JP4776303B2 - Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer - Google Patents

Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer Download PDF

Info

Publication number
JP4776303B2
JP4776303B2 JP2005238676A JP2005238676A JP4776303B2 JP 4776303 B2 JP4776303 B2 JP 4776303B2 JP 2005238676 A JP2005238676 A JP 2005238676A JP 2005238676 A JP2005238676 A JP 2005238676A JP 4776303 B2 JP4776303 B2 JP 4776303B2
Authority
JP
Japan
Prior art keywords
fluorine
chemical formula
containing compound
following chemical
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005238676A
Other languages
Japanese (ja)
Other versions
JP2006143702A (en
Inventor
善之 岡本
康博 小池
ヤン ユー
リウ ウェイ−ホン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of JP2006143702A publication Critical patent/JP2006143702A/en
Application granted granted Critical
Publication of JP4776303B2 publication Critical patent/JP4776303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、新規な含フッ素化合物の製造方法、当該含フッ素化合物より得られる含フッ素ポリマー、及び含フッ素ポリマーを用いた光学材料若しくは電気材料に関する。   The present invention relates to a novel method for producing a fluorine-containing compound, a fluorine-containing polymer obtained from the fluorine-containing compound, and an optical material or an electric material using the fluorine-containing polymer.

含フッ素ポリマーは、プラスティック光ファイバーや露光部材などの光学部材として、あるいは表面改質剤等として使用され、幅広い分野で利用される有用な物質である。しかし、含フッ素ポリマーの合成工程は複雑であり、かつコストがかかる。
含フッ素ポリマーは、重合性不飽和基を有する含フッ素化合物を重合することにより得られる。当該含フッ素化合物の一つとして、1,3−ジオキソラン誘導体等が提示されている(例えば、特許文献1〜2、及び非特許文献1〜2参照。)。
A fluorine-containing polymer is a useful substance that is used as an optical member such as a plastic optical fiber or an exposure member, or as a surface modifier, and is used in a wide range of fields. However, the process for synthesizing the fluoropolymer is complicated and costly.
The fluorine-containing polymer can be obtained by polymerizing a fluorine-containing compound having a polymerizable unsaturated group. As one of the fluorine-containing compounds, 1,3-dioxolane derivatives and the like have been proposed (see, for example, Patent Documents 1 and 2 and Non-Patent Documents 1 and 2).

しかし、従来から知られている1,3−ジオキソラン誘導体は、下記化学式(A)で表される化合物(例えば、特許文献3参照。)や化学式(B)で表される化合物(例えば、特許文献4参照。)に限定され、ジオキソランの5員環上の特定位置に、特定の置換基しか配することができなかった。   However, conventionally known 1,3-dioxolane derivatives include compounds represented by the following chemical formula (A) (for example, see Patent Document 3) and compounds represented by the chemical formula (B) (for example, Patent Document). 4), and only specific substituents could be arranged at specific positions on the 5-membered ring of dioxolane.

式(B)中、Rf 1'及びRf 2'は、各々独立に、炭素数1〜7のポリフルオロアルキル基である。 In formula (B), R f 1 ′ and R f 2 ′ are each independently a C 1-7 polyfluoroalkyl group.

これらの構造的な制限は、合成方法に起因するものである。例えば上記化学式(A)を合成する従来の方法では、1,3−オキソラン環には1つの含フッ素基しか配置させることができない。また、上記化学式(B)を合成する従来の方法では、1,3−オキソラン環に導入できるポリフルオロアルキル基は、4,5−の位置に1つずつ、合計2つに必ず限定されていた。さらに、化学式(B)の含フッ素化合物を合成するための原料は、下記化学式(C)であり、この化合物を合成することは、困難であった。   These structural limitations are due to the synthesis method. For example, in the conventional method for synthesizing the chemical formula (A), only one fluorine-containing group can be arranged on the 1,3-oxolane ring. In the conventional method for synthesizing the chemical formula (B), the number of polyfluoroalkyl groups that can be introduced into the 1,3-oxolane ring is always limited to two, one at the 4,5-position. . Furthermore, the raw material for synthesizing the fluorine-containing compound of the chemical formula (B) is the following chemical formula (C), and it was difficult to synthesize this compound.

一方で、パーフルオロ(ブテニルビニルエーテル)を有するパーフルオロ2,2−ジメチル−1,3−ジオキソールの非晶質コポリマーや、パーフルオロ−2−メチレン−4−メチル−1,3−ジオキソランを有するパーフルオロ2,2−ジアルキル−1,3−ジオキソールの非晶質コポリマーについても開示されている(例えば、特許文献5及び特許文献6参照。)。
しかしながら、これらのパーフルオロモノマーは非常に高価であるため、より経済的な化合物の提供が望まれている。また、より良好な光学的、熱的及び溶解度特性を示す含フッ素ポリマーの提供についても熱望されている。
米国特許第3,308,107号明細書 米国特許第3,450,716号明細書 米国特許第3,978,030号明細書 特開平5−339255号公報 米国特許第5,276,121号明細書 米国特許第5,408020号明細書 Izvestiya Akademii Nank SSSR, Seriya Khimicheskaya著,「VIBRATIONAL SPECTROSCOPY」,1988年2月,p.392-395 Yuminov et al著,「VIBRATIONAL SPECTROSCOPY」,1989年4月,p.938
On the other hand, it has an amorphous copolymer of perfluoro 2,2-dimethyl-1,3-dioxole having perfluoro (butenyl vinyl ether) and perfluoro-2-methylene-4-methyl-1,3-dioxolane An amorphous copolymer of perfluoro 2,2-dialkyl-1,3-dioxole is also disclosed (see, for example, Patent Document 5 and Patent Document 6).
However, since these perfluoromonomers are very expensive, it is desired to provide more economical compounds. There is also a desire to provide fluoropolymers that exhibit better optical, thermal and solubility characteristics.
U.S. Pat. No. 3,308,107 US Pat. No. 3,450,716 US Pat. No. 3,978,030 JP-A-5-339255 US Pat. No. 5,276,121 US Pat. No. 5,408,020 Izvestiya Akademii Nank SSSR, Seriya Khimicheskaya, “VIBRATIONAL SPECTROSCOPY”, February 1988, p.392-395 Yuminov et al, “VIBRATIONAL SPECTROSCOPY”, April 1989, p.938

したがって、発明が解決しようとする課題は、柔軟性及び混和性に優れたジオキサンモノマーである含フッ素化合物の製造方法、含フッ素化合物、含フッ素ポリマー、及び含フッ素ポリマーを用いた光学材料若しくは電気材料を提供することにある。   Therefore, the problems to be solved by the invention are a method for producing a fluorine-containing compound which is a dioxane monomer excellent in flexibility and miscibility, a fluorine-containing compound, a fluorine-containing polymer, and an optical material or an electric material using the fluorine-containing polymer. Is to provide.

上記状況を勘案し、ジオキサンモノマーの柔軟性及び混和性をさらに改善するため、本発明者らはエーテル置換基を含むパーフルオロ−1,3−ジオキソランを設計し、合成することを試みた。これらの合成経路では、炭化水素前駆体の直接フッ素化の工程を含む。
また、得られたエーテル置換基を含むパーフルオロ−1,3−ジオキソランを塊状状態で、或いは溶液中で重合することによりホモポリマーを得ることができる。更に、該パーフルオロ−1,3−ジオキソランと他の不飽和含フッ素化合物とを共重合させることでコポリマーが得られる。
In consideration of the above situation, in order to further improve the flexibility and miscibility of the dioxane monomer, the present inventors have attempted to design and synthesize perfluoro-1,3-dioxolane containing an ether substituent. These synthetic routes involve the step of direct fluorination of the hydrocarbon precursor.
Moreover, a homopolymer can be obtained by polymerizing the obtained perfluoro-1,3-dioxolane containing an ether substituent in a bulk state or in a solution. Furthermore, a copolymer is obtained by copolymerizing the perfluoro-1,3-dioxolane and other unsaturated fluorine-containing compounds.

すなわち、本発明は以下の通りである。   That is, the present invention is as follows.

<1> 下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と下記化学式(3)で表される化合物の1種類以上とを反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程とを有する下記化学式(4)で表される含フッ素化合物の製造方法。 <1> A condensate is obtained by reacting one or more compounds represented by the following chemical formula (1) or one or more compounds represented by the following chemical formula (3) with one or more compounds represented by the following chemical formula (3). The manufacturing method of the fluorine-containing compound represented by following Chemical formula (4) which has a process and the process of fluorinating this condensate in a fluorine-type solution in fluorine gas atmosphere.


式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、xは1〜3のいずれかの整数を表す。

Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, x represents an integer of 1-3.

<2> 下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と下記化学式(5)で表される化合物の1種類以上とを反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程と、を有する下記化学式(6)で表される含フッ素化合物の製造方法。 <2> One or more compounds represented by the following chemical formula (1) or one represented by the following chemical formula (5) are reacted with one or more compounds represented by the following chemical formula (5) to obtain a condensate. The manufacturing method of the fluorine-containing compound represented by following Chemical formula (6) which has a process and the process of fluorinating this condensate in a fluorine-type solution in fluorine gas atmosphere.


式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、x及びyは各々独立に1〜3のいずれかの整数を表す。

Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, an integer of 1 to 3 x and y are each independently To express.

