JPH02136044A - Station bus switching control system - Google Patents

Station bus switching control system

Info

Publication number
JPH02136044A
JPH02136044A JP63287700A JP28770088A JPH02136044A JP H02136044 A JPH02136044 A JP H02136044A JP 63287700 A JP63287700 A JP 63287700A JP 28770088 A JP28770088 A JP 28770088A JP H02136044 A JPH02136044 A JP H02136044A
Authority
JP
Japan
Prior art keywords
bus
capacity
transformer
station
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287700A
Other languages
Japanese (ja)
Inventor
Tatsuo Sakamoto
坂本 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63287700A priority Critical patent/JPH02136044A/en
Publication of JPH02136044A publication Critical patent/JPH02136044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Abstract

PURPOSE:To improve the power reliability of station auxiliary machines by monitoring the actual operating load capacity always and by computing and monitoring the margin of a transformer. CONSTITUTION:The total QT of the actual load operating capacity QTH1 of No.1 station transformer 5 and the actual load operating capacity QTS of a starting transformer 10 is an operating load capacity to be power-supplied by said starting transformer 10 at the time of No.1 unit trip. When the rated capacity QS of the starting transformer 10 is compared with said QT and QS>=QT, the ON permit signal of a bus-connecting breaker 12 is made; and when QS<QT, the short-time overload capacity characteristic curve QSalphat of the starting transformer 10 is then compared therewith. Such computation and comparison are conducted moment by moment; the result before one cycle is stored always; and when No.1 unit trip signal is given, a house bar is switched on the basis of the stored result so that said switching can be performed with no delay of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三つ以上の電源を備えた母線切替方式に係り、
特に、プラントの所内補機電源の確保を強化するのに好
適な所内母線切替制御方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a busbar switching system equipped with three or more power supplies,
In particular, the present invention relates to an in-plant busbar switching control system suitable for strengthening the securing of in-house auxiliary equipment power supply in a plant.

〔従来の技術〕[Conventional technology]

従来の所内母線切替えは、常時使用している電源が何ら
かの原因で停電した場合には、あらかじめ決められた遮
断器の開、閉インタロックに従って、他の電源に切替え
る方式がとられていた。例えば、特開昭55−1390
36号公報に記載のように、常時使用している電源が停
電したことを検出し、常時使用している電源の受電遮断
器が開いた条件で他の母線へ連絡されている母線連絡遮
断器を投入して、所内補機電源を確保するようにしてい
た。
Conventional in-station busbar switching employs a method in which if the power supply that is constantly in use experiences a power outage for some reason, the power supply is switched to another power supply according to predetermined interlocks for opening and closing circuit breakers. For example, JP-A-55-1390
As described in Publication No. 36, a bus connection breaker that detects a power outage in a constantly used power source and connects to other buses under the condition that the power receiving circuit breaker of the constantly used power source is open. was turned on to secure power for the station's auxiliary equipment.

特開昭55−139036号公報に記載のように、従来
の母線切替での信頼性を向上させる方法については論じ
られているが、変圧器の実際の運転状態を捉えて母線切
替のパターンを選択し、所内補機電源の確保を強化する
所内母線切替制御に関しては論じられていない。
As described in Japanese Unexamined Patent Publication No. 55-139036, methods for improving the reliability of conventional bus switching have been discussed, but the bus switching pattern is selected based on the actual operating conditions of the transformer. However, there is no discussion of in-station bus bar switching control that strengthens the securing of in-station auxiliary equipment power supply.

