【発明の詳細な説明】[Detailed description of the invention]
本発明は例えば重合性単量体として有用な新規
化合物に関するもので、本発明により提供される
化合物はニトロ基を含有する下式〔1〕によつて
示される、ビシクロオルソエステル化合物であ
る。
(式中Rは水素原子又は低級アルキル基を表わ
す。)
本発明の式〔1〕で示される化合物(以下化合
物〔1〕という)は、下式〔2〕で示されるトリ
アルキルオルソアシレート(以下化合物〔2〕と
いう)とトリス(ヒドロキシメチル)ニトロメタ
ンの脱アルコール反応によつて製造される。
R−C−(O−R1)3 〔2〕
(式中R1はアルキル基を表わし、Rは式〔1〕
におけるものと同じ水素原子または低級アルキル
基を表わす。)
この反応を示すと以下のごとくになる。
上式〔2〕においてRがメチル基、エチル基、
プロピル基またはブチル基のごとき低級アルキル
基である化合物〔2〕の製造法に関しては、S.
M.McElvain and J.Walter Nelson、Journal
of American Chemical Society、64、1825〜
1827(1942)などに記載されている。
式〔2〕におけるR1は炭素数1〜4程度の低
級アルキル基であることが好ましい。アルキル基
がより大きくなると化合物の沸点が高くなり、蒸
留による単離精製がより困難になるためである。
本発明の新規な化合物〔1〕はトリス(ヒドロキ
シメチル)ニトロメタンと化合物〔2〕とを、適
当な溶媒、例えばジ−n−オクチルフタレート、
ジ−n−ブチルフタレート等の溶媒中で、触媒例
えばp−トルエンスルホン酸等の存在下で脱アル
コールすることにより製造される。なお、反応の
進行程度は、留出アルコール量を計測することに
よつて知ることができる他、反応液を例えば、液
体クロマトグラフイで分析することによつても知
ることができる。
化合物〔2〕とトリス(ヒドロキシメチル)ニ
トロメタンの仕込み比は、等モルないしいずれか
をやや過剰とすれば良く、反応は窒素ガスのごと
き不活性ガス雰囲気中加熱下に、一般的には80〜
160℃程度において行なうのが適当である。化合
物〔1〕はその物性に応じて減圧蒸留法あるいは
再結晶法によつて、反応生成物から分離すること
ができる。
本発明に係る化合物〔1〕が属するビシクロオ
ルソエステル類の一部は、W.J.Bailey and K.
Saigo、American Chemical Society、Division
of Polymer Chemistry、Inc.21(1)、4〜5
(1980)等に記載されている。
本発明の化合物は上記文献記載の化合物同様開
環重合するが、単にそれだけではなくて、かかる
文献記載の化合物等に比し、重合による体積膨張
が大きいという予想外の知見を得た。
本発明に係る化合物の重合は次のような機構に
よつて進むものと考えられる。
(式中Xはニトロ基を表わす。)
本発明の化合物〔1〕のカチオン重合は一般に
よく知られている方法、すなわちカチオン重合開
始剤の存在下例えば紫外線、赤外線、熱またはマ
イクロ波などによつて行なう。
そのカチオン重合触媒としては、例えばBF3、
FeCl3、SnCl4、SbF3、TiCl4等のルイス酸;
BF3OEt2、BF3−アニリンコンプレツクス等のご
ときルイス酸とO、S、Nなどを有する化合物と
の配位化合物;〔(C2H5)3+
O
〕・BF- 4、CH3−C6H4
−N+≡N・BF- 4、〔(C2H5)3+
C
〕・BF- 4等のごとき
ルイス酸のオキソニウム塩、ジアゾニウム塩、カ
ルボニウム塩;I2、IBr等のハロゲン化合物、混
合ハロゲン化合物;または(n−Bu)4NClO4等
の過ハロゲン酸誘導体などがあげられる。
また紫外線照射の場合のカチオン重合触媒とし
て、例えば
φ−N+≡・PF- 6、φ−N≡N+・BF- 4などの芳香
族ジアゾニウム塩;φ−+
I
−φ・BF- 4等の芳香族
ハロニウム塩;
等の周期律表第a族元素の芳香族オニウム塩;
The present invention relates to a novel compound useful, for example, as a polymerizable monomer, and the compound provided by the present invention is a bicycloorthoester compound represented by the following formula [1] containing a nitro group. (In the formula, R represents a hydrogen atom or a lower alkyl group.) The compound represented by the formula [1] of the present invention (hereinafter referred to as compound [1]) is a trialkylorthoacylate represented by the following formula [2] ( (hereinafter referred to as compound [2]) and tris(hydroxymethyl)nitromethane. R-C-(O-R 1 ) 3 [2] (In the formula, R 1 represents an alkyl group, and R is the formula [1]
represents the same hydrogen atom or lower alkyl group as in . ) This reaction is shown below. In the above formula [2], R is a methyl group, an ethyl group,
Regarding the method for producing compound [2], which is a lower alkyl group such as a propyl group or a butyl group, S.