<3> 下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と、下記化学式(7)で表される化合物の1種類以上と、を反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程と、を含む下記化学式(8)で表される含フッ素化合物の製造方法。 <3> A condensate obtained by reacting at least one compound represented by the following chemical formula (1) or at least one compound represented by the following chemical formula (7) with one or more compounds represented by the following chemical formula (7): And a step of fluorinating the condensate in a fluorine-containing solution in a fluorine gas atmosphere. A method for producing a fluorine-containing compound represented by the following chemical formula (8):


式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、n1及びn2は各々独立に1〜3のいずれかの整数を表す。

Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, n1 and n2 each integer of independently 1 to 3 To express.

<4> 下記化学式(6)又は化学式(8)で表される含フッ素化合物。


式中、x及びyは、各々独立に1〜3のいずれかの整数を表し、n1及びn2は、各々独立に1〜3のいずれかの整数を表す。
<4> lower hear Science formula (6) or the fluorine-containing compound represented by the chemical formula (8).


In the formula, x and y each independently represent any integer of 1 to 3, and n1 and n2 each independently represent any integer of 1 to 3.

<5> 前記<4>に記載の含フッ素化合物の重合により得られる含フッ素ホモポリマー。 <5> A fluorine-containing homopolymer obtained by polymerization of the fluorine-containing compound according to <4>.

<6> 前記<4>に記載の含フッ素化合物と、該含フッ素化合物以外の不飽和含フッ素化合物との共重合により得られる含フッ素コポリマー。 <6> A fluorine-containing copolymer obtained by copolymerization of the fluorine-containing compound according to <4> and an unsaturated fluorine-containing compound other than the fluorine-containing compound.

<7> 前記<5>に記載の含フッ素ホモポリマー及び前記<6>に記載の含フッ素コポリマーのうち少なくとも1種を含む光学部材又は電気部材。 <7> An optical member or an electrical member containing at least one of the fluorine-containing homopolymer according to <5> and the fluorine-containing copolymer according to <6>.

<8> 前記光学部材又は電気部材が、光ファイバ、光導波路、フォトマスク又はコーティング材料であることを特徴とする前記<7>に記載の光学部材又は電気部材。 <8> The optical member or electrical member according to <7>, wherein the optical member or electrical member is an optical fiber, an optical waveguide, a photomask, or a coating material.

本発明によれば、柔軟性及び混和性に優れたジオキサンモノマーである含フッ素化合物の製造方法、含フッ素化合物、含フッ素ポリマー、及び含フッ素ポリマーを用いた光学材料若しくは電気材料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the optical material or electrical material using the manufacturing method of a fluorine-containing compound which is a dioxane monomer excellent in the softness | flexibility and miscibility, a fluorine-containing compound, a fluorine-containing polymer, and a fluorine-containing polymer can be provided.

1.含フッ素化合物の製造方法
本発明のパーフルオロ−1,3−ジオキソランのエーテル誘導体である含フッ素化合物の製造方法を説明する。
1. Method for Producing Fluorine-Containing Compound A method for producing a fluorine-containing compound which is an ether derivative of perfluoro-1,3-dioxolane of the present invention will be described.

<1> 化学式(4)で表される含フッ素化合物の製造方法
化学式(4)で表される1,3−ジオキソランのエーテル誘導体の製造方法においては、第1の態様としては、化学式(1)で表される化合物と化学式(3)で表される化合物とを用いて反応させる方法である。この反応スキームを以下に例示するが、本発明はこれに限定されるものではない。
<1> Method for Producing Fluorine-Containing Compound Represented by Chemical Formula (4) In the method for producing an ether derivative of 1,3-dioxolane represented by Chemical Formula (4), the first aspect is represented by Chemical Formula (1) And a compound represented by the chemical formula (3). Although this reaction scheme is illustrated below, this invention is not limited to this.

本発明の製造工程を大きく区分すると、少なくとも以下の4つの工程を含むことが好ましい。   When the manufacturing process of the present invention is roughly divided, it is preferable to include at least the following four processes.

(1)上記化学式(1)で表される化合物と、上記化学式(3)で表される化合物とを脱水反応させて縮合物を生成させる工程。
(2)上記(1)の工程により生じた縮合物を、フッ素系溶液中、フッ素雰囲気下でフッ素化する工程。
(3)塩基によってカルボン酸塩を生成させる工程。
(4)加熱し、上記カルボン酸塩を脱炭酸分解させる工程。
以下、(1)〜(4)の4つの工程について、説明する。
(1) A step of generating a condensate by dehydrating the compound represented by the chemical formula (1) and the compound represented by the chemical formula (3).
(2) A step of fluorinating the condensate produced in the step (1) in a fluorine-containing solution in a fluorine atmosphere.
(3) A step of generating a carboxylate with a base.
(4) A step of heating to decarboxylate the carboxylate.
Hereinafter, the four steps (1) to (4) will be described.

(1)の工程
化学式(4)で表される1,3−ジオキソランのエーテル誘導体の製造方法においては、化学式(1)で表される化合物と、化学式(3)で表される化合物とは、等モルずつで反応させることが好ましい。ここで、化学式(1)で表される化合物は、1種類のみであっても複数種併用してもよい。化学式(3)で表される化合物も、1種類のみであっても複数種併用してもよい。なお、化学式(3)中、xは1〜3のいずれかの整数を表し、好ましくは1である。
また、発熱反応のため、冷却しながら反応させることが好ましい。その他、反応条件については特に制限は無く、次の(2)の工程の前に、蒸留等の精製工程を加えることも好ましい。
Step (1) In the method for producing an ether derivative of 1,3-dioxolane represented by chemical formula (4), the compound represented by chemical formula (1) and the compound represented by chemical formula (3) are: The reaction is preferably carried out equimolarly. Here, the compound represented by the chemical formula (1) may be used alone or in combination. The compound represented by the chemical formula (3) may be used alone or in combination. In the chemical formula (3), x represents an integer of 1 to 3, and is preferably 1.
Moreover, since it is exothermic reaction, it is preferable to make it react, cooling. In addition, there is no restriction | limiting in particular about reaction conditions, It is also preferable to add purification processes, such as distillation, before the process of following (2).

化学式(1)中、Xは水素原子又はフッ素原子を表す。入手の容易さから、好ましくはXは水素原子である。Yは炭素数1〜7のアルキル基を表す。Yは、好ましくは、炭素数1〜3のアルキル基である。   In chemical formula (1), X represents a hydrogen atom or a fluorine atom. X is preferably a hydrogen atom because of its availability. Y represents an alkyl group having 1 to 7 carbon atoms. Y is preferably an alkyl group having 1 to 3 carbon atoms.

化学式(3)中、Zは水酸基を表す。xは、1〜3のいずれかの整数を表し、好ましくは1である。 In the chemical formula (3), Z represents a hydroxyl group. x represents an integer of 1 to 3, and is preferably 1.

(2)の工程
(1)で生成した化合物の水素原子を全てフッ素原子で置換する工程である。その方法としては、フッ素系溶液中で直接フッ素化することが好ましい。このような直接フッ素化については、Synthetic Fluorine Chemistry,Eds by G.A.Olah,R.D.Chambers and G.K.S.Prakash,J.Wiley and Sons.Inc.New York(1992)のR.J.Lagow,T.R.Bierschenk,T.J.Juhlke and H.Kawa,第5章のポリエーテル合成方法等を参照できる。
フッ素系溶液としては特に制限はないが、例えば、1,1,2−トリクロロトリフルオロエタン、ポリフルオロベンゼン等が好ましく、具体的には、Fluorinert FC−75、FC−77、FC−88(3M社製)等を挙げることができる。
本発明はフッ素溶液中、フッ素ガス雰囲気下で行い、該フッ素ガスにより上記(1)の工程で得られた中間生成物はフッ素化される。フッ素ガスは、窒素ガスで希釈されていてもよい。
Step (2) In this step, all the hydrogen atoms in the compound produced in (1) are replaced with fluorine atoms. As the method, direct fluorination in a fluorinated solution is preferred. For such direct fluorination, see Synthetic Fluorine Chemistry, Eds by G. et al. A. Olah, R.A. D. Chambers and G.C. K. S. Prakash, J. et al. Wiley and Sons. Inc. New York (1992). J. et al. Lagow, T .; R. Bierschenk, T.W. J. et al. Juhlke and H.C. Reference can be made to the method of polyether synthesis in Kawa, Chapter 5.
Although there is no restriction | limiting in particular as a fluorine-type solution, For example, a 1,1, 2- trichlorotrifluoroethane, polyfluorobenzene etc. are preferable, Specifically, Fluorinert FC-75, FC-77, FC-88 (3M For example).
The present invention is carried out in a fluorine solution in a fluorine gas atmosphere, and the intermediate product obtained in the step (1) is fluorinated with the fluorine gas. The fluorine gas may be diluted with nitrogen gas.

(3)の工程
(2)の工程で得られたフッ素化合物を、塩基によりカルボン酸塩を生成させる。塩基としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウム等が好ましく、水酸化カリウムがより好ましい。
Step (3) A carboxylate is produced from the fluorine compound obtained in step (2) with a base. As the base, potassium hydroxide, sodium hydroxide, cesium hydroxide and the like are preferable, and potassium hydroxide is more preferable.

(4)の工程
得られたカルボン酸塩を加熱し、脱炭酸させる。加熱温度は、250℃〜320℃が好ましく、270℃〜290℃がより好ましい。
Step (4) The obtained carboxylate is heated to decarboxylate. The heating temperature is preferably 250 ° C to 320 ° C, and more preferably 270 ° C to 290 ° C.