火力発電所の所内電源の場合について、従来技術を第4
図を用いて説明する。一般的には二つの発電ユニットに
対して一つの共通電源が設置される。発電に必要な自ユ
ニットの補機1,2は自ユニットの発電機3,4の出力
が所内変圧器5,6を介して接続される所内母線7,8
に接続され、ニユニットに共通な補機9は起動変圧器1
0を電源とする共通母線11に接続されている。通常、
発電ユニットの起動は一号発電機3の起動の場合を考え
ると、最初、共通母線11より母線連絡遮断器12を介
してユニット補機1に電源供給し、発電機3が発電可能
な状態になると、主遮断器13を投入して主要変圧器1
4を介して系統15に接続され負荷をとる。次に、ユニ
ット補機1の電源は所内受電遮断器16を投入すると同
時に、母線連絡遮断器12を開いて発電機3の出力より
所内変圧器5を介して供給される。発電ユニット停止の
場合は、逆に、母線連絡遮断器12を投入すると同時に
、所内受電遮断器16を開くことによって共通母fil
lを介して起動変圧器10より供給される。又、発電ユ
ニットが何らかの原因でトリップする場合には、ユニッ
トを安全に停止するために、ユニットトリップ信号で所
内受電遮断器16を開き、その条件で母線連絡遮断器1
2を投入して共通母線11を介し、起動変圧器10よリ
ユニット補機1の電源を確保する。
Regarding the case of on-site power supply of thermal power plants, the conventional technology is
This will be explained using figures. Generally, one common power source is installed for two power generation units. The auxiliary equipment 1 and 2 of the own unit necessary for power generation are connected to the station buses 7 and 8 to which the outputs of the generators 3 and 4 of the own unit are connected via the station transformers 5 and 6.
The auxiliary equipment 9 connected to and common to the two units is the starting transformer 1.
It is connected to a common bus line 11 whose power source is 0. usually,
When starting the power generation unit, consider the case of starting the No. 1 generator 3. First, power is supplied from the common bus 11 to the unit auxiliary equipment 1 via the bus bar connection breaker 12, and the generator 3 is in a state where it can generate electricity. Then, the main circuit breaker 13 is closed and the main transformer 1
4 to the grid 15 to take up the load. Next, the power for the unit auxiliary equipment 1 is supplied from the output of the generator 3 via the station transformer 5 by turning on the station power receiving circuit breaker 16 and simultaneously opening the busbar communication circuit breaker 12. In the case of a power generation unit stoppage, conversely, the common bus fil
It is supplied from the starting transformer 10 via l. In addition, if the power generation unit trips for some reason, in order to safely stop the unit, the in-station power receiving circuit breaker 16 is opened with a unit trip signal, and the busbar contact circuit breaker 1 is opened under that condition.
2 is turned on to secure power from the starting transformer 10 to the reunit auxiliary equipment 1 via the common bus 11.

一般に、所内変圧器5,6の定格容量は所内母線7,8
に接続されるユニット補機1,2の最大運転負荷容量を
賄える容量か、あるいは、起動変圧器10の故障時に共
通母線11に接続される共通補機9の電源をバックアッ
プできる容量としている。また、起動変圧器10の定格
容量は共通母線11に接続される共通補機9の最大運転
負荷容量と1ユニット分の起動時ユニット補機1,2の
運転容量を賄える容量か、あるいは、共通補機9の最大
運転負荷容量と−ユニット分の100%出力運転中のユ
ニット補機1,2の運転容量をユニットトリップ時にバ
ックアップできる容量の和の内、いずれか大きい方で決
定される。
Generally, the rated capacity of the station transformers 5 and 6 is the station bus 7 and 8.
The capacity is sufficient to cover the maximum operating load capacity of the unit auxiliary equipment 1 and 2 connected to the common bus 11, or the capacity is sufficient to back up the power source of the common auxiliary equipment 9 connected to the common bus 11 in the event of a failure of the starting transformer 10. In addition, the rated capacity of the starting transformer 10 is the capacity that can cover the maximum operating load capacity of the common auxiliary equipment 9 connected to the common bus 11 and the operating capacity of the unit auxiliary equipment 1 and 2 at the time of starting for one unit, or It is determined by the larger of the maximum operating load capacity of the auxiliary machine 9 and the sum of the capacity that can back up the operating capacity of the unit auxiliary machines 1 and 2 during 100% output operation for -units at the time of unit trip.

