drain region 303. I
os increases rapidly in the range of VamOV-1°V, and gradually increases without being saturated even on the higher voltage side. Also, on the reverse bias side, although the mechanism is not clear, when the reverse bias is increased, the current amount It's also increases rapidly. Applying this to the actual driving state, V in the negative field gate on state. is 16V to 20V, while V in the positive field gate-on state. S is 10 to 14V. In other words, from FIG. 3(b), the on-resistance between the source and drain in the positive field is approximately 4MΩ (V, , = 4V, I
. , = I O-'A) te, whereas in the negative field it becomes about 400 Ω. This difference is not a problem in the case of relatively small (low rain prime) liquid crystal panels, but in the case of large (high definition) liquid crystal panels with short gate selection periods, the pixel electrode 3
The voltage applied to the pixel electrode 304 during the 0th order selection period, in which the ratio of the voltage applied to the source region 302 to the voltage applied to the source region 302 (signal voltage) is significantly lower in the positive field than in the negative field. We will discuss the characteristics that maintain this. From Figure 2, in the negative field, V when the gate is off, = O ~ 4V, and in the positive field, Vas”
6 to IOV, the off-resistance of the J film transistor is 4TΩ in the negative field, but reaches a maximum of 40GΩ in the positive field. In other words, with the potential of the counter electrode 305 as a reference potential, during a positive field, compared to a negative field, the No. 8 voltage is applied to each pixel electrode 304, and the applied voltage is more likely to leak.As a result, The pixel electrode potential loses symmetry with respect to the counter electrode potential, and a DC component is applied to the liquid crystal layer 306. If this condition is significant, the liquid crystal panel may suffer from afterimages, display unevenness, and other display defects. It has been reported that this problem occurs, and solving this problem is one of the major challenges for liquid crystal panels.

そこで本発明の目的は、第3図(b)のごとくの特性を
有するalliトランジスタを用いながら、上記問題点
(残f象、表示ムラ、その他表示不良)を解決する液晶
パネルの駆動回路を提案することにある。
Therefore, the purpose of the present invention is to propose a driving circuit for a liquid crystal panel that solves the above-mentioned problems (residual image, display unevenness, and other display defects) while using an ALLI transistor having the characteristics shown in FIG. 3(b). It's about doing.

[課題を解決するための手段1 本発明の液晶パネルの駆動回路は、薄膜トランジスタを
マトリックス状に配置した薄膜基板と、該薄膜基板の各
画素毎に分割形成された駆動用電極により制御される液
晶層と、ガラス基板上に透明電極層を形成した対向基板
とを、夫々積層配置した液晶パネルにおいて、液晶駆動
交流化周期に同量して、前記薄膜トランジスタのゲート
電□□□に印加する、選択電圧及び非選択電圧のいづれ
か一方、もしくは両方を変化させることを特徴とする。
[Means for Solving the Problems 1] The liquid crystal panel drive circuit of the present invention includes a thin film substrate on which thin film transistors are arranged in a matrix, and a liquid crystal panel controlled by a driving electrode formed separately for each pixel of the thin film substrate. In a liquid crystal panel in which a layer and a counter substrate in which a transparent electrode layer is formed on a glass substrate are stacked, the gate voltage of the thin film transistor is applied in the same amount as the alternating current period for driving the liquid crystal. It is characterized by changing either one or both of the voltage and the non-selection voltage.

[実 施 例] 以下、実施例に基づき本発明の液晶パネルの駆動回路の
詳細な説明をする。
[Example] Hereinafter, a driving circuit for a liquid crystal panel according to the present invention will be described in detail based on an example.