本発明の製造方法では、上記(1)〜(4)の工程以外の工程を加えて、製造することもできる。   In the manufacturing method of this invention, it can also manufacture by adding processes other than the process of said (1)-(4).

また、化学式(4)で表される1,3−ジオキソランのエーテル誘導体の製造方法における第2の態様として、下記のスキームに示すように、上記化学式(1)で表される化合物に代えて、下記化学式(2)で表される化合物を用いてもよい。   Further, as a second embodiment in the method for producing an ether derivative of 1,3-dioxolane represented by the chemical formula (4), as shown in the following scheme, instead of the compound represented by the chemical formula (1), A compound represented by the following chemical formula (2) may be used.

化学式(2)で表される化合物を原料に用いる場合であっても、少なくとも上記(1)〜(4)の4つの工程を含むことが好ましく、この場合には、上記(1)〜(4)の工程において、「化学式(1)で表される化合物」を「化学式(2)で表される化合物」に読み替える。
また、上記4つの工程のほかに適宜工程を加えてもよい。また、化学式(2)で表される化合物を原料に用いる場合であっても、上記(1)〜(4)の各工程における好適な条件については同様である。
さらに、化学式(2)中のX及びYは、化学式(1)中のX及びYと同義であり、好ましい範囲も同様である。
Even when the compound represented by the chemical formula (2) is used as a raw material, it preferably includes at least four steps (1) to (4). In this case, the above (1) to (4) In the process of), “compound represented by chemical formula (1)” is read as “compound represented by chemical formula (2)”.
Moreover, you may add a process suitably other than the said four processes. Moreover, even if it is a case where the compound represented by Chemical formula (2) is used for a raw material, it is the same about the suitable conditions in each process of said (1)-(4).
Furthermore, X and Y in the chemical formula (2) have the same meanings as X and Y in the chemical formula (1), and the preferred ranges are also the same.

<2> 化学式(6)で表される含フッ素化合物の製造方法
化学式(6)で表される1,3−ジオキソランのエーテル誘導体は、上記化学式(4)の含フッ素化合物の製造方法で説明した方法に類似する下記の2つのスキームにしたがって製造することができる。
<2> Method for Producing Fluorine-Containing Compound Represented by Chemical Formula (6) The ether derivative of 1,3-dioxolane represented by Chemical Formula (6) has been described in the method for producing a fluorine-containing compound represented by Chemical Formula (4) above. It can be prepared according to the following two schemes similar to the method.

化学式(6)の含フッ素化合物の製造方法においても、上記化学式(4)の含フッ素化合物の製造方法で説明した少なくとも上記(1)〜(4)の4つの工程を含むことが好ましく、この4つの工程のほかに適宜工程を加えてもよい。また、上記(1)〜(4)の各工程における好適な条件についても、同様である。
なお、上記スキーム中の化学式において、化学式(1)及び(2)は、上記化学式(4)の含フッ素化合物の製造方法で説明したものと同義であり、好ましい範囲も同様である。また、化学式(5)及び化学式(6)におけるx及びyは、各々独立に1〜3のいずれかの整数を表し、xとyは同じであっても異なっていても良い。
Also in the manufacturing method of the fluorine-containing compound of Chemical formula (6), it is preferable to include at least four steps (1) to (4) described in the method of manufacturing the fluorine-containing compound of Chemical Formula (4). You may add a process suitably other than one process. The same applies to suitable conditions in the steps (1) to (4).
In the chemical formulas in the above scheme, chemical formulas (1) and (2) have the same meanings as those described in the method for producing a fluorine-containing compound of the above chemical formula (4), and preferred ranges are also the same. Moreover, x and y in Chemical Formula (5) and Chemical Formula (6) each independently represent an integer of 1 to 3, and x and y may be the same or different.

<3> 化学式(8)で表される含フッ素化合物の製造方法
化学式(8)で表される1,3−ジオキソランのエーテル誘導体は、上記化学式(4)の含フッ素化合物の製造方法で説明した方法に類似する下記の2つスキームにしたがって製造することができる。
<3> Method for Producing Fluorine-Containing Compound Represented by Chemical Formula (8) The ether derivative of 1,3-dioxolane represented by Chemical Formula (8) has been described in the method for producing a fluorine-containing compound represented by Chemical Formula (4) above. It can be prepared according to the following two schemes similar to the method.

化学式(8)の含フッ素化合物の製造方法においても、上記化学式(4)の含フッ素化合物の製造方法で説明した少なくとも上記(1)〜(4)の4つの工程を含むことが好ましく、この4つの工程のほかに適宜工程を加えてもよい。また、上記(1)〜(4)の各工程における好適な条件についても、同様である。
なお、上記2つのスキーム中の化学式において、化学式(1)及び(2)は、上記化学式(4)の含フッ素化合物の製造方法で説明したものと同義であり、好ましい範囲も同様である。化学式(7)及び化学式(8)におけるn1及びn2は、各々独立に1〜3のいずれかの整数を表し、n1とn2は同じであっても異なっていても良い。
Also in the manufacturing method of the fluorine-containing compound of Chemical formula (8), it is preferable to include at least four steps (1) to (4) described in the manufacturing method of the fluorine-containing compound of Chemical Formula (4). You may add a process suitably other than one process. The same applies to suitable conditions in the steps (1) to (4).
In the chemical formulas in the above two schemes, the chemical formulas (1) and (2) have the same meanings as those described in the method for producing the fluorine-containing compound of the chemical formula (4), and the preferred ranges are also the same. N1 and n2 in Chemical Formula (7) and Chemical Formula (8) each independently represent an integer of 1 to 3, and n1 and n2 may be the same or different.

2.含フッ素化合物
本発明の製造方法によって得られた化学式(4)、(6)及び(8)の含フッ素化合物は、パーフロロ−1,3−ジオキソラン誘導体であってエーテル基を有する。これらの1,3−ジオキソラン誘導体は、容易に重合させやすいという特徴を有するため、ホモポリマーや、他の種類のパーフロロビニルモノマーとの共重合によりコポリマーを製造しやすい。
2. Fluorine-containing compound The fluorine-containing compounds of the chemical formulas (4), (6) and (8) obtained by the production method of the present invention are perfluoro-1,3-dioxolane derivatives and have an ether group. Since these 1,3-dioxolane derivatives have a feature that they are easily polymerized, it is easy to produce a copolymer by copolymerization with homopolymers or other types of perfluorovinyl monomers.

3.含フッ素ポリマーの製造方法
上記の含フッ素化合物は、常法によってラジカル重合し、含フッ素ポリマーを製造できる。ラジカル触媒としては、過酸化物を用いることが好ましいが、フッ素化合物のフッ素原子が水素原子に置換しないように、パーフルオロ過酸化物を用いる。
ここで、上記化学式(4),(6)及び(8)で表される含フッ素化合物のいずれか1種類のみをモノマー原料として用いてラジカル重合させると、ホモポリマーを得ることができる。
一方、上記化学式(4),(6)及び(8)で表される含フッ素化合物のうち、少なくとも2種類を用いてラジカル重合させると、コポリマーを得ることができる。更に、上記化学式(4),(6)及び(8)で表される含フッ素化合物の少なくとも1種と、他の含フッ素不飽和化合物あるいは炭化水素系不飽和化合物との重合によってもコポリマーを製造することができる。
3. Production method of fluorine-containing polymer The above-mentioned fluorine-containing compound can be radically polymerized by a conventional method to produce a fluorine-containing polymer. As the radical catalyst, it is preferable to use a peroxide, but a perfluoroperoxide is used so that the fluorine atom of the fluorine compound is not replaced with a hydrogen atom.
Here, when only one of the fluorine-containing compounds represented by the chemical formulas (4), (6), and (8) is used as a monomer raw material for radical polymerization, a homopolymer can be obtained.
On the other hand, a copolymer can be obtained by radical polymerization using at least two of the fluorine-containing compounds represented by the chemical formulas (4), (6) and (8). Further, a copolymer is produced by polymerization of at least one fluorine-containing compound represented by the above chemical formulas (4), (6) and (8) with another fluorine-containing unsaturated compound or a hydrocarbon-based unsaturated compound. can do.

4.含フッ素ポリマーの用途
本発明の含フッ素ホモポリマー及び含フッ素コポリマーは、ガラス転移温度が高く、非晶質物質であり、耐熱性、耐光性等に優れる。このような性質を利用し、光学材料及び電気材料に好適に用いることができる。
本発明の含フッ素ポリマーの好適な用途としては、例えば、プラスチック光ファイバ、光導波路、光学レンズ、プリズム、フォトマスク、特殊ペイント等を挙げることができる。
4). Use of fluorinated polymer The fluorinated homopolymer and the fluorinated copolymer of the present invention have a high glass transition temperature, are amorphous substances, and are excellent in heat resistance, light resistance and the like. Utilizing such properties, it can be suitably used for optical materials and electrical materials.
Preferable uses of the fluorine-containing polymer of the present invention include, for example, plastic optical fibers, optical waveguides, optical lenses, prisms, photomasks, special paints and the like.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to this.

