JPH02136713A - Diagnostic system for plant facility - Google Patents

Diagnostic system for plant facility

Info

Publication number
JPH02136713A
JPH02136713A JP63288855A JP28885588A JPH02136713A JP H02136713 A JPH02136713 A JP H02136713A JP 63288855 A JP63288855 A JP 63288855A JP 28885588 A JP28885588 A JP 28885588A JP H02136713 A JPH02136713 A JP H02136713A
Authority
JP
Japan
Prior art keywords
data
deterioration
diagnosis
reliability
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63288855A
Other languages
Japanese (ja)
Other versions
JPH061206B2 (en
Inventor
Toshihiro Noda
俊博 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63288855A priority Critical patent/JPH061206B2/en
Publication of JPH02136713A publication Critical patent/JPH02136713A/en
Publication of JPH061206B2 publication Critical patent/JPH061206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing And Monitoring For Control Systems (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To contrive the improvement of the efficiency of a plant operation and the improvement of safety by automatizing the decision of a deterioration factor diagnosis, based on the reliability and the transition time of a variation from data which is processed and brought to calculation analysis in the course of plant operation. CONSTITUTION:In this system 20, data in the course of plant operation is processed by a data processing part 15, and the calculation analysis of its data is executed by a performance calculating part 16. Subsequently, a main point diagnostic part 21 evaluates the reliability of the data and decides a factor, and thereafter, evaluates the reliability of the diagnosis. These measured data and analysis result information are reserved in a data bank 17, and displayed by a display part 18. In this diagnostic part 21, the state of a sudden variation is decided by a fact that calculated data exceeds the mean value of data in a prescribed period in the past stored in the bank 17 and a sudden variation criterion based on the degree of variance. Also, a slow variation is decided by a fact that a predicting value by the calculated data exceeds a criterion value based on initial data of a deterioration diagnostic start time point. Also, by installing this diagnostic part 21, the deterioration can be decided automatically.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は例えば火力発電プラン1−機器の劣化徴候等を
診断し、予防保全の支援を行なうプラント設備診断シス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a plant equipment diagnosis system for diagnosing signs of deterioration of equipment in thermal power generation plan 1, for example, and supporting preventive maintenance.

〈従来の技術) 火力発電プラント等においては、経済性の手要な指標と
して、発電効率ならびにプラントの各構成機器について
の効率を把握するため、定期的に運転データを採取して
、性能評価ならびに解析評価が行なわれる。これにより
プラント全体の経年的な劣化状況ならびに主要目器の性
能把握を行ない、他のプラントを含めた運用計画ならび
に劣化状況から機器の異常状態を推定し、予防保全のた
めの詳細点検や補修等の計画を行なうものである。
<Conventional technology> In thermal power plants, etc., operational data is periodically collected to assess the performance and evaluate the efficiency of each component of the plant, as important indicators of economic efficiency. Analysis and evaluation are performed. Through this, we can grasp the deterioration status of the entire plant over time and the performance of major equipment, estimate abnormal conditions of equipment from the operation plan including other plants and the deterioration status, and carry out detailed inspections and repairs for preventive maintenance. The plan is to carry out the following.

しかし、定期的な性能評価の作業は、データ採取、解析
評価、性能計算など各段階で各々計停機を使用して作業
を行なうものの、データ採取のための性能試験の設定や
、計算データの詳細、YJI断等は手作業で行なわれて
d3す、多大な労力が必要である。
However, although periodic performance evaluation work uses scheduled stoppage machines at each stage such as data collection, analysis evaluation, and performance calculation, it is difficult to set up performance tests for data collection and details of calculation data. , YJI cutting, etc. are done manually and require a great deal of effort.

そこで、これまでに、火力発電プラントの監視や異常診
断の機能を自動化し、支援を行なうための診断システム
が種々提案されている。例えば管理用計算機のシステム
では、蒸気温度、圧力、各抽気部の温度、給水流量、発
電機出力等の制御ならびに監視用として収録される各種
センサからの測定データを、定期的に保存するとともに
、そのデータに基づき、要求に応じて性能評価を行なう
ようになっている。
Therefore, various diagnostic systems have been proposed to automate and support the monitoring and abnormality diagnosis functions of thermal power plants. For example, a management computer system periodically saves measurement data from various sensors that are recorded for controlling and monitoring steam temperature, pressure, temperature of each extraction section, water supply flow rate, generator output, etc. Based on this data, performance evaluations are performed as required.