第1図(a)は本発明の液晶パネルの駆動回路のブロッ
ク図の一例である。第1図(a)において111は薄膜
トランジスタ118のゲート駆動IC(以後’l’ −
Driver I Cと呼ぶ)である。YDriver
l Cは基本的に、各ゲート線116の選択間開、及び
タイミングを決定するシフトレジスタ+12、薄膜ト・
ランジスタのゲート301のオンAフを制御するアナロ
グスイッチ114.シフトレジスタ112の出力をアナ
ログスイッチl I 、4の駆動レベルまでも5あげる
レベルシフタ113(、゛よって構成される。薄膜トラ
ンジスタ118のゲー1−301は走査方向に対し、垂
直なゲート線l16に接続されゲート線116はY −
Driver I Cの出力端子に接続される。−・方
ソース領域302は走査方向に並行なソース線117に
図のごとく接続され、ソース線117はソース線駆動I
Cの出力端子に接続される6ソース線駆動ICは本発明
には直接間係がないため、図では削除しである6又、対
向′:4極120には図のごとく、一定の電圧が与太ら
れている。
FIG. 1(a) is an example of a block diagram of a driving circuit for a liquid crystal panel according to the present invention. In FIG. 1(a), 111 is a gate drive IC (hereinafter 'l' -
Driver IC). YDriver
lC basically consists of a shift register +12, a thin film transistor, and a thin film transistor that determine the selection and timing of each gate line 116.
An analog switch 114 that controls the on/off state of the gate 301 of the transistor. The output of the shift register 112 is increased by 5 to the drive level of the analog switch lI,4.The gate 1-301 of the thin film transistor 118 is connected to the gate line l16 perpendicular to the scanning direction. The gate line 116 is Y −
Connected to the output terminal of Driver IC. - The direction source region 302 is connected to the source line 117 parallel to the scanning direction as shown in the figure, and the source line 117 is connected to the source line driving I
The six source line drive ICs connected to the output terminals of C are not directly related to the present invention, so they are omitted from the diagram. It's given a lot of weight.

本発明の特徴は、従来固定電圧であったY−Drive
rI Cの駆動系の正電圧121、及び負電圧122(
ゲート301の退択電圧、非選択電圧に対応する6)を
、電圧制御回路+15により、液晶交流化周期信号(F
R)123に同期し、変化さゼることにある。すなわち
、■−フィールド時には、ゲート正フィールドオンレベ
ル及び、ゲート正フイールドオフレベルを、又[lフィ
ール1:時には、ゲーt−f’+フィールドオンレベル
及びゲ−t−t7tフィールドオフレベルをY −Dr
ivpr %動糸及び液晶パネルゲート線116に印加
4る。
The feature of the present invention is that the Y-Drive, which used to have a fixed voltage,
Positive voltage 121 and negative voltage 122 (
6) corresponding to the selection voltage and non-selection voltage of the gate 301 is controlled by the voltage control circuit +15 to a liquid crystal alternating current periodic signal (F
R) 123 and change. That is, in the case of - field, the gate positive field on level and the gate positive field off level are set to [l field 1: sometimes, the gate t-f'+field on level and the gate t7t field off level are set to Y- Dr.
ivpr% is applied to the moving thread and the liquid crystal panel gate line 116.

第1図(b)は本発明の液晶パネルの駆動回路による、
ゲート印加電圧107、ソース印加電[「105の経時
変化を示すタイミング図である。図において、101は
正フイールドゲートオンレベル、102は負フィールト
ゲ−[・オンレベル+03は正フイールドゲートオフし
・ベル、104は負フィールトゲ−1−オフし・ベル、
9,106はりl面電極電位を示す。
FIG. 1(b) shows a drive circuit for a liquid crystal panel according to the present invention.
This is a timing diagram showing changes over time in the gate applied voltage 107 and the source applied voltage [105. In the figure, 101 is the positive field gate on level, 102 is the negative field gate on level +03 is the positive field gate off level. , 104 is a negative field game 1-off bell,
9,106 shows the electrode potential on the l-plane.

図より明らかなとおり、本発明のiA品パt、ルの駆動
回路を用いれば、薄膜トランジスタ118のテカ作状態
を決定するゲート301とソース領域302の電位差V
13.が正フイールド負フィールドで同一となり1両フ
ィールドでのソー2.電叩印加特性、及び保持特性を同
一にすることができる9Jニー)てii1述した理由に
より、液晶パネルの間開【jl、残像、表示ムラ、その
他表示不良を解消することができる、 次に本発明の伯の実施例(構成例)をあげる。
As is clear from the figure, if the iA product pattern drive circuit of the present invention is used, the potential difference between the gate 301 and the source region 302, which determines the shine state of the thin film transistor 118, can be
13. are the same in the positive field and the negative field, so 2. is the same in the 1 field. Due to the reasons mentioned above, it is possible to make the electric tapping characteristics and retention characteristics the same, and it is possible to eliminate gaps in the liquid crystal panel, afterimages, display unevenness, and other display defects. An example (configuration example) of the present invention will be given below.