従って、−号の所内母#17より共通母線11を介して
二号の所内母線8に連絡する母線切替インターロックに
はなっていないし、逆も、また同様である。また、ユニ
ットの起動電源についてもニユニットを同時に起動でき
る母線切替インターロックとはなっていない。更に、ニ
ユニット同時トリップ時に共通母線11より所内母s7
と所内母線8に同時にバックアップできる母線切替のイ
ンターロックとはなっていない。
Therefore, there is no bus switching interlock that connects the No. 2 station bus #17 to the No. 2 station bus 8 via the common bus 11, and vice versa. Furthermore, the power source for starting the units does not have a bus bar switching interlock that allows two units to be started at the same time. Furthermore, when two units trip simultaneously, the station bus s7 is transferred from the common bus 11.
There is no bus switching interlock that allows backup to the station bus 8 and the station bus 8 at the same time.

この結果、ユニットの運転状態によっては負荷容量の少
ない、即ち、変圧器の定格容量に余裕がある場合でも母
線切替が出来ず電源を確保できない場合が出てくる。
As a result, depending on the operating state of the unit, there may be cases where the load capacity is small, that is, even if the rated capacity of the transformer has a margin, bus bar switching cannot be performed and power supply cannot be secured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、所内変圧器や起動変圧器の定格容量
を、最大負荷容量を賄える容量として決定しており、こ
の裏付けとなる所内電源の供給に関する母線切替運用は
、実際の運転負荷容量には無関係にインターロックによ
って一義的に決定されている。
In the above conventional technology, the rated capacity of the station transformer and starting transformer is determined as the capacity that can cover the maximum load capacity. Regardless, it is uniquely determined by the interlock.

従って、変圧器の定格容量が実際の負荷運転容量に対し
て他の母線をバックアップできる余裕がある場合でも、
バックアップできないという問題があった。
Therefore, even if the rated capacity of the transformer has enough margin to back up other buses compared to the actual load operating capacity,
There was a problem with not being able to back up.

本発明の目的は、実際の運転負荷容量を、常時、監視し
ておき、常に、変圧器の可能運転容量と比較することに
よって、他の母線へのバックアップが可能かどうかの判
定、更には、可能とするための負荷の選択遮断パターン
の選択をし、所内母線切替えを行う所内補機電源の信頼
度を向上させることのできる所内母線切替制御方式を提
供することにある。
The purpose of the present invention is to constantly monitor the actual operating load capacity and constantly compare it with the possible operating capacity of the transformer to determine whether backup to another bus is possible. An object of the present invention is to provide an in-station bus switching control system that can improve the reliability of an in-station auxiliary power supply that performs in-station bus switching by selecting a load selection/cutting pattern to enable the in-station bus switching.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、常時、各母線の運転負荷容量を監視し、更
に、現状の母線運用状態を監視して想定される母線切替
におけるバックアップ後の各変圧器の負荷容量を求め、
これと変圧器の可能運転容量とを比較し、切替の可否を
判定して、可であれば母線切替の実施指令を出し、否で
あれば、可能とするための負荷の選択遮断をどの程度ま
で行えば可能となるかを負荷の運転状態を監視すること
によって判定させることによって達成される。
The above purpose is to constantly monitor the operating load capacity of each bus, further monitor the current bus operation status, and determine the load capacity of each transformer after backup in the expected bus switching.
Compare this with the possible operating capacity of the transformer, determine whether switching is possible, issue a command to implement bus switching if possible, and if not, how many loads should be selectively cut off to make it possible. This is achieved by monitoring the operating state of the load to determine whether it is possible to do so.

〔作用〕[Effect]