第7図は火力発電プラントの投錨診断システムの従来例
を示している。第7図において、火力発電プラント1は
、ボイラ2、タービン3、発電機4、復水器5、復水ポ
ンプ6、低圧給水加熱器7、脱気器8、給水ポンプ9、
高圧給水加熱器10等から構成されている。この火力発
電プラント1に制御計算機12、運転盤13および管理
用計算機14が接続されている。管理用計算機14はデ
ータ処理部15、性能計惇部16、データバンク17、
結果表示部18、外部情報入力部19等から構成されて
いる。
FIG. 7 shows a conventional example of an anchoring diagnosis system for a thermal power plant. In FIG. 7, the thermal power plant 1 includes a boiler 2, a turbine 3, a generator 4, a condenser 5, a condensate pump 6, a low-pressure feed water heater 7, a deaerator 8, a feed water pump 9,
It is composed of a high-pressure feed water heater 10 and the like. A control computer 12, an operation panel 13, and a management computer 14 are connected to this thermal power plant 1. The management computer 14 includes a data processing section 15, a performance measurement section 16, a data bank 17,
It is composed of a result display section 18, an external information input section 19, and the like.

データ処理部15は要求時点ならび定期的に保存された
データバンク17のデータベースから必要な測定データ
を抽出するとともに、センサの計測誤差を防ぐための平
均化処理、データのばらつきを標準偏差等により算出す
る処理、破断などセンサ異常で発生する不合理な数値の
検出、排除等の機能を有する。
The data processing unit 15 extracts the necessary measurement data from the database of the data bank 17 that is stored at the time of request and periodically, performs averaging processing to prevent sensor measurement errors, and calculates data dispersion using standard deviation, etc. It has functions such as processing, detecting and eliminating unreasonable values that occur due to sensor abnormalities such as breakage.

また、性能計粋部16は蒸気温度、圧力等から蒸気表に
よるエントロピ等の綽出、予め与えられた性能計葬式に
基づく解析、大気圧や冷却水温度等の測定条件に基づく
修正係数等の算出を行なう。
In addition, the performance measurement section 16 calculates entropy, etc. based on steam tables from steam temperature, pressure, etc., analyzes based on performance meter functions given in advance, and calculates correction coefficients, etc. based on measurement conditions such as atmospheric pressure and cooling water temperature. Perform calculations.

さらに結果表示部18は、性能計算結果ならびに各秤デ
ータの表示をリスト等により表示出力するものである。
Further, the result display section 18 displays and outputs the performance calculation results and each scale data in the form of a list or the like.

この表示結果を基に、各機器の劣化が進んでいる場合に
は、例えば運転中に行なえる手段として、復水器細管の
汚れ洗浄のための逆洗操作等の11画、予防保全の立場
から劣化機器の詳細な点検計画や補修等の計画が行なわ
れる。
Based on this display result, if the deterioration of each device is progressing, for example, measures that can be taken during operation include backwashing to clean the condenser tubes, and from a preventive maintenance standpoint. From then on, detailed inspection plans and repair plans for deteriorated equipment are made.