液晶パネルの構成」二特に画禦電−304の信号量圧印
υ口特性が問題となる場合、第1図(a)、(’ b 
)のゲー トオフレベルは正フィールド、負フィールド
ども同一とじ、ゲー)−オンレベルのみ正フィールドと
負フィールドで変化さゼる伯の実施例18 逆に使の実施1!’112として、特に信号電圧の(V
持持りが問題となる場合、ゲートオンレベルは正フィー
ルド、負フィールドとも同一とし、ゲート4フイレベル
のみ、正フィールドと負フィールドで変化させる方式。
In particular, when the signal amount stamping characteristic of the LCD panel 304 is a problem, the structure of the liquid crystal panel (Fig. 1(a), ('b)
)'s gate-off level is the same for the positive field and negative field, and only the gate-off level changes between the positive field and the negative field. '112, especially the signal voltage (V
If retention is a problem, the gate-on level is the same for both the positive and negative fields, and only the gate 4 fill level is changed between the positive and negative fields.

叉、回路自体の構成例として、電圧制御回路115を、
’l’ −DriverI C111内に取込み、4電
源のうちから、l電源を退択する構成をとる他の実施例
3゜ そし、で、Y−Driverl C111のロジンタ部
シフトレジスタ112への入力信号c l OCk乃び
・、t a r t  P 111 s eを液晶交流
化周ill信号(FR)123に同期してレベルシフト
し、Y−DriverI C全体をゲート正電圧121
及び負電圧122で駆動する構成とした他の実施例4が
考えられる。
Further, as an example of the configuration of the circuit itself, the voltage control circuit 115 is
Another embodiment 3 in which the l power source is taken into the 'l'-Driver I C111 and the l power source is selected from among the four power sources.And, the input signal c to the rosinter shift register 112 of the Y-Driver I C111 is The levels of l OCk and tar P 111 s are shifted in synchronization with the liquid crystal alternating current illumination signal (FR) 123, and the entire Y-Driver I C is set to the gate positive voltage 121.
Another example 4 can be considered, which is configured to drive with a negative voltage 122.

[発明の効果1 以上述べた様に1本発明は、薄IIQ +・ランジスタ
を用いた液晶パネルにおいて、1cし品駆動2流化周期
に同期して、前記薄膜トランジスタのゲート電極に印加
する、退択電圧(ゲートオンレベル)及び非選択電圧(
ゲートレベル)のいづれが一方もしくは両方を変化させ
ることにより、液晶層119に印加される直流成分を除
去し、結果、残像、表示ムラ、その他表示不良という、
液晶パネルの重大な問題点を解消できる。この効果は、
特(、二人り、高精細の液晶パネルに15いて絶大であ
る。
[Effects of the Invention 1] As described above, the present invention provides a liquid crystal panel using a thin IIQ + transistor, in which a voltage is applied to the gate electrode of the thin film transistor in synchronization with the 1C drive dual current cycle. Selective voltage (gate-on level) and non-selective voltage (
By changing one or both of the gate level), the DC component applied to the liquid crystal layer 119 is removed, resulting in afterimages, display unevenness, and other display defects.
This solves serious problems with LCD panels. This effect is
Especially, the two of us were on a 15-inch high-definition LCD panel, and it was amazing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の液晶パネルの駆動回路のブロッ
ク図。 第1図(b)は本発明の液晶パネルの駆動回路のタイミ
ング図。 第2図は従来の液晶パネルの駆動回路のタイミング図。 第3図(a)は液晶パネルの等価回路図。 第3図(b)は薄膜トランジスタの1ea−Vas特性
図。 ・ゲート駆動I C(Y −11riverl C)・
シフトレジスフ ・レベルシフタ ・アナログスイッチ 電圧制御回路 ・ゲート線 ソース線 ・薄膜トランジスタ ・液晶層 対向電極
FIG. 1(a) is a block diagram of a driving circuit for a liquid crystal panel according to the present invention. FIG. 1(b) is a timing diagram of a driving circuit for a liquid crystal panel according to the present invention. FIG. 2 is a timing diagram of a conventional liquid crystal panel drive circuit. FIG. 3(a) is an equivalent circuit diagram of a liquid crystal panel. FIG. 3(b) is a 1ea-Vas characteristic diagram of a thin film transistor.・Gate drive IC (Y-11riverl C)・
Shift resistor, level shifter, analog switch voltage control circuit, gate line source line, thin film transistor, liquid crystal layer counter electrode

Claims (1)