本発明は、各母線の運転負荷容量を各母線の電圧、及び
、電流を常時監視して演算することによって求め、現状
の母線連係状態は各受電遮断器、及び、母線連絡遮断器
の開閉状態によって監視し、これを基に想定される母線
連係パターンを判断して母線連係した場合の各変圧器に
かかる負荷合計容量を演算し、あらかじめ入力されてい
る各変圧器の運転可能容量とこれを比較し切替えの可否
を判定して可であれば母線切替信号を発し、否であれば
、負荷の運転状態を各負荷の遮断図の開閉状態より把握
してあらかじめ負荷の遮断優先順位をつけグループ構成
した負荷に対して、また、あらかじめ入力されている各
補機の運転容量からどのグループ負荷まで負荷の選択遮
断を行えば良いかを容量的に演算、判定し、可であれば
負荷の選択遮断指令と母線切替指令を発する。
The present invention calculates the operating load capacity of each bus by constantly monitoring and calculating the voltage and current of each bus, and the current bus linkage state is the open/close state of each power receiving circuit breaker and bus connection circuit breaker. Based on this, the expected bus linkage pattern is determined, and the total load capacity that will be applied to each transformer when the bus links are connected is calculated. The comparison is made to determine whether switching is possible, and if it is possible, a bus switching signal is issued. If not, the operating status of the load is determined from the open/close status of each load's shutoff diagram, and the load is prioritized in advance and the group For the configured loads, and from the operating capacity of each auxiliary machine input in advance, it calculates and determines which group of loads should be selectively cut off, and if possible, selects the load. Issues a cutoff command and busbar switching command.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第3図で説明する。 An embodiment of the present invention will be explained with reference to FIGS. 1 to 3.

第1図は従来技術の説明で使用した第4図に本発明を説
明するのに必要なものを追加したものである。第4図で
説明した以外のものについて以下説明する。23,27
.25各母線7,8.11の母線電圧を計測する検出器
を示し、また24゜28.26、各変圧器5,6.10
の負荷電流を計測する検出器である。QHII QH2
,Q sは各変圧器5,6.10の定格容量を示し、1
6,21゜20は各母線7,8.11の受電遮断器を示
す。
FIG. 1 is a diagram obtained by adding what is necessary for explaining the present invention to FIG. 4 used for explaining the prior art. Components other than those explained in FIG. 4 will be explained below. 23, 27
.. 25 shows a detector for measuring the bus voltage of each bus 7, 8.11, and 24° 28.26, each transformer 5, 6.10
This is a detector that measures the load current. QHII QH2
, Q s indicates the rated capacity of each transformer 5, 6.10, and 1
6, 21° 20 indicates a power receiving circuit breaker for each bus bar 7, 8, 11.

又、12.22は一号所内母線7と共通母線11及び二
号所内母線8と共通母線11の母線連絡遮断器を示すa
 LHII〜L+znは一号所内母線7に接続されるユ
ニット補機1の負荷遮断器、L Hzs〜L H2nは
二号所内母線8に接続されるユニット補機2の負荷遮断
器、及び、LSl〜Lsnは共通母線11に接続される
共通補機9の負荷遮断器を示す。M H11〜M Hl
nはあらかじめ記憶されている一号ユニット補機1の各
補機毎の運転負荷容量、MH21=MH2nはあらかじ
め記憶された二号ユニット補機2の各補機毎の運転負荷
容量、及び、MSI〜MSnはあらかじめ記憶された共
通補機9の各補機毎の運転負荷容量を示す。I、II、
IIIは一号ユニット補機1の負荷の選択遮断優先順位
にこの例では三群に分けて構成した補機群を示す。
In addition, 12.22 shows the busbar communication circuit breaker between the first station bus 7 and the common bus 11 and the second station bus 8 and the common bus 11.
LHII~L+zn are the load breakers of the unit auxiliary equipment 1 connected to the No. 1 internal bus 7, LHzs~LH2n are the load breakers of the unit auxiliary equipment 2 connected to the No. 2 internal bus 8, and LSl~ Lsn indicates a load breaker of the common auxiliary machine 9 connected to the common bus 11. M H11~M Hl
n is the pre-stored operating load capacity of each auxiliary machine of No. 1 unit auxiliary machine 1, MH21=MH2n is the pre-stored operating load capacity of each auxiliary machine of No. 2 unit auxiliary machine 2, and MSI ~MSn indicates the operating load capacity of each auxiliary machine of the common auxiliary machine 9, which is stored in advance. I, II,
III indicates an auxiliary machine group that is divided into three groups in this example in order of priority for selective cutoff of the load of the first unit auxiliary machine 1.