(発明が解決しようとする課題) プラントの性能評価により長期的な劣化の傾向を把握し
、プラン1−を構成する各機器の予防保全を行なうため
には、劣化の判定とともに変化の状態を判定することが
不可欠である。即ち、劣化が同程度のものであっても、
その変化が徐々に進行したちのく以下、漸変という)で
あるか、またはある期間を境に急激に進行したもの(以
下、突変という)であるかにより、機器内部の異常要因
が異なる。例えば蒸気タービンの内部効率のうら、第1
段落内部効率が徐々に変化する漸変の段階では、第1段
ノズルの工O−ジョンかスケール付着が要因と考えられ
る。この場合は過去の定期点検時の経緯を基に比較的長
期的な計画に沿った対策ならびにその発生原因である水
質管理等の処置を行なう必要がある。一方、突変の場合
には、第1段ノズルの欠損、動翼の損傷、異物の詰り、
あるいはバルブ類の異常等が考えられ、甲急な精W!貞
検が必要となる。
(Problem to be solved by the invention) In order to understand long-term deterioration trends through plant performance evaluation and perform preventive maintenance of each equipment that makes up Plan 1-, it is necessary to determine deterioration as well as the state of change. It is essential to do so. In other words, even if the deterioration is of the same degree,
The cause of the abnormality inside the device differs depending on whether the change progresses gradually (hereinafter referred to as gradual change) or rapidly after a certain period of time (hereinafter referred to as sudden change). . For example, in addition to the internal efficiency of a steam turbine, the first
At the stage of gradual change in which the internal efficiency of the stage gradually changes, it is thought that the first stage nozzle's construction or scale adhesion is the cause. In this case, it is necessary to take countermeasures based on a relatively long-term plan based on the history of past periodic inspections, and to take measures such as water quality management, which is the cause of the occurrence. On the other hand, in the case of sudden changes, damage to the first stage nozzle, damage to the rotor blades, clogging of foreign objects,
Or, there may be an abnormality in the valves, etc., and it is urgent! A chastity test is required.

このような測定データならびに性能評価データに基づく
判定は、従来熟練運転者または補修担当者等が行なって
おり、個人の判定基準により左右される。また、異常徴
候の変化状態を判定するアルゴリズムについても、例え
ば軸振動変化に基づく異常徴候を診断する異常診断シス
テムにおいては、データ中に異常徴候を検出した後、繰
り返しデータが変化するかの確認が行なえることから、
例えば特願昭62−260193号等で示された手段が
ある。
Judgments based on such measurement data and performance evaluation data have conventionally been made by skilled drivers or repair personnel, and are influenced by individual judgment criteria. In addition, regarding the algorithm for determining the state of change in abnormal signs, for example, in an abnormal diagnosis system that diagnoses abnormal signs based on shaft vibration changes, after detecting abnormal signs in the data, it is repeatedly checked whether the data changes. Because it can be done,
For example, there is a method disclosed in Japanese Patent Application No. 62-260193.

ところが劣化診断の如く、定期的データを処理するもの
であっても、その測定間隔が1日または1M間重位で与
えられるような長期に亘るものでは同様のアルゴリズム
が使用できず、オフラインでの人間の判定に依存せざる
を得なかった。
However, even if periodic data is processed, such as deterioration diagnosis, similar algorithms cannot be used when the measurement interval is over a long period of time, such as 1 day or 1M. We had no choice but to rely on human judgment.

本発明はこのような事情に鑑みてなされたもので、これ
まで主に人間が行なっていた劣化診断における変化状況
の判定を自動化することにより、計算機による性能評価
システム上において、各プラント構成機器の劣化要因を
判定することを可能にし、各機器の予防保全の支援を確
実なものとし、プラント運転の効率向上ならびに一層の
安全性向上が図れるプラント設備診断システムを提供す
ることを目的とする。
The present invention has been made in view of these circumstances, and by automating the determination of change status in deterioration diagnosis, which has been mainly performed by humans, it is possible to evaluate the performance of each plant component on a computer-based performance evaluation system. The purpose of the present invention is to provide a plant equipment diagnosis system that makes it possible to determine the causes of deterioration, ensure support for preventive maintenance of each piece of equipment, and improve the efficiency and safety of plant operation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、プラン1〜の運転中のデータに基づいてその
プラントの性能評価等を行なうプラント設備診断システ
ムにおいて、運転中のデータの処理を行なうデータ処理
手段と、処理したデータの計算解析を行なう計0解析手
段と、前記データの信頼性およびデータ変化の推移時間
に基づく劣化要因を診断する要因診断手段と、測定デー
タおよび解析結果情報を保存するデータバンクと、これ
らのデータを表示するデータ表示手段とを怖えてなるこ
とを特徴とする。
(Means for Solving the Problems) The present invention provides a data processing means for processing data during operation in a plant equipment diagnosis system that performs performance evaluation of a plant based on data during operation in Plan 1. , a total zero analysis means for performing calculation analysis of the processed data, a factor diagnosis means for diagnosing deterioration factors based on reliability of the data and data change transition time, and a data bank for storing measurement data and analysis result information. , and a data display means for displaying these data.