[実施例1]
<パーフルオロ2−メチレン−4−(メトキシメチル)−1,3−ジオキサン(化学式(3)におけるx=1である含フッ素化合物)の合成>
2.0molの3−メトキシ−1,2−プロパンジオールと2.0molのピルビン酸メチルと10gのイオン交換樹脂(H形態、DOWEX(登録商標))と1L無水ベンゼンとの混合物を、脱水が止むまでディーンスタークトラップ(Dean−Stark trap)を装着したフラスコ内で還流させた。得られたメチル−4−(メトキシメチル−2−2−メチル−1,3−ジオキサン−2−カルボキシレートを分画蒸留によって精製した。
[Example 1]
<Synthesis of perfluoro 2-methylene-4- (methoxymethyl) -1,3-dioxane (fluorine-containing compound where x = 1 in chemical formula (3))>
Dehydration stops for a mixture of 2.0 mol 3-methoxy-1,2-propanediol, 2.0 mol methyl pyruvate, 10 g ion exchange resin (H form, DOWEX®) and 1 L anhydrous benzene. To reflux in a flask equipped with a Dean-Stark trap. The resulting methyl-4- (methoxymethyl-2--2-methyl-1,3-dioxane-2-carboxylate was purified by fractional distillation.

得られた精製物の収率は55%であり、沸点は80℃/1.0mmHgであった。また、1H NMRによる分析結果は、以下の通りであった。
1H NMR(CDCl3)δ(ppm):1.60(d、3H、−CH3)、4.28−4.50(m、1H、−OCH−)、4.12−4.25及び3.80−3.90(m、2H、OCH2−)、3.76(d、3H、−COOCH3)、3.41−3.60(m、2H、−OCH2−)、3.39(d、3H、−OCH3)。
The yield of the obtained purified product was 55%, and the boiling point was 80 ° C./1.0 mmHg. Moreover, the analysis result by < 1 > H NMR was as follows.
1 H NMR (CDCl 3 ) δ (ppm): 1.60 (d, 3H, —CH 3 ), 4.28-4.50 (m, 1H, —OCH—), 4.12-4.25 and 3.80-3.90 (m, 2H, OCH 2 -), 3.76 (d, 3H, -COOCH 3), 3.41-3.60 (m, 2H, -OCH 2 -), 3. 39 (d, 3H, -OCH 3 ).

上記精製したメチル4−(メトキシメチル−メチル−1,3−ジオキサン−2−カルボキシレートの650gを、窒素で希釈したフッ素ガス雰囲気下で、フッ素系溶剤Flurinert FC−75中においてフッ素化した。
反応が停止した後、その混合物を水酸化カリウム水溶液で処理して有機相及び水相を形成した。水相中の生成物を分離し、水の一部を減圧下で除去した。得られた生成物を濾過し、パーフルオロ4−(メトキシメチル)−2−メチル−1,3−ジオキサン−2−カルボキシレートのカリウム塩を得た。収率は95%であった。得られた該カリウム塩の1H NMR、及び19F NMRの結果を以下に示す。
650 g of the purified methyl 4- (methoxymethyl-methyl-1,3-dioxane-2-carboxylate) was fluorinated in a fluorinated solvent Flurinert FC-75 under a fluorine gas atmosphere diluted with nitrogen.
After the reaction stopped, the mixture was treated with aqueous potassium hydroxide to form an organic phase and an aqueous phase. The product in the aqueous phase was separated and a portion of the water was removed under reduced pressure. The obtained product was filtered to obtain a potassium salt of perfluoro 4- (methoxymethyl) -2-methyl-1,3-dioxane-2-carboxylate. The yield was 95%. The results of 1 H NMR and 19 F NMR of the obtained potassium salt are shown below.

1H NMR(DMSO)δ(ppm):なし。
19F NMR(DMSO)δ(ppm):−55.11(dt、3F、−OCF3)、−79.71(d、3F、−CF3)、76.59(m、1F)及び−81.00(m、1F)(合計で2F、OCF2−)、−85.35(m、2F、−OCF2−)、−120.67(dm、1F、−OCF−)。
1 H NMR (DMSO) δ (ppm): None.
19 F NMR (DMSO) δ (ppm): −55.11 (dt, 3F, —OCF 3 ), −79.71 (d, 3F, —CF 3 ), 76.59 (m, 1F) and − 81.00 (m, 1F) (2F total, OCF 2 -), - 85.35 (m, 2F, -OCF 2 -), - 120.67 (dm, 1F, -OCF-).

100g(0.243mol)の上記カリウム塩をアルゴン雰囲気下、250℃で分解し、−78℃に冷却したトラップ内で生成物を捕集した。その生成物を分画蒸留によって精製し、パーフルオロ2−メチレン−4−(メトキシメチル)−1,3−ジオキサンを得た。収率は、81%(61g、0.l9mol)であった。得られた目的物の1H NMR、19F NMR及びGC−MSの結果を以下に示す。 100 g (0.243 mol) of the above potassium salt was decomposed at 250 ° C. in an argon atmosphere, and the product was collected in a trap cooled to −78 ° C. The product was purified by fractional distillation to give perfluoro 2-methylene-4- (methoxymethyl) -1,3-dioxane. The yield was 81% (61 g, 0.19 mol). The results of 1 H NMR, 19 F NMR and GC-MS of the obtained target product are shown below.

1H NMR(CDCl3)δ(ppm);なし。
19F NMR(CDCl3)δ(ppm):−55.56(3F、−OCF3)、−82.54(1F)及び−87.40(1F)(合計で2F、−OCF2−)、−85.28(m、2F、−OCF2−)、−126.06(2F、4ラインパターン、=CF2)、−128.44(1F、−OCF−)。
・GC−MS:m/e 310(M+)であり、予想されるパターンを有していた。
-1 H NMR (CDCl 3 ) δ (ppm); none.
19 F NMR (CDCl 3 ) δ (ppm): −55.56 (3F, —OCF 3 ), −82.54 (1F) and −87.40 (1F) (2F in total, —OCF 2 —) , −85.28 (m, 2F, —OCF 2 —), −126.06 (2F, 4 line pattern, ═CF 2 ), −128.44 (1F, —OCF—).
GC-MS: m / e 310 (M + ) and had the expected pattern.

以下に実施例1の合成スキームの概略を示す。   The outline of the synthesis scheme of Example 1 is shown below.

[実施例2]
<パーフルオロ−2−メチレン−4−(メトキシメチル)−1,3−ジオキサンのフリーラジカル重合>
2gのパーフルオロ−2−メチレン−4−(メトキシメチル)−1,3−ジオキサンと8.8mgの過酸化パーフルオロベンゾイルをガラス管に充填し、次にそれを3回の真空−解凍サイクルで脱気してアルゴンを再充填した。管を真空下で密封し、60℃で24時間加熱したところ、固体の棒状体としてパーフルオロ−2−メチレン−4−(メトキシメチル)−1,3−ジオキサンのホモポリマーを得た。
そのホモポリマーをヘキサフルオロベンゼンに溶解し、クロロホルム中に沈殿させ、真空中で一定重量(1.8g)に乾燥させた。収率は、90%であり、ガラス転移温度Tgは101℃であった。
FTIR、1H NMR、19F NMR、13C NMRの結果を以下に示す。
[Example 2]
<Free radical polymerization of perfluoro-2-methylene-4- (methoxymethyl) -1,3-dioxane>
2 g of perfluoro-2-methylene-4- (methoxymethyl) -1,3-dioxane and 8.8 mg of perfluorobenzoyl peroxide are charged into a glass tube, which is then subjected to 3 vacuum-thaw cycles. Degassed and refilled with argon. The tube was sealed under vacuum and heated at 60 ° C. for 24 hours to obtain a perfluoro-2-methylene-4- (methoxymethyl) -1,3-dioxane homopolymer as a solid rod.
The homopolymer was dissolved in hexafluorobenzene, precipitated into chloroform and dried in vacuo to a constant weight (1.8 g). The yield was 90% and the glass transition temperature Tg was 101 ° C.
The results of FTIR, 1 H NMR, 19 F NMR, and 13 C NMR are shown below.

・FTIR:カルボニル吸収なし。
1H NMR(C66/CDCl3)δ(ppm):なし。
19F NMR(C66/CDCl3)δ(ppm):−58.32(3F、−OCF3)、−79.40(2F、−OCF2−)、−85.8(2F、−OCF2−)、−109.05(2F、主鎖上の−CF2−)、121.80(側鎖上のOCF−)。
13C NMR(C66/CDCl3)δ(ppm):カルボニル炭素ピークなし。
FTIR: no carbonyl absorption.
1 H NMR (C 6 F 6 / CDCl 3 ) δ (ppm): None.
19 F NMR (C 6 F 6 / CDCl 3 ) δ (ppm): −58.32 (3F, —OCF 3 ), −79.40 (2F, —OCF 2 —), −85.8 (2F, -OCF 2 -), - 109.05 ( 2F, -CF 2 on the backbone -), 121.80 (on the side chain OCF-).
· 13 C NMR (C 6 F 6 / CDCl 3) δ (ppm): carbonyl carbon peaks no.

[実施例3]
<パーフルオロ−2−メチレン−4,5−ジメトキシメチル−1,3−ジオキサン(化学式(5)におけるx=1、y=1である含フッ素化合物)の合成>
パーフルオロ−2−メチレン−4,5−ジメトキシメチル−1,3−ジオキサンは、実施例1と同様、下記の概略スキームにしたがい、ジオール化合物と2−ジオキソプロピルアセテートとを脱水反応した縮合物をフッ素溶液中、フッ素ガス雰囲気下でフッ素化して得られた。
[Example 3]
<Synthesis of perfluoro-2-methylene-4,5-dimethoxymethyl-1,3-dioxane (fluorine-containing compound where x = 1 and y = 1 in chemical formula (5))>
Perfluoro-2-methylene-4,5-dimethoxymethyl-1,3-dioxane is a condensate obtained by dehydrating a diol compound and 2-dioxopropyl acetate according to the following schematic scheme, as in Example 1. Was obtained by fluorination in a fluorine solution in a fluorine gas atmosphere.