QHLll r QHLx2+ QHII3は各補機群
I、II、IIIに対応した、負荷遮断器LHII〜L
 Ht nが閉状態にある補機の運転負荷容量M Ht
 t〜M H1nを合計した群負荷容量を示す。QHL
IはQ)ILII、 Q)lL121QHL13を合計
した容量を示す。二号ユニット補機2については補機群
の構成を省略しているが、QHL2.11 QHLzz
+ QHL23及びQHL4は一号ユニットのQHLI
II Q+−+t、tz、 QHII3及びQ)ILI
 に対応したものである。Qst、は、同様に、共通補
機9の負荷遮断器LSI〜LSnが閉状態にある補機の
運転負荷容量M S 1〜M3nを合計した負荷容量を
示す。
QHLll r QHLx2+ QHII3 are load breakers LHII to L corresponding to each auxiliary equipment group I, II, and III.
Operating load capacity of auxiliary equipment when Ht n is closed M Ht
The group load capacity is the sum of t~M H1n. QHL
I indicates the total capacity of Q) ILII, Q) IL121QHL13. The configuration of the auxiliary equipment group is omitted for No. 2 unit auxiliary equipment 2, but QHL2.11 QHLzz
+ QHL23 and QHL4 are the first unit QHLI
II Q+-+t, tz, QHII3 and Q) ILI
It corresponds to Similarly, Qst represents the load capacity that is the sum of the operating load capacities M S 1 to M3n of the auxiliary machines whose load breakers LSI to LSn of the common auxiliary machine 9 are in the closed state.

第2図は本発明の母線切替に至る過程を概念的に示した
図である。第2図において、検出部では常時、検出器2
3,27.25で母線電圧V1゜V2.Vs及び検出器
24,28.26で変圧器負荷電流A1.A’2 、A
s を計測し、更に、現状の母線運用を受電遮断器16
,21.20及び母線連絡遮断器12.22の開閉状態
を監視し、更に、各補機1,2,9の運転状態を監視す
るために負荷遮断器L)+11〜Lotn 、 LH2
1〜L Hen及び、Lsz〜Lsnの開閉状態を監視
し、比較演算部へ送る。比較演算部では、あらかじめ各
変圧器5゜6.10の定格容量Qot+ QHzr Q
s 、短時間運転であれば許容される各変圧器5,6.
10の過負荷耐量特性カーブQ旧α(t) r Q)+
2α(t)。
FIG. 2 is a diagram conceptually showing the process leading to bus bar switching according to the present invention. In Fig. 2, the detection unit always uses detector 2.
3, 27.25 and the bus voltage V1°V2. Vs and the transformer load current A1. A'2, A
s, and further check the current bus operation using the power receiving circuit breaker 16.
, 21.20 and the busbar connection circuit breakers 12.22, and further monitor the operating conditions of each auxiliary equipment 1, 2, 9, load breakers L)+11 to Lotn, LH2 are used.
The open/close states of 1 to L Hen and Lsz to Lsn are monitored and sent to the comparison calculation section. In the comparison calculation section, the rated capacity Qot+QHzrQ of each transformer 5゜6.10 is calculated in advance.
s, each transformer 5, 6, which is allowed for short-term operation.
10 overload capacity characteristic curve Q old α(t) r Q)+
2α(t).

Qscc(t)、及び、各補機1,2.9の補機単位の
運転負荷容量M Hl 1〜MHsn、 Mozt=M
H2n+M S1〜M s nが入力されており、検出
部より送られて来たデータと合わせて演算し、想定され
るあらゆる母線切替の各々のケースにおいて、母線切替
が可能かどうかを実運転負荷容量と変圧器可能運転容量
とを比較し、更に、負荷の選択遮断の要否を判定し、そ
の結果を記憶部に送る。記憶部ではサイクリックに送ら
れてくる比較演算結果の最新情報のみを記憶しておき、
母線切替要因が発生したら現在記憶されている結果を母
線連絡遮断器12.22のインターロック部へ送り、母
線切替を実施する。こうすることによって検出、比較演
算部での時間遅れがなく、直ちに、母線切替を行うこと
ができる。
Qscc(t) and operating load capacity M Hl 1 to MHsn of each auxiliary machine 1, 2.9, Mozt=M
H2n + M S1 to M s n are input, and are calculated together with the data sent from the detection unit to determine whether bus switching is possible in each of the possible bus switching cases based on the actual operating load capacity. and the transformer's possible operating capacity, and further determines whether selective load shedding is necessary, and sends the result to the storage unit. The storage unit stores only the latest information of comparison operation results that are sent cyclically,
When a busbar switching factor occurs, the currently stored result is sent to the interlock section of the busbar contact circuit breaker 12.22, and the busbar switching is performed. By doing so, there is no time delay in the detection and comparison calculation section, and bus bar switching can be performed immediately.