(作用) 本発明においては、プラントの運転状態値を常時センサ
からのデータとして取込み、運転条件が満足されると一
定間隔で診断・評価が行なわれる。
(Operation) In the present invention, the operating state values of the plant are constantly taken in as data from sensors, and when operating conditions are satisfied, diagnosis and evaluation are performed at regular intervals.

性能評価等の際は、まずデータ処理部へデータバンクか
ら必要な運転状態データが送られ、性能計算のための平
均値計算等の必要な前処理が行なわれる。この結果がデ
ータバンクへ保管されろとともに、要因診断手段に送ら
れ、データの信頼性およびデータ変化の推移時間に基づ
き、その変化が突然的なものであるか、漸次表われたも
のであるか等の診断が行なわれる。また、その結果はデ
ータ表示手段にて表示される。
When performing performance evaluation, etc., first, necessary operating state data is sent from the data bank to the data processing section, and necessary preprocessing such as average value calculation for performance calculation is performed. The results are stored in a data bank and sent to a factor diagnosis tool, which determines whether the change is sudden or gradual, based on the reliability of the data and the time of data change. Diagnoses such as: Further, the results are displayed on the data display means.

(実施例) 以下、本発明の一実施例を第1図〜第5図を参照して説
明する。なお、この実施例は火力発電プラントを対象と
するもので、従来と共通な部分については第7図も参照
し、重複説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 5. Note that this embodiment is intended for a thermal power plant, and FIG. 7 is also referred to for the parts common to the conventional one, and redundant explanation will be omitted.

第1図はプラント膜幅診断システムの手順を示している
。即ち、この方法を実施覆るブラン1−性能評価システ
ム20は、データ処理部15、性能(効率)計篩部16
、データの信頼度を評価し要因を判定した上で診断の信
頼度を評価する要点診断部21、結果表示部18、表示
結果よりデータの再計算あるいは確認後完了手続を行な
うデータ再計算部22、測定データならびに解析結果を
保存し必要により比較データを与えるデータバンク17
、センサの取換情報や機器の交換情報等システム外部環
境の訂改正情報を管理するセンサ管理部23で構成され
る。
FIG. 1 shows the procedure of the plant membrane width diagnosis system. That is, the performance evaluation system 20 that implements this method includes a data processing section 15, a performance (efficiency) measuring section 16,
, a key diagnosis section 21 that evaluates the reliability of the data and determines the factors, and then evaluates the reliability of the diagnosis; a result display section 18; and a data recalculation section 22 that recalculates the data based on the displayed results or performs the completion procedure after confirmation. , a data bank 17 that stores measurement data and analysis results and provides comparative data if necessary.
, a sensor management unit 23 that manages revision information of the system external environment, such as sensor replacement information and equipment replacement information.

要因診!l1M21はデータ信頼度評価手段24、突変
/漸変判定f段25、要因判定手段26および診断信頼
度評価手段27により構成される。
Cause diagnosis! l1M21 is composed of data reliability evaluation means 24, sudden change/gradual change determination f stage 25, factor determination means 26, and diagnosis reliability evaluation means 27.

突変判定手段は今回の算出データがデータバンクに保管
している過去の一定期間のデータの平均値ならびにバラ
ツキ度から求められる突変判定基準10を超えることで
判定される。同じく、漸変の判定は上記データによる予
測値(−次近似値)が劣化診断を開始する時点での初期
データで定められる判定基準値を超えることで判定し、
本判定手段を付加することで劣化の自動判定が可能とな
る。
The sudden change determination means determines if the current calculated data exceeds the sudden change determination criterion 10 determined from the average value and degree of dispersion of past fixed period data stored in the data bank. Similarly, gradual change is determined when the predicted value (-th order approximation value) based on the above data exceeds the determination reference value determined by the initial data at the time of starting the deterioration diagnosis,
By adding this determination means, automatic determination of deterioration becomes possible.