M. McElvain and J. Walter Nelson, Journal
of American Chemical Society, 64, 1825~
1827 (1942), etc. R 1 in formula [2] is preferably a lower alkyl group having about 1 to 4 carbon atoms. This is because the larger the alkyl group, the higher the boiling point of the compound, making isolation and purification by distillation more difficult.
The novel compound [1] of the present invention is prepared by combining tris(hydroxymethyl)nitromethane and compound [2] with a suitable solvent, such as di-n-octyl phthalate,
It is produced by dealcoholization in a solvent such as di-n-butyl phthalate in the presence of a catalyst such as p-toluenesulfonic acid. The degree of progress of the reaction can be determined not only by measuring the amount of alcohol distilled out, but also by analyzing the reaction solution using, for example, liquid chromatography. The charging ratio of compound [2] and tris(hydroxymethyl)nitromethane may be equimolar or a slight excess of one of them, and the reaction is generally carried out under heating in an inert gas atmosphere such as nitrogen gas at a mole of 80 to
It is appropriate to carry out the test at about 160°C. Compound [1] can be separated from the reaction product by vacuum distillation or recrystallization depending on its physical properties. Some of the bicycloorthoesters to which the compound [1] of the present invention belongs are described by WJ Bailey and K.
Saigo, American Chemical Society, Division
of Polymer Chemistry, Inc.21(1), 4-5
(1980) etc. Although the compound of the present invention undergoes ring-opening polymerization like the compound described in the above-mentioned literature, we have obtained the unexpected finding that it not only undergoes ring-opening polymerization, but also has a larger volumetric expansion due to polymerization than the compounds described in such literature. It is believed that the polymerization of the compound according to the present invention proceeds by the following mechanism. (In the formula, X represents a nitro group.) The cationic polymerization of the compound [1] of the present invention is carried out by a generally well-known method, that is, by ultraviolet rays, infrared rays, heat, microwaves, etc. in the presence of a cationic polymerization initiator. I'll go with it. Examples of the cationic polymerization catalyst include BF 3 ,
Lewis acids such as FeCl 3 , SnCl 4 , SbF 3 , TiCl 4 ;
Coordination compounds of Lewis acids such as BF 3 OEt 2 , BF 3 -aniline complexes, etc. and compounds containing O, S, N, etc.; [(C 2 H 5 ) 3+ O]・BF - 4 , CH 3 −C 6 H 4
-N + ≡N・BF - 4 , [(C 2 H 5 ) 3+ C]・BF - 4 , etc. oxonium salts, diazonium salts, carbonium salts of Lewis acids; halogen compounds such as I 2 , IBr, mixtures Examples include halogen compounds; or perhalogen acid derivatives such as (n-Bu) 4 NClO 4 . In addition, as a cationic polymerization catalyst in the case of ultraviolet irradiation, aromatic diazonium salts such as φ-N + ≡・PF - 6 and φ-N≡N +・BF - 4 ; φ− + I −φ・BF - 4 , etc. aromatic halonium salt; Aromatic onium salts of Group A elements of the periodic table, such as;
【式】等の周期律表第
a族元素の芳香族オニウム塩;Periodic table number of [formula] etc.