【特許請求の範囲】[Claims] 薄膜トランジスタをマトリックス状に配置した薄膜基板
と、該薄膜基板の各画素毎に分割形成された駆動用電極
により制御される液晶層と、ガラス基板上に透明電極層
を形成した対向基板とを、夫々積層配置した液晶パネル
において、液晶駆動交流化周期に同期して、前記薄膜ト
ランジスタのゲート電極に印加する、選択電圧及び非選
択電圧のいづれか一方、もしくは両方を変化させること
を特徴とする液晶パネルの駆動回路。
A thin film substrate having thin film transistors arranged in a matrix, a liquid crystal layer controlled by driving electrodes formed separately for each pixel of the thin film substrate, and a counter substrate having a transparent electrode layer formed on a glass substrate, respectively. Driving a liquid crystal panel in which one or both of a selection voltage and a non-selection voltage applied to the gate electrode of the thin film transistor is changed in synchronization with a liquid crystal drive alternating current cycle in a stacked liquid crystal panel. circuit.
JP29151288A 1988-11-18 1988-11-18 Liquid crystal panel driving circuit Pending JPH02136824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29151288A JPH02136824A (en) 1988-11-18 1988-11-18 Liquid crystal panel driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29151288A JPH02136824A (en) 1988-11-18 1988-11-18 Liquid crystal panel driving circuit

Publications (1)

Publication Number Publication Date
JPH02136824A true JPH02136824A (en) 1990-05-25

Family

ID=17769849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29151288A Pending JPH02136824A (en) 1988-11-18 1988-11-18 Liquid crystal panel driving circuit

Country Status (1)

Country Link
JP (1) JPH02136824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362689A (en) * 1991-06-10 1992-12-15 Sharp Corp Driving circuit for display device
JP2006084617A (en) * 2004-09-15 2006-03-30 Seiko Epson Corp Drive circuit for optoelectronic device, optoelectronic device, and electronic equipment
JP2009103972A (en) * 2007-10-24 2009-05-14 Seiko Epson Corp Electrophoretic display apparatus, electronic equipment, and driving method for electrophoretic display apparatus
JP2009222777A (en) * 2008-03-13 2009-10-01 Toppoly Optoelectronics Corp Display device, electronic device and system
JP2011043804A (en) * 2009-07-22 2011-03-03 Semiconductor Energy Lab Co Ltd Display device, method of driving the same, and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273235A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Driving method for display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273235A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Driving method for display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362689A (en) * 1991-06-10 1992-12-15 Sharp Corp Driving circuit for display device
JP2006084617A (en) * 2004-09-15 2006-03-30 Seiko Epson Corp Drive circuit for optoelectronic device, optoelectronic device, and electronic equipment
JP2009103972A (en) * 2007-10-24 2009-05-14 Seiko Epson Corp Electrophoretic display apparatus, electronic equipment, and driving method for electrophoretic display apparatus
JP2009222777A (en) * 2008-03-13 2009-10-01 Toppoly Optoelectronics Corp Display device, electronic device and system
US8264444B2 (en) 2008-03-13 2012-09-11 Chimei Innolux Corporation Low-flickering display device
JP2011043804A (en) * 2009-07-22 2011-03-03 Semiconductor Energy Lab Co Ltd Display device, method of driving the same, and electronic device
US9070338B2 (en) 2009-07-22 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device, driving method of the same and electronic device

Similar Documents

Publication Publication Date Title
KR100895303B1 (en) Liquid crystal display and driving method thereof
US8248336B2 (en) Liquid crystal display device and operating method thereof
US8605018B2 (en) Liquid crystal display apparatus and method of driving the same
KR100741894B1 (en) Method for driving In-Plane Switching mode Liquid Crystal Display Device
KR101018755B1 (en) Liquid crystal display
KR101725341B1 (en) Liquid crsytal display
JP2017181839A (en) Liquid crystal display device
JP2003295157A (en) Liquid crystal display device
JP4062766B2 (en) Electronic device and display device
JPH10104576A (en) Liquid crystal display device and its drive method
JPH0335218A (en) Method for driving liquid crystal display device
JPS6395420A (en) Driving method for active matrix type liquid crystal display device
JPH02136824A (en) Liquid crystal panel driving circuit
JP3900256B2 (en) Liquid crystal drive device and liquid crystal display device
KR100965587B1 (en) The liquid crystal display device and the method for driving the same
JPH0664435B2 (en) Liquid crystal display
JPS63175890A (en) Driving of active matrix type liquid crystal panel
JPH0458036B2 (en)
KR100640996B1 (en) In-Plane Switching mode Liquid Crystal Display Device
JPH06266318A (en) Driving method for active matrix type liquid crystal device
JPH06118910A (en) Method for driving liquid crystal display device
KR20030088647A (en) Liquid crystal display
KR20040038250A (en) In-Plane Switching mode Liquid Crystal Display Device
JPH10239710A (en) Liquid crystal display device
KR20030004872A (en) Liquid Crystal Display and Driving Method and Apparatus Thereof