即ち、突変の判定は第2図に示すように、過去の一定期
間(第2図では1ケ月間)のデータを使用し最小二乗法
等を用いて外挿した今回データの予測値へO8′ とデ
ータのバラツキ度等により定めた突変判定基準裕度DA
Oで定義される範囲を今回n出したデータAが超えかた
否がで判定する。
In other words, as shown in Figure 2, sudden changes are determined by using data from a certain period in the past (one month in Figure 2) and extrapolating the current data using the method of least squares. ′ and the sudden change judgment standard margin DA determined based on the degree of data variation, etc.
The determination is made based on whether or not the data A that has been output this time exceeds the range defined by O.

この基準裕度は、標準偏差等により算出し、次の条件と
なる。
This standard tolerance is calculated using standard deviation, etc., and has the following conditions.

+A−AO8’  I≧DAO 一方、漸変の判定は第3図に示すように、過去一定期間
のデータを基に外挿して求めた今回データの予測値AO
8’ と突変判定基準裕度DAOで定義される範囲内に
今回のデータ八があり、がっ、今回のデータを含めて求
めた診断対象値AO8が劣化診断を始める際に定義した
初期値AOならびに初期段階の一定期間(第3図では1
ケ月間)のデータで定めた変化有無の判定基準裕度DA
1で定めた範囲外になった時に漸変と判定する。
+A-AO8' I≧DAO On the other hand, as shown in Figure 3, the judgment of gradual change is based on the predicted value AO of the current data obtained by extrapolating based on the data of a certain period in the past.
8' and the current data 8 is within the range defined by the sudden change judgment standard tolerance DAO, and the diagnosis target value AO8 calculated including the current data is the initial value defined when starting the deterioration diagnosis. AO and a certain period in the initial stage (1 in Figure 3)
Criteria tolerance DA for determining the presence or absence of change based on data from
When it falls outside the range defined in step 1, it is determined that the change is gradual.

即ち、IA−AO8’  l<DAOANDIAO−A
O8l ≧DA1 である。
That is, IA-AO8'l<DAOANDIAO-A
O8l≧DA1.

次に、要因判定手段21は各部の劣化状況の判定を基に
劣化に至った要因を推定する方法を捉示するものである
Next, the factor determination means 21 determines a method for estimating the factors that led to the deterioration based on the determination of the deterioration status of each part.

第4図に判定手段の一実施例の概要を示す。即ち、各ブ
ロック毎の、例えば高圧タービンセクションあるいは給
水加熱器性能の如く一系列の全体効率変化を評価した後
、向上と認められる場合はセンサ管理部23で支援され
る改造・修理判定ルーチンの手段を実行し、劣化ないし
変化無しの場合は各部の効率変化を評価する。
FIG. 4 shows an outline of an embodiment of the determination means. That is, after evaluating the overall efficiency change of a series such as high pressure turbine section or feed water heater performance for each block, if an improvement is recognized, the modification/repair judgment routine supported by the sensor management section 23 is executed. If there is no deterioration or no change, evaluate the change in efficiency of each part.

ここでも向上の場合は改造・修理判定ルーチンを実行し
、劣化が認められる場合は要因判定へのルーチンを実行
し、変化無しの場合はセンサ異常等をチエツクする要因
判定Bのルーチンを実行する。 各部の効率変化を逐次
行ない全体の判定が終了した段階で結果出力の段階とな
る。
Here, too, if there is an improvement, a modification/repair determination routine is executed, if deterioration is observed, a routine to cause determination is executed, and if there is no change, a factor determination routine B is executed to check for sensor abnormality, etc. The efficiency of each part is changed sequentially, and when the overall judgment is completed, the result is output.

第5図に要因判定Aに使用する判定基準の一例を示す。FIG. 5 shows an example of the criteria used for factor determination A.

変化状況の判定が要因判定の主要な項目である。Determining the state of change is the main item in determining the cause.

診断信頼度の評価手段27は先に示した計測データ等の
信頼度評価と要因判定の信頼度等を加篩し、総合評価を
下すものである。
The diagnostic reliability evaluation means 27 performs a comprehensive evaluation by sifting the reliability evaluation of the measurement data and the reliability of factor determination described above.

以上の劣化診断ならびに要因判定結果はデータバンク1
7に保管するとともにマンマシンインタフェースを介し
て結果の表示を行なう。
The above deterioration diagnosis and factor determination results are available in Data Bank 1.
7 and display the results via a man-machine interface.