Aromatic onium salt of group a element;
【式】等の周期律表第
a−a族元素のジカルボニル錯化合物等が使
用されうる。
触媒の使用量は一般に重合しようとする単量体
に対し、0.001〜10wt%好ましくは0.1から5wt%
の範囲が好適である。重合温度に関する制限は特
にないが、通常常温〜200℃で行なわれる。
重合時に溶媒を使用する場合は、生長カチオン
と反応してその活性を低下させない化合物を選ぶ
ことが望ましい。使用に適した溶媒としては、ヘ
キサン、オクタン等の脂肪族炭化水素;トルエ
ン、キシレン等の芳香族炭化水素;塩化メチレ
ン、1,1−ジクロルエタン等のハロゲン化炭化
水素その他がある。
化合物〔1〕の重合に際しては、前記反応式に
示されるごとくビシクロオルソエステル環の開環
がおこり、エーテル、エステル結合が生成し重合
物を与える。
従来のカチオン重合性モノマーは下表−1に示
すように、重合時に非常に大きな体積収縮を伴
う。Dicarbonyl complex compounds of elements of groups a-a of the periodic table, such as the following formula, may be used. The amount of catalyst used is generally 0.001 to 10 wt%, preferably 0.1 to 5 wt%, based on the monomer to be polymerized.
A range of is suitable. Although there are no particular restrictions regarding the polymerization temperature, it is usually carried out at room temperature to 200°C. When using a solvent during polymerization, it is desirable to choose a compound that does not react with the growing cation and reduce its activity. Suitable solvents for use include aliphatic hydrocarbons such as hexane and octane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as methylene chloride, 1,1-dichloroethane, and others. During the polymerization of compound [1], the bicycloorthoester ring opens as shown in the above reaction formula, and ether and ester bonds are formed to give a polymer. As shown in Table 1 below, conventional cationic polymerizable monomers undergo extremely large volumetric contraction during polymerization.
【表】
このように重合時の体積収縮が大きいと、例え
ば成形材料として使用した場合に寸法精度がでな
いとか、注型材料として利用した場合にはうめこ
み物によるひずみがかかるとか、型との接着力の
低下や隙間が生じるなどの問題がある。また、塗
料として使用した場合、内部ひずみによる塗板と
の密着性の低下やそりがおこるとか、接着剤とし
て使用した場合、内部ひずみによる接着力の低下
やそり、変形などの使用上の問題を生ずる。これ
に対して、本発明に係る化合物例えば化合物
〔1〕をカチオン重合させた時の体積変化を求め
ると、1−メチル−4−ニトロ−2,6,7−ト
リオキサビシクロ〔2,2,2〕オクタンは体積
膨張率約4.5%であり、また1−エチル−4−ニ
トロ−2,6,7−トリオキサビシクロ〔2,
2,2〕オクタンは体積膨張率約7.4%であつて、
おどろくべきことに体積膨張が認められた。化合
物〔1〕及び化合物〔2〕に最も近い下式の公知
化合物は、カチオン重合に際して体積膨張を示さ
ないのであつて、これと対比すると、化合物
〔1〕が上記のように重合時に体積膨張する事実
は、誠に予想外である。
なお体積収縮率(%)は〔1−(化合物の比
重/化合物から得た重合体の比重)〕×100で、ま
た体積膨張率(%)は〔(化合物の比重/化合物
から得た重合体の比重)−1〕×100で示される。
上述のように本発明の化合物〔1〕は容易に製
造することができ、しかも重合により、体積膨張
するという特長をもつている。従つて本発明の化
合物〔1〕は、成形材料、複合材料、接着剤、注
型材料、塗料などに使用して極めて有用な化合物
である。
以下に実施例および参考例を示して、本発明を
さらに詳細かつ具体的に説明する。
実施例 1
冷却器を付けた水分定量受器、撹拌器および窒
素吹込み管付き3つ口フラスコにトリス(ヒドロ
キシメチル)ニトロメタン45.3g(0.3モル)及
びトリエチルオルソフオーメート48.8g(0.33モ
ル)を仕込み、窒素気流中で90〜100℃で2時間
反応させ、次にジ−n−オクチルフタレート600
g及びP−トルエンスルフオン酸0.3gを加え、
150℃でさらに5時間反応させてエチルアルコー
ルを主成分とする留出物約16.5gを得た。
この反応液にトリエチルアミン0.6mlを加え触
媒を中和した。次に結晶の析出を防ぐためにリボ
ンヒーターで蒸留管を加熱しながら減圧蒸留し
て、淡黄色固体を得た。この固体についてアセト
ン−n−ヘキサン系による再結晶精製を行ない、
白色結晶状の4−ニトロ−2,6,7−トリオキ
サビシクロ〔2,2,2〕オクタン9.6g(収率
18%)を得た。
その物性値は下記の通りである。
Γ融点;132℃
Γ赤外吸収スペクトル(以下IRと略記する。)
1543cm-1、1365cm-1(−NO2)
1150〜1160cm-1、1028cm-1(C−O−C)