1,4−ジメチルメトキシ−2,3−ブチルジオールはHelvetica Chimica Acta 60, 031 (1977) Dieter Seebath等の文献の記載にしたがい、タータリック酸とジメチルメトキシプロパンとの縮合反応で得られた。   1,4-Dimethylmethoxy-2,3-butyldiol was obtained by a condensation reaction of tartaric acid and dimethylmethoxypropane according to the description of Helvetica Chimica Acta 60, 031 (1977) Dieter Seebath et al.

ジオールと2−ジオキソプロピルアセテートをベンゼン溶媒中で、触媒としてp−トルエンスルフォン酸を用いて、メチル−4,5−ジメトキシジメチル−1,3−ジオキサン−2−カルボキシレートを得た。精製したこの化合物の沸点は、150℃/8Torrであった。1H NMRの結果を以下に示す。 Methyl-4,5-dimethoxydimethyl-1,3-dioxane-2-carboxylate was obtained using diol and 2-dioxopropyl acetate in a benzene solvent and p-toluenesulfonic acid as a catalyst. The purified compound had a boiling point of 150 ° C./8 Torr. The result of 1 H NMR is shown below.

1H NMR(CDCl3)δ(ppm):4.0−4.2(m、2H、in −CH2OC(=O)−,2−CH−,4H)、3.56(m,−CH2O−,4H)、3.4(m、−OCH3,6H)、2.11(s,−C(=O)CH3,3H)、1.42(s、−CCH3,3H)。 1 H NMR (CDCl 3 ) δ (ppm): 4.0-4.2 (m, 2H, in —CH 2 OC (═O) —, 2-CH—, 4H), 3.56 (m, − CH 2 O-, 4H), 3.4 (m, -OCH 3, 6H), 2.11 (s, -C (= O) CH 3, 3H), 1.42 (s, -CCH 3, 3H ).

上記精製したメチルカルボキシレート1,000g(4.95モル)を窒素で帰着したフッ素ガス雰囲気下で、フッ素系溶剤Flurinert FC-75中においてフッ素化した。
反応が停止した後、その混合物を水酸化カリウム水溶液で処理して有機相及び水相を形成した。水相中の生成物を分離し、水の一部を減圧下で除去した。得られた生成物を濾過し、カリウム塩を得た。この塩を更に減圧下80℃で乾燥し、1295g(3.46モル)を得た。
得られた該カリウム塩の1H NMR、及び19F NMRの結果を以下に示す。
1,000 g (4.95 mol) of the purified methyl carboxylate was fluorinated in a fluorinated solvent Flurinert FC-75 under a fluorine gas atmosphere reduced with nitrogen.
After the reaction stopped, the mixture was treated with aqueous potassium hydroxide to form an organic phase and an aqueous phase. The product in the aqueous phase was separated and a portion of the water was removed under reduced pressure. The obtained product was filtered to obtain a potassium salt. This salt was further dried at 80 ° C. under reduced pressure to obtain 1295 g (3.46 mol).
The results of 1 H NMR and 19 F NMR of the obtained potassium salt are shown below.

1H NMR(in d6−DMSO)δ(ppm):なし。
19F NMR(in d6−DMSO)δ(ppm):−82,−80.05(3F、−CF3)、−78.57,−79.92,−81.58,−91.32(4F、−OCF2−)、−129.57,−130.79(m、2F,−CFO−)。
1 H NMR (in d 6 -DMSO) δ (ppm): None.
19 F NMR (in d 6 -DMSO) δ (ppm): −82, −80.05 (3F, —CF 3 ), −78.57, −79.92, −81.58, −91.32 (4F, -OCF 2 -), - 129.57, -130.79 (m, 2F, -CFO-).

上記カリウム塩をカルゴン雰囲気下で、250℃で分解し、−78℃に冷却したトラップ内で生成物を捕集した。その生成物を分画蒸留によって精製し、パーフルオロ−2−メチレン−4,5−ジメトキシメチル−1,3−ジオキサンを得た。収率は、50%であった。得られた目的物の1H NMR、及び19F NMRの結果を以下に示す。 The potassium salt was decomposed at 250 ° C. under a Calgon atmosphere, and the product was collected in a trap cooled to −78 ° C. The product was purified by fractional distillation to give perfluoro-2-methylene-4,5-dimethoxymethyl-1,3-dioxane. The yield was 50%. The results of 1 H NMR and 19 F NMR of the obtained target product are shown below.

1H NMR(in CDCl3)δ(ppm);なし。
19F NMR(in CDCl3)δ(ppm):−56(m、CF3O−、6F)、−84(−CF2O−、4F)、−126(2F、=CF2)、−138(m、2F、−CFO)。
-1 H NMR (in CDCl 3 ) δ (ppm); none.
· 19 F NMR (in CDCl 3 ) δ (ppm): - 56 (m, CF 3 O-, 6F), - 84 (-CF 2 O-, 4F), - 126 (2F, = CF 2), - 138 (m, 2F, -CFO).

<パーフルオロ−2−メチレン−4,5−ジメトキシメチル−1,3−ジオキサンのフリーラジカル重合>
2gのパーフルオロ−2−メチレン−4,5−ジメトキシメチル−1,3−ジオキサンと8.8mgの過酸化パーフルオロベンゾイルをガラス管に充填し、次にそれを3回の真空乾燥−解凍サイクルで脱気してアルゴンを再充填した。管を真空下で密封し、60℃で30時間加熱したところ、固体の棒状体としてパーフルオロ−2−メチレン−4−(メトキシメチル)−1,3−ジオキサンのホモポリマーを得た。
そのホモポリマーをヘキサフルオロベンゼンに溶解し、クロロホルム中に沈殿させ、真空中で一定重量(1.8g)に乾燥させた。収率は、90%であり、ガラス転移温度Tgは88℃で、分回転は255℃(窒素ガス)であった。
FTIR、1H NMR、19F NMR、13C NMRの結果を以下に示す。
<Free radical polymerization of perfluoro-2-methylene-4,5-dimethoxymethyl-1,3-dioxane>
2 g perfluoro-2-methylene-4,5-dimethoxymethyl-1,3-dioxane and 8.8 mg perfluorobenzoyl peroxide are charged into a glass tube, which is then subjected to 3 vacuum drying-thawing cycles. And then backfilled with argon. The tube was sealed under vacuum and heated at 60 ° C. for 30 hours to obtain a perfluoro-2-methylene-4- (methoxymethyl) -1,3-dioxane homopolymer as a solid rod.
The homopolymer was dissolved in hexafluorobenzene, precipitated into chloroform and dried in vacuo to a constant weight (1.8 g). The yield was 90%, the glass transition temperature Tg was 88 ° C., and the minute rotation was 255 ° C. (nitrogen gas).
The results of FTIR, 1 H NMR, 19 F NMR, and 13 C NMR are shown below.

・FTIR:カルボニル吸収なし。
1H NMR(in CDCl3)δ(ppm):なし。
19F NMR(in CDCl3)δ(ppm):−100−130(4F、主鎖中の−CFと−CF2)、−110(4F、−CF2−)、−58(6F、−OCF3)。
13C NMR(C66/CDCl3)δ(ppm):カルボニル炭素ピークなし。
FTIR: no carbonyl absorption.
1 H NMR (in CDCl 3 ) δ (ppm): None.
19 F NMR (in CDCl 3 ) δ (ppm): −100 to 130 (4F, —CF and —CF 2 in the main chain), −110 (4F, —CF 2 —), −58 (6F, − OCF 3).
· 13 C NMR (C 6 F 6 / CDCl 3) δ (ppm): carbonyl carbon peaks no.

[実施例4]
<エーテル環含有パーフルオロジオキサン(化学式(7)においてn1及びn2=1の場合の化合物)の合成>
1,4−無水エリスリトールとピルビン酸エステル又は2−オキソプロピルアセテートとの縮合反応を行った。以下では、後者の2−オキソプロピルアセテートを用いた縮合反応について詳細に記載し、実施例3の2−オキソプロピルアセテートを用いた合成スキームの概略を示す。
[Example 4]
<Synthesis of ether ring-containing perfluorodioxane (compound in the case of n1 and n2 = 1 in chemical formula (7))>
A condensation reaction between 1,4-anhydroerythritol and pyruvate or 2-oxopropyl acetate was carried out. Hereinafter, the latter condensation reaction using 2-oxopropyl acetate will be described in detail, and an outline of a synthesis scheme using 2-oxopropyl acetate of Example 3 will be shown.