この表示結果を基に、確認後終了手続または判定基準や
不合理なデータを変更し、診断再計算の手続が可能であ
る。
Based on this display result, it is possible to complete the procedure after confirmation or to change the judgment criteria or unreasonable data and recalculate the diagnosis.

また、センサ管理部23では診断をする際の重要なファ
クターであるセンサの積換情報や器差補正のデータ、被
診断機器の改造・修理の履歴データを入・出力し継続管
理するものである。
In addition, the sensor management unit 23 inputs/outputs and continuously manages sensor transshipment information, instrumental error correction data, and historical data of modification/repair of the equipment to be diagnosed, which are important factors in diagnosis. .

以上延べた如く、本実施例のプラント設m診断システム
では突変/漸変判定手段を付加することにより劣化傾向
における変化状態を人間を介在させることなく判定する
ことができ、引き続き要因判定手段によって、劣化に至
った要因を推定することが可能となる。
As described above, in the plant design diagnosis system of this embodiment, by adding the sudden change/gradual change determining means, it is possible to determine the state of change in the deterioration tendency without human intervention. , it becomes possible to estimate the factors that led to the deterioration.

なお、第3図で示した漸変判定基準においては、突変判
定基準裕度DAOをn出するデータとして一定期間のデ
ータが全て使用できるものとして判定した。しかしなが
ら、比較的長期的な履歴データが必要となる本システム
の基準データにおいては所定期間中に突変状態等異常値
を示すことがわかる。第6図はそのような状態を模示し
たものであり、状態Bのデータが突変と診断される値で
ある。したがってこのような異常値と判定した場合には
データバンクに保存する場合に所定のフラッグを立てて
保存し、基準データ作成の際に使用制限を行なうことが
できる。
In addition, in the gradual change determination criterion shown in FIG. 3, it was determined that all data for a certain period of time can be used as data for calculating the sudden change determination criterion margin DAO n. However, it can be seen that the standard data of this system, which requires relatively long-term historical data, shows abnormal values such as sudden changes during a predetermined period. FIG. 6 illustrates such a state, and the data in state B is a value that is diagnosed as a sudden change. Therefore, when it is determined that such an abnormal value is present, a predetermined flag can be set and saved when storing it in a data bank, and usage can be restricted when creating reference data.

また、前実施例では性能評価を対象としたが、本発明は
これに限らず、余寿命管理等の長期的な変化傾向を管理
し、その変化状態によって要因を判定する種々の自動化
システムに適用することができるね。
In addition, although the previous embodiment targeted performance evaluation, the present invention is not limited to this, but can be applied to various automated systems that manage long-term change trends such as remaining life management and determine factors based on the state of change. You can do that.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明よれば、突変/漸変の判定等の劣
化傾向における変化状態が自動的に判定できるようにな
り、診断に不可欠な要因判定の指標が確実に得られ、プ
ラン]・の運転支援および予防保全が効果的に行なえる
という効果が奏される。
As described above, according to the present invention, it becomes possible to automatically determine the state of change in the deterioration tendency, such as determining sudden change/gradual change, and it is possible to reliably obtain indicators for determining factors essential for diagnosis.・The effect is that driving support and preventive maintenance can be performed effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すプラント性能評価シス
テム図、第2図および第3図番よ突変および漸変の判定
方法を説明するためのグラフ、第4図は要因判定の手段
を示すシステム図、第5図は要因判定基準を説明する図
、第6図は本発明の他の実施例を説明するためのグラフ
、第7図は従来例を説明するための機能ブロック図であ
る。 1・・・火力発電プラント、2・・・高・中圧タービン
、3・・・低圧タービン、4・・・発電機、5・・・復
水器、6・・・復水ポンプ、7・・・低圧給水加熱器、
8・・・脱気器、9・・・給水ポンプ、10・・・^圧
検水加熱器、11・・・ボイラ、12・・・制御計i機
、13・・・運転盤、14・・・管理用計鐸機、15・
・・データ処理部、16・・・性能(効率)計n部、1
7・・・データバンク、18・・・表示部、19・・・
外部情報入力部、20・・・性能評価システム、21・
・・要因診新部、22・・・再計算部、23・・・セン
サ管理部、24・・・データ信頼度評価手段、25・・
・突変/漸変判定手段、26・・・要因判定手段、27
・・・診断信頼度評価手段。 63図−11゜ 餉5 ’−6−−1l。 第 図 第 図
Figure 1 is a diagram of a plant performance evaluation system showing an embodiment of the present invention, Figures 2 and 3 are graphs for explaining methods for determining sudden changes and gradual changes, and Figure 4 is a means for determining factors. FIG. 5 is a diagram for explaining factor determination criteria, FIG. 6 is a graph for explaining another embodiment of the present invention, and FIG. 7 is a functional block diagram for explaining a conventional example. be. DESCRIPTION OF SYMBOLS 1... Thermal power plant, 2... High/medium pressure turbine, 3... Low pressure turbine, 4... Generator, 5... Condenser, 6... Condensate pump, 7...・・Low pressure water heater,
8... Deaerator, 9... Water supply pump, 10... ^ Pressure test water heater, 11... Boiler, 12... Controller i machine, 13... Operation panel, 14...・・Management meter, 15・
...Data processing section, 16...Performance (efficiency) total n parts, 1
7...Data bank, 18...Display section, 19...
External information input section, 20... Performance evaluation system, 21.
...Cause diagnosis new department, 22... Recalculation section, 23... Sensor management section, 24... Data reliability evaluation means, 25...
- Sudden change/gradual change determination means, 26... Factor determination means, 27
...Diagnostic reliability evaluation means. Figure 63-11゜餉5'-6-1l. Figure Figure