Γ核磁気共鳴スペクトル(以下NMRと略記す
る)
(CDCl3中)………(図1参照)
δ(ppm);5.60(1H、s、C−H)
4.37(6H、s、C−CH2−O)
実施例 2
実施例1と同様な装置に、トリス(ヒドロキシ
メチル)ニトロメタン90.6g(0.6モル)、トリエ
チルオルソアセテート107.0g(0.66モル)、ジ−
n−オクチルフタレート400g及び触媒としてp
−トルエンスルフオン酸0.3gを仕込み、撹拌下
窒素ガスを通しながら徐々に昇温し140℃にした。
この温度で4時間反応を継続し、エタノールを主
成分とする留出物約71gを得た。
この反応液にトリエチルアミン0.6mlを加えて
触媒を中和した。次に結晶の析出を防ぐためにリ
ボンヒーターで蒸留管を加熱しながら減圧蒸留し
て、淡黄色固体62.7gを得た。この固体について
アセトン−n−ヘキサン系による再結晶精製を行
ない、白色結晶状の1−メチル−4−ニトロ−
2,6,7−トリオキサビシクロ〔2,2,2〕
オクタン41.7g(収率40%)を得た。なお留出温
度は127℃/1mmHgであつた。
その物性値は下記の通りである。
Γ沸点;127℃/1mmHg
Γ融点;128℃
Γ比重;1.427/25℃
ΓIR;1560cm-1(−NO2)
1123cm-1、1027cm-1(C−O−C)
ΓNMR(CDCl3中)………(図2参照)
δ(ppm);4.38(6H、s、CH2−O)
1.50(3H、s、−CH3)
なお、上記における比重の測定は、空気比較式
比重計930形〔ベツクマンジヤパン(株)製〕を用い
て行なつた〔以下の各例も同様である)。
実施例 3
実施例1と同様な装置にトリス(ヒドロキシメ
チル)ニトロメタン90.6g(0.6モル)、トリエチ
ルオルソプロピオネート116.2g(0.66モル)、ジ
−n−オクチルフタレート240g及びp−トルエ
ンスルフオン酸0.6gを仕込み、撹拌下窒素ガス
を通しながら徐々に昇温し140℃にした。この温
度で4時間反応を継続し、エタノールを主成分と
する留出物約65gを得た。
この反応液にトリエチルアミン1.2mlを加え触
媒を中和した。次に結晶の析出を防ぐためにリボ
ンヒーターで蒸留管を加熱しながら減圧蒸留し
て、淡黄色固体約107gを得た。この固体をn−
ヘキサンによる再結晶精製を行ない、白色結晶状
の1−エチル−4−ニトロ−2,6,7−トリオ
キサビシクロ〔2,2,2〕オクタン41.0g(収
率36%)を得た。
なお留出温度は110℃/1.5mmHgであつた。
この化合物の物性値は以下のようである。
Γ融点;78℃
Γ比重;1.440/25℃
ΓIR………(図3参照)
1558cm-1(−NO2)
1120cm-1、1027cm-1(C−O−C)
ΓNMR(CDCl3中)………(図4参照)
δ(ppm);4.29(6H、s、C−CH2−O)
1.72(2H、qC−CH2)
0.93(3H、t、−CH3)
参考例 1
実施例2の化合物〔1〕(1−メチル−4−ニ
トロ−2,6,7−トリオキサビシクロ〔2,
2,2〕オクタン)に、重合触媒としてBF3・モ
ノエチルアミン錯体2モル%を添加し、150℃で
1時間ついで180℃で2時間重合させた。その結
果、かつ色で半固体状の重合物が得られた。
この重合物の分子量は約1000であつた。また重
合物の比重は1.366(25℃)であり、この値から算
出された重合による体積膨張率は約4.5%であつ
た。この重合物のIR分析より1138cm-1のピーク
が消失し、3400cm-1、1750cm-1のピークが生成し
た。
参考例 2
実施例3の化合物〔1〕(1−エチル−4−ニ
トロ−2,6,7−トリオキサビシクロ〔2,
2,2〕オクタン)に重合触媒として、BF3モノ
エチルアミン錯体2モル%を添加し、150℃で1
時間ついで180℃で2時間重合させた。その結果、
かつ色の粘調な重合物が得られた。
この重合物の分子量は約2000であつた。またそ
の比重は1.341(25℃)であり、重合による体積膨
張率は約7.4%であつた。[Table] If the volumetric shrinkage during polymerization is large, for example, when used as a molding material, dimensional accuracy may be poor, when used as a casting material, distortion may occur due to filler material, or there may be problems with the mold. There are problems such as a decrease in adhesive strength and the formation of gaps. In addition, when used as a paint, internal strain may cause a decrease in adhesion to the painted plate and warping, and when used as an adhesive, internal strain may cause problems such as a decrease in adhesive strength, warping, and deformation. . On the other hand, when determining the volume change when a compound according to the present invention, such as compound [1], is cationically polymerized, it is found that 1-methyl-4-nitro-2,6,7-trioxabicyclo[2,2, 2] Octane has a volumetric expansion rate of about 4.5%, and 1-ethyl-4-nitro-2,6,7-trioxabicyclo[2,
2,2] Octane has a volumetric expansion rate of about 7.4%,