第3図は本発明の具体的な実施例の母線切替制御内容を
示すフローチャートである。本実施例では一号ユニット
は50%負荷運転中、二号ユニットは起動中の状態にあ
るとする。この場合の各遮断器の状態は受電遮断器16
は閉、21は開、20は閉の状態にあり、母線連絡遮断
器12は開、22は閉の状態にある。即ち、−号所内変
圧器5は所内母線7に接続されているユニット補機1の
運転補機に電源供給している。この場合、50%ユニッ
ト負荷運転であり’JT; X V s X A sで
計算される実運転負荷容量QT)11は変圧器容量Q 
s sに比べ、比較的小さい。又、起動変圧器1oは共
通母線11に接続される共通補機9と二号の所内母線8
に接続されるユニット補機2のユニット起動時の運転補
機へ電源供給される。この場合もユニット起動時であり
、f〒X V s X A sで計算される実運転負荷
容量QT5は変圧器容量Qsに比べ、小さい。この状態
で想定される母線切替は、−号ユニットトリップ時の一
号ユニット補機1の電源確保のために受電遮断器16を
開き、母線連絡遮断器12を投入する母線切替、あるい
は、起動変圧器10の故障時の受電遮断器20を開き、
母線連絡遮断器12を投入する母線切替が考えられる。
FIG. 3 is a flowchart showing details of bus bar switching control in a specific embodiment of the present invention. In this embodiment, it is assumed that the No. 1 unit is operating at 50% load and the No. 2 unit is starting up. In this case, the status of each circuit breaker is the power receiving circuit breaker 16.
is closed, 21 is open, and 20 is closed, and the busbar connection breaker 12 is open and 22 is closed. In other words, the - station transformer 5 supplies power to the operating auxiliaries of the unit auxiliary equipment 1 connected to the station bus 7. In this case, it is 50% unit load operation and the actual operating load capacity QT calculated as 'JT;
s Relatively small compared to s. In addition, the starting transformer 1o is connected to the common auxiliary equipment 9 connected to the common bus 11 and the No. 2 station bus 8.
Power is supplied to the operating auxiliary equipment of the unit auxiliary equipment 2 connected to the unit auxiliary equipment 2 when the unit is started. In this case as well, the unit is started up, and the actual operating load capacity QT5 calculated by f〒XVsXAs is smaller than the transformer capacity Qs. The busbar switching assumed in this state is a busbar switching in which the power receiving circuit breaker 16 is opened and the busbar contact circuit breaker 12 is closed in order to secure the power supply of the No. 1 unit auxiliary equipment 1 when the - unit trips, or a starting transformer Open the power receiving circuit breaker 20 at the time of failure of the device 10,
Bus bar switching that closes the bus bar contact circuit breaker 12 can be considered.

本図では、−号ユニットトリップ時の場合を例にとり示
しである。従来技術では−ユニット起動状態において、
起動補機電源を供給しつつ他ユニットトリップ時の電源
供給を行なうインターロックとはなっておらず、母線切
替は行なわれないが、本発明では次のようになる。
In this figure, the case when the - number unit trips is taken as an example. In the conventional technology - in the unit starting state,
There is no interlock in which power is supplied to other units when tripping while supplying power to the starting auxiliary equipment, and bus bar switching is not performed, but in the present invention, the following is done.

一号所内変圧器5の実負荷運転容量QTHIと起動変圧
器10の実負荷運転容量QTSの和QTは一号ユニット
トリップ時の起動変圧器1oが電源供給すべき運転負荷
容量となる。このQTと起動変圧器10の定格容量Qs
とを比較し、QS>QTであれば、母線連絡遮断器12
の閉許可信号を発しQs<(hであれば1次に、起動変
圧器1oの短時間過負荷耐量特性カーブQsα(1)と
比較する。Q、α>QTであるならば、母線連絡遮断器
12の閉許可信号を発すると共に、起動変圧器10の運
転過負荷率と許容運転時間を表示してやるeQsαく0
丁であれば一号所内補機1の負荷遮断器り旧1〜L H
lllの内の閉状態にある補機の運転負荷容量、MHI
I〜Mo2□の内選択遮断補機群■に当たる補機の合計
運転容量QHLttより、Qs とQT  QHt、工
xとを比較しQ!、>QT  QHLIIであれば母線
連絡遮断器12の閉許可信号を発すると共に補機群Iの
遮断指令を発する。Q S< Q T−QHLxlであ
ればQoLztと同様にして計算されたQot、1zよ
りQs  とQt   Q)lLll  Q)lL12
とを比較し、Qs > QT−QHLll  QHLI
Iであれば、母線連絡遮断器12に閉許可信号を発する
と共に補機群1.nに遮断指令を発する。Qs< QT
 −QHLII−QIIL12であれば、所内母線切替
は実施しない。
The sum QT of the actual load operating capacity QTHI of the No. 1 in-station transformer 5 and the actual load operating capacity QTS of the starting transformer 10 becomes the operating load capacity to which the starting transformer 1o should supply power when the No. 1 unit trips. This QT and the rated capacity Qs of the starting transformer 10
If QS>QT, bus bar connection breaker 12
If Qs<(h, then primary, compare it with the short-time overload capability characteristic curve Qsα(1) of the starting transformer 1o. If Q,α>QT, the busbar connection is cut off. At the same time as issuing a closing permission signal for the transformer 12, the operation overload rate and allowable operation time of the starting transformer 10 are displayed.
If it is 1, load breaker of auxiliary equipment 1 in No. 1 plant is old 1~L H
Operating load capacity of auxiliary equipment in closed state, MHI
Based on the total operating capacity QHLtt of the auxiliary equipment that corresponds to the selected shutoff auxiliary equipment group ■ among I~Mo2□, compare Qs, QT QHt, and engineering x. , >QT QHLII, a closing permission signal for the busbar communication circuit breaker 12 is issued, and a shutdown command for the auxiliary equipment group I is issued. If Q S < Q T - QHLxl, Qot calculated in the same way as QoLzt, Qs and Qt from 1z Q)lLll Q)lL12
Qs > QT-QHLll QHLI
If it is I, a closing permission signal is issued to the busbar communication circuit breaker 12, and the auxiliary equipment group 1. Issue a shutdown command to n. Qs< QT
-QHLII-QIIL12, local bus switching is not performed.

このような演算、比較を刻々と行い、常に、−サイクル
前の結果を記憶しておき、−号ユニットトリップ信号が
出た場合には、記憶された結果に基づいて所内母線切替
を行うので時間遅れな〈実施することができる。
These calculations and comparisons are performed moment by moment, and the results from the previous - cycle are always memorized. When the - unit trip signal is issued, the station bus is switched based on the memorized results, which saves time. It is possible to implement it without delay.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、実際の運転負荷容量を常時監視し、変
圧器の余裕を演算し監視しておくことで可能とし、所内
補機の電源信頼性を向上させることができる。
According to the present invention, this is made possible by constantly monitoring the actual operating load capacity, calculating and monitoring the margin of the transformer, and improving the reliability of the power supply for the in-house auxiliary equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の単線結線図、第2図は本発
明の母線切替に至る過程を示すブロック図、第3図は本
発明の母線切替制御内容を示すフローチャート、第4図
は従来技術の単線結線図である。 23.27.25・・・母線電圧検出器、24,28゜
26・・・負荷電流検出器。 第 図 第 図 第 図 T−1,1−2 第4図 ! 一フーーーー
Fig. 1 is a single line diagram of an embodiment of the present invention, Fig. 2 is a block diagram showing the process leading to bus bar switching of the present invention, Fig. 3 is a flow chart showing the contents of bus bar switching control of the present invention, and Fig. 4 is a single line diagram of the prior art. 23.27.25...Bus voltage detector, 24,28°26...Load current detector. Figure Figure Figure T-1, 1-2 Figure 4! One hoooooo

Claims (1)

【特許請求の範囲】 1、三つ以上の電源をもち、各々の電源母線が互いに遮
断器等によつて連絡されている電源系統において、 常時の運転負荷容量を監視し、想定されるあらゆる母線
切替えケースにおいて変圧器の可能運転容量と比較し、
母線切替の可否を判定するようにした所内母線切替制御
方式。 2、特許請求項第1項において、 前記電源母線の切替えが否となつた場合にはこれを可能
とするための負荷の選択遮断をどこまでやれば良いかを
演算し指令を発するようにした所内母線切替制御方式。 3、特許請求項第1項において、 常のサイクリツクに検出、演算をしその最新結果だけを
記憶しておき、所内母線切替を実施する状態が生じた場
合に時間遅れのないようにした所内母線切替制御方式。
[Scope of Claims] In a power supply system that has one, three or more power supplies and each power supply bus is connected to each other by a circuit breaker, etc., the operating load capacity is constantly monitored and all possible buses are connected. Compare with the possible operating capacity of the transformer in the switching case,
An in-house bus switching control system that determines whether bus switching is possible. 2. In claim 1, if the switching of the power supply bus is rejected, the station calculates how far the load should be selectively cut off to make it possible and issues a command. Busbar switching control method. 3. In claim 1, there is provided a station bus which detects and calculates on a regular basis and stores only the latest results so that there is no time delay when a situation in which a station bus is to be switched occurs. Switching control method.
JP63287700A 1988-11-16 1988-11-16 Station bus switching control system Pending JPH02136044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287700A JPH02136044A (en) 1988-11-16 1988-11-16 Station bus switching control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287700A JPH02136044A (en) 1988-11-16 1988-11-16 Station bus switching control system

Publications (1)

Publication Number Publication Date
JPH02136044A true JPH02136044A (en) 1990-05-24

Family

ID=17720607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287700A Pending JPH02136044A (en) 1988-11-16 1988-11-16 Station bus switching control system

Country Status (1)

Country Link
JP (1) JPH02136044A (en)

Similar Documents

Publication Publication Date Title
CN100416972C (en) System for providing assured power to a critical load
EP2194656B1 (en) Electrical power network management system
Benasla et al. Power system security enhancement by HVDC links using a closed-loop emergency control
Billinton et al. Composite generation and transmission system adequacy evaluation including protection system failure modes
Lindner et al. Corrective congestion management in transmission grids using fast-responding generation, load and storage
JP7428902B2 (en) power system
CN109560556A (en) A kind of voltage-regulating system adjusted based on flexible multimode regulating switch
Koaizawa et al. Actual operating experience of on-line transient stability control systems (TSC systems)
RU188256U1 (en) Power supply control device for an industrial energy district with distributed generation sources during a short circuit on a redundant section of substation buses
JPH02136044A (en) Station bus switching control system
Vishakh et al. Fault detection isolation restoration of an active distribution network
JP4711651B2 (en) Distribution system monitoring and control system
CN209658909U (en) A kind of Auxiliary System in Power Plant interacted system
Sun et al. Research on the Influence of Microgrid to Distribution Network Protection and Improvement Measures
JPH04253000A (en) Nuclear power station, its power equipment within plant and power control panel within plant
Couto et al. Smart transformer control strategies for multi-microgrid islanding operation
Tang Design and implementation of IEC61850 for power generating plant protection, control and automation
CN106300294B (en) DC grid line fault restoration methods
CN117712994A (en) Power equipment protection control system
JP2684317B2 (en) Grid connection protection device
JPS6188728A (en) Selective load interruption restoration device
JPS60176426A (en) Load amount controller
JPS60128830A (en) Load selection breaking unit
JP2023150832A (en) Protection coordination system in micro grid
JPS60160337A (en) Power receiving device