ベンゼン1Lに448gの1,4−無水エリスリトールと500gの2−オキソプロピルアセテートと硫酸p−トルエン30gとを加えた混合物を、2Lフラスコに入れた。その混合物を還流させ、107mlの水を留去した。生成物を炭酸ナトリウムで処理した後、水で洗浄した。その生成物をフッ素ガス/窒素ガス雰囲気下で、フッ化溶媒中で直接フッ素化した。
フッ素化後、そのフッ素化溶液を冷却下において水酸化カリウム水溶液で処理し、有機相及び水相を得た。水相中の生成物を分離した後、水の一部を減圧下で除去した。単離されたカリウム塩を濾過した。収率は70%であり、融点は存在しなかった。
以下に、1H NMR、19F NMRの結果を示す。
A mixture of 448 g of 1,4-anhydroerythritol, 500 g of 2-oxopropyl acetate and 30 g of p-toluene sulfate in 1 L of benzene was placed in a 2 L flask. The mixture was refluxed and 107 ml of water was distilled off. The product was treated with sodium carbonate and then washed with water. The product was directly fluorinated in a fluorinated solvent under a fluorine gas / nitrogen gas atmosphere.
After fluorination, the fluorinated solution was treated with an aqueous potassium hydroxide solution under cooling to obtain an organic phase and an aqueous phase. After separation of the product in the aqueous phase, a portion of the water was removed under reduced pressure. The isolated potassium salt was filtered. The yield was 70% and there was no melting point.
The results of 1 H NMR and 19 F NMR are shown below.

1H NMR(DMSO)なし。
19F NMR(DMSO)δ(ppm):82、82.05(3F、CF3)、−78.57〜79.92、−83.58〜93.32(4F、−OCF2−)、−129.58、−130.79(m、2F、−CFO)。
-No 1 H NMR (DMSO).
19 F NMR (DMSO) δ (ppm): 82, 82.05 (3F, CF 3 ), −78.57 to 79.92, −83.58 to 93.32 (4F, —OCF 2 —), -129.58, -130.79 (m, 2F, -CFO).

上記得られたカリウム塩の100gを250℃で分解し、その後−78℃に冷却してトラップ内に捕集した。得られた化合物を分画蒸留によって精製し、パーフルオロ−2−エーテル環置換ジオキサンを得た。目的物の収率は50%であり、沸点は74℃/760mmHgであった。
以下に、1H NMR、19F NMRの結果を示す。
100 g of the obtained potassium salt was decomposed at 250 ° C., then cooled to −78 ° C. and collected in a trap. The obtained compound was purified by fractional distillation to obtain perfluoro-2-ether ring-substituted dioxane. The yield of the target product was 50%, and the boiling point was 74 ° C./760 mmHg.
The results of 1 H NMR and 19 F NMR are shown below.

1H NMR(CDCL3)δ(ppm)なし
19F NMR(CDCL3)δ(ppm):−78、−92(4F、−OCF2−)、−136(2F、−CF−)、−126(2F、=CF2
・GC−MS:m/e 272(M+)。
· 1 H NMR (CDCL 3) δ (ppm) None · 19 F NMR (CDCL 3) δ (ppm): - 78, -92 (4F, -OCF 2 -), - 136 (2F, -CF-), -126 (2F, = CF 2)
-GC-MS: m / e 272 (M <+> ).

[実施例5]
<パーフルオロ−2−エーテル環置換ジオキサンのフリーラジカル重合>
実施例4で得られたモノマー(パーフルオロ−2−エーテル環置換ジオキサン)の2gと、8.8mgの過酸化パーフルオロベンゾイルをガラス管に充填し、次にそれを3回の真空−解凍サイクルで脱気してアルゴンを再充填した。
管を真空下で密封し、60℃で1日間加熱した。固体ポリマー棒状体が得られた。そのポリマーをヘキサフルオロベンゼンに溶解した後、クロロホルム中に沈殿させ、真空中で一定重量(1.8g)に乾燥させて、目的物のポリマーを得た。収率は90%であった。
得られたポリマーのFTIR、DSC、及び屈折率の結果を以下に示す。
[Example 5]
<Free radical polymerization of perfluoro-2-ether ring-substituted dioxane>
A glass tube was filled with 2 g of the monomer obtained in Example 4 (perfluoro-2-ether ring-substituted dioxane) and 8.8 mg of perfluorobenzoyl peroxide, which was then subjected to 3 vacuum-thaw cycles. And then backfilled with argon.
The tube was sealed under vacuum and heated at 60 ° C. for 1 day. A solid polymer rod was obtained. The polymer was dissolved in hexafluorobenzene, precipitated in chloroform, and dried in vacuum to a constant weight (1.8 g) to obtain the desired polymer. The yield was 90%.
The results of FTIR, DSC, and refractive index of the obtained polymer are shown below.

・FTIR:カルボニル吸収なし。
・DSC:Tg=164℃、TGA初期分解温度は窒素雰囲気下で350℃。
・屈折率:1.3372(532nm)、1.3348(632nm)、1.3315(839nm);1.3302(1.544nm)。
FTIR: no carbonyl absorption.
DSC: Tg = 164 ° C., TGA initial decomposition temperature is 350 ° C. under nitrogen atmosphere.
Refractive index: 1.3372 (532 nm), 1.3348 (632 nm), 1.3315 (839 nm); 1.3302 (1.544 nm).

[実施例6]
<実施例1で作製した含フッ素化合物(M1)と実施例4で作製した含フッ素化合物(M2)とのコポリマー>
実施例1で作製した含フッ素化合物(M1)と実施例4で作製した含フッ素化合物(M2)を様々な比率で、過酸化パーフルオロジベンゾイル又は過酸化パーフルオロジ−t−ブチルと共にガラス重合管に入れ、3回の真空−解凍サイクルでアルゴンを用いて脱気した。管を真空下で密封し、60℃乃至65℃で加熱した。モノマーの反応性を決定するため、得られたコポリマーをヘキサフルオロ−ベンゼンに溶解した後、クロロホルム中に沈殿させ、真空中で一定重量に乾燥させて、モノマー変換を約10〜15%で停止させた。生成したポリマーの組成を、19F NMRを測定することによって決定した。
得られた典型的なコポリマーについて、ガラス転移温度及び屈折率等のデータを表1、図1、図2、及び図3に示した。
[Example 6]
<Copolymer of fluorine-containing compound produced in Example 1 (M 1) and the fluorine-containing compound prepared in Example 4 (M 2)>
Glass polymerization of the fluorine-containing compound (M 1 ) prepared in Example 1 and the fluorine-containing compound (M 2 ) prepared in Example 4 in various ratios together with perfluorodibenzoyl peroxide or perfluorodi-t-butyl peroxide. Placed in tube and degassed with argon in 3 vacuum-thaw cycles. The tube was sealed under vacuum and heated at 60-65 ° C. To determine monomer reactivity, the resulting copolymer was dissolved in hexafluoro-benzene and then precipitated into chloroform and dried to constant weight in vacuo to stop monomer conversion at about 10-15%. It was. The composition of the polymer produced was determined by measuring 19 F NMR.
For the typical copolymer obtained, data such as glass transition temperature and refractive index are shown in Table 1, FIG. 1, FIG. 2, and FIG.

なお、含フッ素化合物(M1)及び含フッ素化合物(M2)のガラス転移温度(Tg)は、それぞれ、110℃及び168℃であった。 The glass transition temperatures (Tg) of the fluorine-containing compound (M 1 ) and the fluorine-containing compound (M 2 ) were 110 ° C. and 168 ° C., respectively.

1とM2とのコポリマーの一例として、以下に、含フッ素化合物(M1)と含フッ素化合物(M2)との仕込み比率が20:80のものと、40:60のものについて、固ポリマーの製造方法を詳細に記載し、これらコポリマーの材料分散性について評価した。 As an example of a copolymer of M 1 and M 2 , the following is a description of the case where the feed ratio of the fluorine-containing compound (M 1 ) to the fluorine-containing compound (M 2 ) is 20:80 and 40:60. Polymer production methods were described in detail and the dispersibility of these copolymers was evaluated.

((M1)と(M2)との仕込みモル比が20:80のコポリマー[1])
ガラス重合管に、実施例1で作製した含フッ素化合物(M1)の6.20g(0.020mol)と、実施例4で作製した含フッ素化合物(M2)の2.18g(0.80mol)と、重合開始剤としての1.4gの過酸化パーフルオロベンゾイルとを充填した。
管を3回の真空−解凍サイクルでアルゴンを用いて脱気してから、管を真空中で密封し、55〜60℃で12時間徐々に加熱した後、さらに100℃まで24時間加熱した。固体生成物をヘキサフルオロベンゼンに溶解した後、クロロホルム中に沈殿させた。収率は92%であり、ガラス転移温度(Tg)は、DSC分析で130℃であった。
生成したコポリマーの組成を19F NMRの測定によって決定したところ、M1及びM2の組成比率は、それぞれ16.5及び83.5モル%であることが確認された。
このコポリマーは280〜300℃で分解することなく溶融した。屈折率は1.3470(532nm)、1.3449(633nm)、1.3433(839nm)及び1.3405(1544nm)であった。
(Copolymer [1] having a charge molar ratio of (M 1 ) to (M 2 ) of 20:80)
6.20 g (0.020 mol) of the fluorinated compound (M 1 ) prepared in Example 1 and 2.18 g (0.80 mol) of the fluorinated compound (M 2 ) prepared in Example 4 were placed in a glass polymerization tube. ) And 1.4 g of perfluorobenzoyl peroxide as a polymerization initiator.
The tube was degassed with argon in three vacuum-thaw cycles, then the tube was sealed in vacuo, heated gradually at 55-60 ° C. for 12 hours, and then further heated to 100 ° C. for 24 hours. The solid product was dissolved in hexafluorobenzene and then precipitated into chloroform. The yield was 92%, and the glass transition temperature (Tg) was 130 ° C. by DSC analysis.
The composition of the produced copolymer was determined by 19 F NMR measurement, and it was confirmed that the composition ratios of M 1 and M 2 were 16.5 and 83.5 mol%, respectively.
The copolymer melted without decomposition at 280-300 ° C. The refractive indexes were 1.3470 (532 nm), 1.3449 (633 nm), 1.3433 (839 nm) and 1.3405 (1544 nm).