Surprisingly, volumetric expansion was observed. The known compounds of the formula below, which are closest to compound [1] and compound [2], do not exhibit volumetric expansion during cationic polymerization; in contrast, compound [1] exhibits volumetric expansion during polymerization as described above. The truth is truly unexpected. The volumetric shrinkage rate (%) is [1 - (specific gravity of the compound/specific gravity of the polymer obtained from the compound)] x 100, and the volumetric expansion rate (%) is [(specific gravity of the compound/specific gravity of the polymer obtained from the compound)] specific gravity)-1]×100. As mentioned above, the compound [1] of the present invention can be easily produced and has the advantage of expanding in volume upon polymerization. Therefore, the compound [1] of the present invention is an extremely useful compound for use in molding materials, composite materials, adhesives, casting materials, paints, etc. EXAMPLES The present invention will be explained in more detail and concretely by showing Examples and Reference Examples below. Example 1 45.3 g (0.3 mol) of tris(hydroxymethyl)nitromethane and 48.8 g (0.33 mol) of triethyl orthoformate were placed in a three-necked flask equipped with a water content receiver, a stirrer, and a nitrogen blowing tube equipped with a condenser. Charge and react at 90 to 100°C for 2 hours in a nitrogen stream, then di-n-octyl phthalate 600
g and 0.3 g of P-toluenesulfonic acid,
The reaction was further carried out at 150° C. for 5 hours to obtain about 16.5 g of distillate whose main component was ethyl alcohol. 0.6 ml of triethylamine was added to this reaction solution to neutralize the catalyst. Next, distillation was carried out under reduced pressure while heating the distillation tube with a ribbon heater to prevent precipitation of crystals, yielding a pale yellow solid. This solid was purified by recrystallization using an acetone-n-hexane system,
9.6 g of white crystalline 4-nitro-2,6,7-trioxabicyclo[2,2,2]octane (yield
18%). Its physical property values are as follows. Γ Melting point: 132℃ Γ Infrared absorption spectrum (hereinafter abbreviated as IR) 1543 cm -1 , 1365 cm -1 (-NO 2 ) 1150-1160 cm -1 , 1028 cm -1 (C-O-C) Γ nuclear magnetic resonance Spectrum (hereinafter abbreviated as NMR) (in CDCl 3 ) (see Figure 1) δ (ppm); 5.60 (1H, s, C-H) 4.37 (6H, s, C-CH 2 -O) Implementation Example 2 In an apparatus similar to Example 1, 90.6 g (0.6 mol) of tris(hydroxymethyl)nitromethane, 107.0 g (0.66 mol) of triethyl orthoacetate, and di-
400 g of n-octyl phthalate and p as catalyst
- 0.3 g of toluenesulfonic acid was charged, and the temperature was gradually raised to 140° C. while stirring and passing nitrogen gas.