Claims (1)

【特許請求の範囲】[Claims] プラントの運転中のデータに基づいてそのプラントの性
能評価等を行なうプラント設備診断システムにおいて、
運転中のデータの処理を行なうデータ処理手段と、処理
したデータの計算解析を行なう計算解析手段と、前記デ
ータの信頼性およびデータ変化の推移時間に基づく劣化
要因を診断する要因診断手段と、測定データおよび解析
結果情報を保存するデータバンクと、これらのデータを
表示するデータ表示手段とを備えてなることを特徴とす
るプラント設備診断システム。
In a plant equipment diagnosis system that evaluates the performance of a plant based on data during plant operation,
a data processing means for processing data during operation; a calculation analysis means for performing calculation analysis of the processed data; a factor diagnosis means for diagnosing deterioration factors based on reliability of the data and transition time of data changes; A plant equipment diagnosis system comprising a data bank for storing data and analysis result information, and a data display means for displaying these data.
JP63288855A 1988-11-17 1988-11-17 Plant equipment diagnosis system Expired - Lifetime JPH061206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288855A JPH061206B2 (en) 1988-11-17 1988-11-17 Plant equipment diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288855A JPH061206B2 (en) 1988-11-17 1988-11-17 Plant equipment diagnosis system

Publications (2)

Publication Number Publication Date
JPH02136713A true JPH02136713A (en) 1990-05-25
JPH061206B2 JPH061206B2 (en) 1994-01-05

Family

ID=17735621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288855A Expired - Lifetime JPH061206B2 (en) 1988-11-17 1988-11-17 Plant equipment diagnosis system

Country Status (1)