((M1)と(M2)との仕込みモル比が40:60のコポリマー[2])
ガラス管に実施例1で作製した含フッ素化合物(M1)の12.4g(0.04mol)と、実施例4で作製した含フッ素化合物(M2)の16.30g(0.06mol)と、過酸化パーフルオロベンゾイルの1.4gを充填した。管を脱気し、真空中で密封して55〜60℃で12時間加熱し、重合を完了させるため、さらに100℃まで24時間加熱した。生成したコポリマーをヘキサフルオロベンゼンに溶解した後、クロロホルム中に沈殿させた。収率は92%であり、Tgは120℃であった。
コポリマーの組成を19F NMRの測定によって決定したところ、M1及びM2の組成比率は、それぞれ38及び62であることが確認された。
このコポリマーは290〜300℃で溶融した。屈折率は1.3438(532nm)、1.3417(633nm)、1.3398(839nm)及び1.3345(1544nm)であった。
(Copolymer [2] having a charge molar ratio of (M 1 ) to (M 2 ) of 40:60)
12.4 g (0.04 mol) of the fluorine-containing compound (M 1 ) prepared in Example 1 and 16.30 g (0.06 mol) of the fluorine-containing compound (M 2 ) prepared in Example 4 on a glass tube 1.4 g of perfluorobenzoyl peroxide was charged. The tube was degassed, sealed in vacuum and heated at 55-60 ° C. for 12 hours and further heated to 100 ° C. for 24 hours to complete the polymerization. The resulting copolymer was dissolved in hexafluorobenzene and then precipitated into chloroform. The yield was 92% and Tg was 120 ° C.
The composition of the copolymer was determined by 19 F NMR measurement, and it was confirmed that the composition ratio of M 1 and M 2 was 38 and 62, respectively.
The copolymer melted at 290-300 ° C. The refractive indexes were 1.3438 (532 nm), 1.3417 (633 nm), 1.3398 (839 nm) and 1.3345 (1544 nm).

上記コポリマー[1]とコポリマー[2]の材料分散性を、下記式Iによって算出した。   The material dispersibility of the copolymer [1] and the copolymer [2] was calculated by the following formula I.

式I; M(λ)=−λd2n/cdλ2
[式中、nはポリマーの屈折率を表し、λは関連する波長を表し、cは真空中での光の速度を表す。]
Formula I; M (λ) = − λd 2 n / cdλ 2
[Wherein n represents the refractive index of the polymer, λ represents the relevant wavelength, and c represents the speed of light in vacuum. ]

また、波長の関数としての屈折率データを3項セルマイヤ式(three term sellmeier equation)にあてはめて、d2n/dλ2を算出した。 Further, d 2 n / dλ 2 was calculated by applying refractive index data as a function of wavelength to a three term sellmeier equation.

これらの算出により得られたM(λ)やd2n/dλ2の値から、コポリマー[1]及びコポリマー[2]の材料分散性は、過フッ化ポリマー、CYTOPに匹敵することが明らかとなった。 From the values of M (λ) and d 2 n / dλ 2 obtained by these calculations, it is clear that the material dispersibility of the copolymer [1] and the copolymer [2] is comparable to that of the perfluorinated polymer, CYTOP. became.

[実施例7]
<実施例4で作製した含フッ素化合物(M2)とヘプタフルオロプロピルトリフルオロビニルエーテルとのコポリマー>
ガラス重合管に200molのCFC−113、27.2g(0.10mol)の含フッ素化合物(M2)、9.7g(0.12mol)のヘプタフルオロプロピルトリフルオロビニルエーテル及び1.3gの過酸化パーフルオロジベンゾイルを充填した。
管を脱気して密封し、50℃で8時間、次いで60℃で12時間加熱した。その後、溶媒過剰モノマーを蒸発によって除去し、生じたポリマーを110℃、真空下で16時間乾燥させた。生成物の重量は34gであり、それを340℃で圧縮してフィルムとした。
このコポリマーについて19F NMRを測定したところ、58モル%の含フッ素化合物(M2)と42モル%のビニルエーテルで構成されていることがわかった。また、得られたコポリマーをDSC分析したところ、ガラス転移温度Tgは90℃であった。
[Example 7]
<Copolymer of the fluorine-containing compound prepared in Example 4 and (M 2) and heptafluoropropyl trifluorovinyl ether>
In a glass polymerization tube, 200 mol of CFC-113, 27.2 g (0.10 mol) of a fluorinated compound (M 2 ), 9.7 g (0.12 mol) of heptafluoropropyl trifluorovinyl ether and 1.3 g of peroxidic peroxide. Filled with fluorodibenzoyl.
The tube was degassed and sealed and heated at 50 ° C. for 8 hours and then at 60 ° C. for 12 hours. The solvent excess monomer was then removed by evaporation and the resulting polymer was dried at 110 ° C. under vacuum for 16 hours. The product weighed 34 g and was compressed at 340 ° C. into a film.
When 19 F NMR of this copolymer was measured, it was found that it was composed of 58 mol% of a fluorine-containing compound (M 2 ) and 42 mol% of vinyl ether. Moreover, when the obtained copolymer was analyzed by DSC, the glass transition temperature Tg was 90 degreeC.

[実施例8]
<実施例4で作製した含フッ素化合物(M2)とヘプタフルオロプロピルトリフルオロビニルエーテルとのコポリマー>
ガラス重合管に27.2g(0.10mol)の含フッ素化合物(M2)、1.9g(0.02mol)のヘプタフルオロプロピルトリフルオロビニルエーテル、及び1.3gの過酸化パーフルオロジベンゾイルを充填した。
管を脱気して密封した後、管を40℃で10時間、次いで60℃で12時間加熱した。未反応のモノマーを蒸発によって除去し、生じたポリマーを110℃、真空下で16時間乾燥させた。そのポリマーをヘキサフルオロベンゼンに溶解し、クロロホルムで再沈殿させた。
このコポリマーについて19F NMRを測定したところ、92モル%の含フッ素化合物(M2)と8モル%のビニルエーテルで構成されていることがわかった。また、得られたコポリマーをDSC分析したところ、ガラス転移温度Tgは122℃であった。
[Example 8]
<Copolymer of the fluorine-containing compound prepared in Example 4 and (M 2) and heptafluoropropyl trifluorovinyl ether>
A glass polymerization tube was filled with 27.2 g (0.10 mol) of a fluorine-containing compound (M 2 ), 1.9 g (0.02 mol) of heptafluoropropyl trifluorovinyl ether, and 1.3 g of perfluorodibenzoyl peroxide. did.
After the tube was degassed and sealed, the tube was heated at 40 ° C. for 10 hours and then at 60 ° C. for 12 hours. Unreacted monomer was removed by evaporation and the resulting polymer was dried at 110 ° C. under vacuum for 16 hours. The polymer was dissolved in hexafluorobenzene and reprecipitated with chloroform.
When 19 F NMR of this copolymer was measured, it was found that it was composed of 92 mol% of a fluorine-containing compound (M 2 ) and 8 mol% of vinyl ether. Moreover, when the obtained copolymer was analyzed by DSC, the glass transition temperature Tg was 122 degreeC.

実施例6における、原料中の含フッ素化合物(M1)の含有率(モル%)と生成したポリマー中の含フッ素化合物(M1)に起因する構造の含有率との関係(モル%)を示す図である。In Example 6, the relationship (mol%) between the content (mol%) of the fluorine-containing compound (M 1 ) in the raw material and the content of the structure due to the fluorine-containing compound (M 1 ) in the produced polymer. FIG. 実施例5において得られたコポリマー中の含フッ素化合物(M1)の含有率(モル%)と該コポリマーのガラス転移温度(Tg)との関係を示す図である。It is a diagram showing the relationship between the content of the glass transition temperature (mol%) and the copolymer (Tg) of the fluorine-containing compound in the copolymer obtained in Example 5 (M 1). 実施例5において得られたコポリマー中の含フッ素化合物(M1)の含有率(モル%)と該コポリマーの屈折率との関係を示す図である。It is a diagram showing the relationship between content (mol%) and the refractive index of the copolymer of the fluorine-containing compound in the copolymer obtained in Example 5 (M 1).