The reaction was continued at this temperature for 4 hours, and about 71 g of a distillate containing ethanol as a main component was obtained. 0.6 ml of triethylamine was added to this reaction solution to neutralize the catalyst. Next, distillation was carried out under reduced pressure while heating the distillation tube with a ribbon heater to prevent precipitation of crystals, yielding 62.7 g of a pale yellow solid. This solid was purified by recrystallization using an acetone-n-hexane system, and white crystalline 1-methyl-4-nitro-
2,6,7-trioxabicyclo[2,2,2]
41.7 g of octane (40% yield) was obtained. The distillation temperature was 127°C/1 mmHg. Its physical property values are as follows. Γ Boiling point: 127℃/1mmHg Γ Melting point: 128℃ Γ Specific gravity: 1.427/25℃ ΓIR: 1560cm -1 (-NO 2 ) 1123cm -1 , 1027cm -1 (C-O-C) ΓNMR (in CDCl 3 )... ...(See Figure 2) δ (ppm); 4.38 (6H, s, CH 2 -O) 1.50 (3H, s, -CH 3 ) In addition, the measurement of specific gravity in the above was carried out using an air comparison type hydrometer 930 type [ (manufactured by Beckman Japan Co., Ltd.) [the same applies to each of the following examples]. Example 3 In an apparatus similar to Example 1, 90.6 g (0.6 mol) of tris(hydroxymethyl)nitromethane, 116.2 g (0.66 mol) of triethyl orthopropionate, 240 g of di-n-octyl phthalate, and p-toluenesulfonic acid were added. 0.6 g was charged, and the temperature was gradually raised to 140° C. while stirring and passing nitrogen gas. The reaction was continued at this temperature for 4 hours to obtain about 65 g of a distillate whose main component was ethanol. 1.2 ml of triethylamine was added to this reaction solution to neutralize the catalyst. Next, vacuum distillation was carried out while heating the distillation tube with a ribbon heater to prevent precipitation of crystals, yielding about 107 g of a pale yellow solid. This solid is n-
Recrystallization purification with hexane was performed to obtain 41.0 g (yield 36%) of white crystalline 1-ethyl-4-nitro-2,6,7-trioxabicyclo[2,2,2]octane. The distillation temperature was 110°C/1.5mmHg. The physical properties of this compound are as follows. Γ melting point: 78℃ Γ specific gravity: 1.440/25℃ ΓIR...... (see Figure 3) 1558cm -1 (-NO 2 ) 1120cm -1 , 1027cm -1 (C-O-C) ΓNMR (in CDCl 3 )... ...(See Figure 4) δ (ppm); 4.29 (6H, s, C-CH 2 -O) 1.72 (2H, qC-CH 2 ) 0.93 (3H, t, -CH 3 ) Reference example 1 Example 2 Compound [1] (1-methyl-4-nitro-2,6,7-trioxabicyclo[2,
2,2]octane) was added with 2 mol % of BF 3 /monoethylamine complex as a polymerization catalyst, and polymerized at 150°C for 1 hour and then at 180°C for 2 hours. As a result, a colored and semi-solid polymer was obtained. The molecular weight of this polymer was about 1000. Further, the specific gravity of the polymer was 1.366 (25°C), and the volumetric expansion rate due to polymerization calculated from this value was about 4.5%. According to IR analysis of this polymer, the peak at 1138 cm -1 disappeared, and peaks at 3400 cm -1 and 1750 cm -1 were generated. Reference Example 2 Compound [1] of Example 3 (1-ethyl-4-nitro-2,6,7-trioxabicyclo[2,
2,2]octane) was added with 2 mol% of BF 3 monoethylamine complex as a polymerization catalyst, and the mixture was heated at 150°C to
After that, polymerization was carried out at 180°C for 2 hours. the result,
A polymer with a viscous color was obtained. The molecular weight of this polymer was approximately 2,000. Further, its specific gravity was 1.341 (25°C), and the volumetric expansion rate due to polymerization was approximately 7.4%.
【図面の簡単な説明】[Brief explanation of drawings]
図1は実施例1で得た化合物のNMR図であ
り、図2は実施例2で得た化合物のNMR図であ
り、図3は実施例3で得た化合物のIR図であり、
また図4は同化合物のNMR図であり、図5は実
施例5で得た化合物のIR図であり、また図6は
同化合物のNMR図であり、さらに図7は実施例
6で得た化合物のIR図である。
FIG. 1 is an NMR diagram of the compound obtained in Example 1, FIG. 2 is an NMR diagram of the compound obtained in Example 2, and FIG. 3 is an IR diagram of the compound obtained in Example 3.
In addition, Figure 4 is an NMR diagram of the same compound, Figure 5 is an IR diagram of the compound obtained in Example 5, Figure 6 is an NMR diagram of the same compound, and Figure 7 is an NMR diagram of the compound obtained in Example 6. FIG. 2 is an IR diagram of a compound.