Country Link
JP (1) JPH061206B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156508A (en) * 1989-06-09 1991-07-04 Mitsubishi Electric Corp Plant operation backup method
JPH0464013A (en) * 1990-07-02 1992-02-28 Mitsubishi Electric Corp Processing system for plant monitoring apparatus
JP2000241306A (en) * 1999-02-24 2000-09-08 Shin Caterpillar Mitsubishi Ltd Pump fault-diagnosing device
JP2008140222A (en) * 2006-12-04 2008-06-19 Japan Energy Corp Abnormality detection device and abnormality detection method
JP2012524935A (en) * 2009-04-22 2012-10-18 ローズマウント インコーポレイテッド Measurement and control equipment for industrial process control systems
JP2012233798A (en) * 2011-05-02 2012-11-29 Sysmex Corp Management method for clinical examination device, clinical examination system, and maintenance management device
JP2019095930A (en) * 2017-11-20 2019-06-20 株式会社東芝 Determination device, correction device, display device, determination system, determination method, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789190A (en) * 1980-11-21 1982-06-03 Tokyo Shibaura Electric Co Recording device for data of plant
JPS59208694A (en) * 1983-05-11 1984-11-27 三菱電機株式会社 Plant monitoring/diagnosing equipment
JPS61156312A (en) * 1984-12-27 1986-07-16 Idemitsu Petrochem Co Ltd Abnormality diagnosis system of process
JPS63189906A (en) * 1987-02-03 1988-08-05 Mitsubishi Heavy Ind Ltd Diagnosing device for abnormality of plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789190A (en) * 1980-11-21 1982-06-03 Tokyo Shibaura Electric Co Recording device for data of plant
JPS59208694A (en) * 1983-05-11 1984-11-27 三菱電機株式会社 Plant monitoring/diagnosing equipment
JPS61156312A (en) * 1984-12-27 1986-07-16 Idemitsu Petrochem Co Ltd Abnormality diagnosis system of process
JPS63189906A (en) * 1987-02-03 1988-08-05 Mitsubishi Heavy Ind Ltd Diagnosing device for abnormality of plant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156508A (en) * 1989-06-09 1991-07-04 Mitsubishi Electric Corp Plant operation backup method
JPH0464013A (en) * 1990-07-02 1992-02-28 Mitsubishi Electric Corp Processing system for plant monitoring apparatus
JP2000241306A (en) * 1999-02-24 2000-09-08 Shin Caterpillar Mitsubishi Ltd Pump fault-diagnosing device
JP2008140222A (en) * 2006-12-04 2008-06-19 Japan Energy Corp Abnormality detection device and abnormality detection method
JP2012524935A (en) * 2009-04-22 2012-10-18 ローズマウント インコーポレイテッド Measurement and control equipment for industrial process control systems
JP2012233798A (en) * 2011-05-02 2012-11-29 Sysmex Corp Management method for clinical examination device, clinical examination system, and maintenance management device
JP2019095930A (en) * 2017-11-20 2019-06-20 株式会社東芝 Determination device, correction device, display device, determination system, determination method, and computer program

Also Published As

Publication number Publication date
JPH061206B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US10527520B2 (en) Operating wind motors and determining their remaining useful life
EP2241726A2 (en) A method for the repair of an engine and corresponding systems for monitoring this engine
JP6159059B2 (en) Plant operation optimization system and method
US7865333B2 (en) Process and device for monitoring a machine
AU2013224890B2 (en) Method and system for real time gas turbine performance advisory
CA2604118C (en) A system and method for real-time prognostics analysis and residual life assessment of machine components
JP4246900B2 (en) Plant equipment operation diagnosis apparatus and operation diagnosis method thereof
US20110137575A1 (en) Method and system for real-time prognosis analysis and usage based residual life assessment of turbine engine components and display
US10233786B2 (en) Actuator spring lifetime supervision module for a valve and actuator monitoring system
TW200424901A (en) Operation support system for power plant
US20180058248A1 (en) Advanced Startup Counter Module For A Valve And Actuator Monitoring System
JP2012058937A (en) Equipment diagnostic method and equipment diagnostic system for nuclear power plant
JP3351925B2 (en) Equipment management system
JP3742310B2 (en) Power generation equipment maintenance support system
US20180058251A1 (en) Flexible Service Interval Counter Module For A Valve And Actuator Monitoring System
JPH02136713A (en) Diagnostic system for plant facility
WO2004021097A1 (en) Plant apparatus operation support device
US10865643B2 (en) Method and system for a component lifetime counter
RU2726317C1 (en) Gas turbine installation remote monitoring system
WO2019135747A1 (en) Probabilistic life evaluation algorithm for gas turbine engine components
JP2005248848A (en) Diagnostic method and device for gas turbine
JP3379304B2 (en) Plant abnormality monitoring method and abnormality monitoring device
JP7453049B2 (en) Abnormal sign monitoring system, abnormal sign monitoring method, and program
US7818146B2 (en) Method and device for the diagnosis of technical devices disposed within an industrial installation
JPH10502718A (en) Method and apparatus for diagnosing and predicting operating characteristics of turbine equipment