Claims (8)

下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と下記化学式(3)で表される化合物の1種類以上とを反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程とを有する下記化学式(4)で表される含フッ素化合物の製造方法。
[式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、xは1〜3のいずれかの整数を表す。]
A step of obtaining a condensate by reacting one or more compounds represented by the following chemical formula (1) or one or more compounds represented by the following chemical formula (3) with one or more of the compounds represented by the following chemical formula (3): The manufacturing method of the fluorine-containing compound represented by following Chemical formula (4) which has the process of fluorinating this condensate in a fluorine-type solution in fluorine gas atmosphere.
[Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, x represents an integer of 1-3. ]
下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と下記化学式(5)で表される化合物の1種類以上とを反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程と、を有する下記化学式(6)で表される含フッ素化合物の製造方法。
[式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、x及びyは各々独立に1〜3のいずれかの整数を表す。]
A step of obtaining a condensate by reacting one or more compounds represented by the following chemical formula (1) or one or more compounds represented by the following chemical formula (5) with one or more of the compounds represented by the following chemical formula (5): A method of producing a fluorine-containing compound represented by the following chemical formula (6), comprising: fluorinating the condensate in a fluorine-based solution in a fluorine gas atmosphere.
[Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, x and y are each integer of independently 1 to 3 Represents. ]
下記化学式(1)で表される化合物又は化学式(2)で表される化合物の1種類以上と、下記化学式(7)で表される化合物の1種類以上と、を反応させ縮合物を得る工程と、該縮合物をフッ素系溶液中、フッ素ガス雰囲気下でフッ素化する工程と、を含む下記化学式(8)で表される含フッ素化合物の製造方法。
[式中、Xは水素原子又はフッ素原子を表し、Yは炭素数1〜7のアルキル基を表し、Zは水酸基を表し、n1及びn2は各々独立に1〜3のいずれかの整数を表す。]
A step of obtaining a condensate by reacting one or more compounds represented by the following chemical formula (1) or one represented by the following chemical formula (7) with one or more compounds represented by the following chemical formula (7) And a step of fluorinating the condensate in a fluorine-based solution in a fluorine gas atmosphere. A method for producing a fluorine-containing compound represented by the following chemical formula (8):
[Wherein, X represents a hydrogen atom or a fluorine atom, Y represents an alkyl group having 1 to 7 carbon atoms, Z is represents a hydroxyl group, an integer of 1-3 each independently n1 and n2 Represents. ]
記化学式(6)又は化学式(8)で表される含フッ素化合物。


[式中、x及びyは、各々独立に1〜3のいずれかの整数を表し、n1及びn2は、各々独立に1〜3のいずれかの整数を表す。]
Under hear Science formula (6) or the fluorine-containing compound represented by the chemical formula (8).


[Wherein, x and y each independently represents an integer of 1 to 3, and n1 and n2 each independently represents an integer of 1 to 3. ]
請求項4に記載の含フッ素化合物の重合により得られる含フッ素ホモポリマー。   A fluorine-containing homopolymer obtained by polymerization of the fluorine-containing compound according to claim 4. 請求項4に記載の含フッ素化合物と、該含フッ素化合物以外の不飽和含フッ素化合物との共重合により得られる含フッ素コポリマー。   A fluorine-containing copolymer obtained by copolymerization of the fluorine-containing compound according to claim 4 and an unsaturated fluorine-containing compound other than the fluorine-containing compound. 請求項5に記載の含フッ素ホモポリマー及び請求項6に記載の含フッ素コポリマーのうち少なくとも1種を含む光学部材又は電気部材。 An optical member or an electrical member comprising at least one of the fluorine-containing homopolymer according to claim 5 and the fluorine-containing copolymer according to claim 6. 前記光学部材又は電気部材が、光ファイバ、光導波路、フォトマスク又はコーティング材料であることを特徴とする請求項7に記載の光学部材又は電気部材。   The optical member or electrical member according to claim 7, wherein the optical member or electrical member is an optical fiber, an optical waveguide, a photomask, or a coating material.
JP2005238676A 2004-11-22 2005-08-19 Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer Expired - Fee Related JP4776303B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62961404A 2004-11-22 2004-11-22
US60/629,614 2004-11-22

Publications (2)

Publication Number Publication Date
JP2006143702A JP2006143702A (en) 2006-06-08
JP4776303B2 true JP4776303B2 (en) 2011-09-21

Family

ID=36623805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238676A Expired - Fee Related JP4776303B2 (en) 2004-11-22 2005-08-19 Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer

Country Status (1)

Country Link
JP (1) JP4776303B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY166613A (en) 2005-11-22 2018-07-17 Gfbiochemicals Ltd Glycerol levulinate ketals and their use
EP2128150A1 (en) 2006-12-20 2009-12-02 Asahi Glass Company, Limited Fluorine-containing compound and fluorine-containing polymer
MX325514B (en) 2007-10-09 2014-11-21 Segetis Inc METHOD FOR PREPARING CETALS AND ACETALS.
US8575367B2 (en) 2008-09-25 2013-11-05 Segetis, Inc. Ketal ester derivatives
KR101808867B1 (en) 2009-06-22 2018-01-18 세게티스, 인코포레이티드. Ketal compounds and uses thereof
CN102970967A (en) 2010-05-10 2013-03-13 赛格提斯有限公司 Fragrant formulations, methods of manufacture thereof and articles comprising the same
EP2601184B1 (en) 2010-08-03 2015-12-16 Segetis, Inc. Methods for the manufacture of ketals
US9074065B2 (en) 2010-08-12 2015-07-07 Segetis, Inc. Latex coating compositions including carboxy ester ketal coalescents, methods of manufacture, and uses thereof
JP5805764B2 (en) 2010-08-12 2015-11-10 セゲティス インコーポレーテッドSegetis,Inc Carboxyester ketal removal compositions, methods for their production and their use
EP2613760A2 (en) 2010-09-07 2013-07-17 Segetis, Inc. Compositions for dyeing keratin fibers
CN103097604A (en) 2010-09-13 2013-05-08 赛格提斯有限公司 Fabric softener compositions and methods of manufacture thereof
CN103154158B (en) 2010-10-18 2017-04-05 Gf生化有限公司 Water-reducible coating composition comprising carboxyl ketals, its production method and purposes
WO2014047428A1 (en) 2012-09-21 2014-03-27 Segetis, Inc. Cleaning, surfactant, and personal care compositions
AU2013352172A1 (en) 2012-11-29 2015-06-11 Gfbiochemicals Limited Carboxy ester ketals, methods of manufacture, and uses thereof
JP7395338B2 (en) * 2019-12-04 2023-12-11 日東電工株式会社 Method for producing optical resin composition and optical resin composition
JP7460915B2 (en) * 2021-09-02 2024-04-03 ダイキン工業株式会社 Method for producing fluorine-containing dioxolanes and compositions useful for the production thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3308107A (en) * 1965-04-30 1967-03-07 Du Pont Perfluoro(2-methylene-4-methyl-1, 3-dioxolane) and polymers thereof
JP3204738B2 (en) * 1992-06-05 2001-09-04 旭硝子株式会社 Fluorine-containing compound and method for producing the same
US5408020A (en) * 1994-05-09 1995-04-18 E. I. Du Pont De Nemours And Company Copolymers of perhalo-2,2-di-loweralkyl-1,3-dioxole, and perfluoro-2-methylene-4-methyl-1,3-dioxolane
DE60224554T2 (en) * 2001-10-30 2009-01-08 Asahi Glass Co., Ltd. FLUOROSULFONYL COMPOUNDS AND METHOD FOR PRODUCING DIRECTLY DERIVED COMPOUNDS
WO2004097851A1 (en) * 2003-04-28 2004-11-11 Asahi Glass Company Limited Solid polymeric electrolyte material, process for producing the same and membrane/electrode assembly for solid polymer fuel cell
CN1930195A (en) * 2004-03-08 2007-03-14 旭硝子株式会社 Curable composition and process for producing cured fluorochemical

Also Published As

Publication number Publication date
JP2006143702A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP4776303B2 (en) Method for producing fluorine-containing compound, fluorine-containing compound, fluorine-containing polymer, and optical material or electric material using fluorine-containing polymer
JP4776536B2 (en) Method for producing fluorine-containing 1,3-dioxolane compound
JP3074086B2 (en) Photocurable oxetane composition
JP5241795B2 (en) Method for producing fluorine-containing 1,3-dioxolane compound, fluorine-containing 1,3-dioxolane compound, fluorine-containing polymer of fluorine-containing 1,3-dioxolane compound, and optical material or electric material using the polymer
JP5789545B2 (en) Fluorine-containing compound, liquid repellent treatment agent, and cured film
US7754901B2 (en) Method for producing fluorinated compounds and polymers
JPH05194655A (en) Dioxole polymer
US6365760B1 (en) Naphthalene derivative, binaphthalene derivative and biphenyl derivative and cationically curable compound
Hung The chemistry of fluorinated dioxoles and dioxolanes. 5. Structure-property relationship of fluorinated dioxole polymers
JP4696914B2 (en) Novel fluorine-containing dioxolane compound and novel fluorine-containing polymer
Yang et al. Investigation of homopolymerization rate of perfluoro-4, 5-substituted-2-methylene-1, 3-dioxolane derivatives and properties of the polymers
JP2001040085A (en) Cation curable composition
US10696878B2 (en) Fluorene derivative, method for producing the same, resin composition, and article
US4973714A (en) Halogenated 1,3-dioxolanes and derivatives
JP2001226365A (en) Oxetane compound, method of preparing the same and polymerizable composition
JP5405515B2 (en) Method for producing fluorinated compound and fluorinated polymer
JP2002155073A (en) 4-methylene-1,3-dioxolane compound, method for producing the same, photocationic cross-linking composition and transparent film
US5057586A (en) Halogenated 1,3-dioxolanes and derivatives
JP2004099607A (en) 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and polymer comprising the same as monomer
JP2001081055A (en) Polyfunctional aliphatic vinyl ether, polymerizable composition and its cured material
JP2006327953A (en) New sulfur-containing cyclic compound and method for producing the same
JP2004059527A (en) Bis (1,1,1,3,3,3-hexafluoro-2-hydroxypropyl) benzene derivative having oxetane ring
JPS6144887A (en) Optically active 2-methylene-4-substituted-1,3-dioxolane
JPH0356444A (en) Fluorine-containing diacrylate having ether bond and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

R150 Certificate of patent or registration of utility model

Ref document number: 4776303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees