JPH02134876A - Solar battery module - Google Patents

Solar battery module

Info

Publication number
JPH02134876A
JPH02134876A JP63287567A JP28756788A JPH02134876A JP H02134876 A JPH02134876 A JP H02134876A JP 63287567 A JP63287567 A JP 63287567A JP 28756788 A JP28756788 A JP 28756788A JP H02134876 A JPH02134876 A JP H02134876A
Authority
JP
Japan
Prior art keywords
substrate
secondary battery
battery
thin
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63287567A
Other languages
Japanese (ja)
Inventor
Tetsuo Take
武 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63287567A priority Critical patent/JPH02134876A/en
Publication of JPH02134876A publication Critical patent/JPH02134876A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide the title module that is capable of electric power to load without interruption without providing a secondary cell anew by employing a thin secondary battery on at least part of a module substrate. CONSTITUTION:In a solar battery module wherein a plurality of solar battery elements for photoelectric direct conversion are combined serially or parallely and disposed on a substrate to provide predetermined voltage, a thin secondary battery is used on at least part of said substrate. For example, there are formed on a thin secondary battery substrate 35 a wire 14, an electrode 15, and a crystalline silicon layer 16 to construct a crystalline silicon solar battery module. For the thin secondary battery, there isavailable ones wherein comb-shaped positive electrode member 42 and negative electrode member 43 are disposed parallely on one surface of a flat plate-shaped substrate 41A., and a space between the positive and negative electrode members 42, 43 is filled with an electrolyte 44 associated with a battery reaction, and further a cover member 41B is connected to the substrate 41A, covering the electrode members 42, 43 to constitute a battery casing 41.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規な太陽電池モジュール、特にモジュール
基板の少くとも一部に薄形二次電池を用いた太陽電池モ
ジュールに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a novel solar cell module, and particularly to a solar cell module using a thin secondary battery in at least a portion of a module substrate.

[従来の技術] 太陽電池は、無尽蔵にある太陽エネルギーを利用し、半
導体の量子効果である光起電力効果を用いて光電直接変
換を行う装置である。
[Prior Art] A solar cell is a device that utilizes inexhaustible solar energy and performs direct photoelectric conversion using the photovoltaic effect, which is a quantum effect of semiconductors.

半導体に適当なエネルギーの強さを持った光(光子)が
入射すると、半導体を構成する格子と光との相互作用が
起こり、電子および正孔が発生する。半導体中にp−n
接合があると、電子はn型半導体に、正孔はp型半導体
に拡散し、画電極部に集まる。この画電極を結線すると
電流が流れ電力が取り出せる。太陽電池には、 (1)無尽蔵にある太陽エネルギーを利用して発電がで
きる、 (2)有害廃棄物の生成や騒音の発生がない、(3)電
気を使用する場所で発電ができる、(4)直射日光下だ
けではなく、曇りの日の太陽光や室内光でも発電が可能
であり、その光電変換効率は光の強さによっても一般的
にほとんど変わらない、 等の優れた長所がある。
When light (photons) with appropriate energy intensity enters a semiconductor, the light interacts with the lattice that makes up the semiconductor, generating electrons and holes. p-n in semiconductor
When there is a junction, electrons diffuse into the n-type semiconductor, holes diffuse into the p-type semiconductor, and they gather at the picture electrode portion. When these picture electrodes are connected, current flows and power can be extracted. Solar cells (1) can generate electricity using inexhaustible solar energy, (2) do not generate hazardous waste or noise, (3) can generate electricity in the same place as electricity. 4) It has excellent advantages such as being able to generate electricity not only under direct sunlight, but also from sunlight on cloudy days and indoor light, and the photoelectric conversion efficiency generally does not change much depending on the intensity of light. .

このため、現在、太陽電池は、太陽電池素子を複数個直
列あるいは並列に組み合わせて所定の電圧が得られるよ
うに配置するとともに、周囲環境に耐えられるように支
持板、充填剤、コート材などで保護した太陽電池モジュ
ールの形態で、電卓1時計、ラジオ、充電器、電子ゲー
ム等のような各種エレクトロニクス製品に広く使用され
ている。
For this reason, solar cells are currently made by combining multiple solar cell elements in series or parallel and arranging them to obtain a predetermined voltage, as well as using support plates, fillers, coating materials, etc. to withstand the surrounding environment. In the form of protected solar cell modules, it is widely used in various electronic products such as calculators, watches, radios, chargers, electronic games, etc.

また、消費者がコードレス製品を求めるようになったこ
と、電池交換のわずられしさをなくしたいという要求が
あること等の社会的要因、およびエレクトロニクス製品
の消費電力がICあるいはLSIの開発によってますま
す小さくなったこと、エレクトロニクス製品に適した太
陽電池、特に1枚の基板で高い電圧が得られる低コスト
の集積型アモルファス太陽電池か開発されたこと等のよ
うな技術的要因がこれに拍車をかけている。
In addition, social factors such as consumers' desire for cordless products and the desire to eliminate the hassle of changing batteries, and the reduction in power consumption of electronic products due to the development of IC or LSI This is being driven by technological factors such as the development of increasingly smaller solar cells and the development of low-cost integrated amorphous solar cells that can produce high voltages on a single substrate, making them suitable for use in electronic products. I'm putting it on.

単結晶シリコン太陽電池は、通常、p型シリコン単結晶
にn型の不純物を熱拡散させてpn構造を有する単結晶
シリコン層を形成し、その上に櫛型の引出し電極(例え
ば銀電極)を形成し、単結晶シリコン層下部に電極(例
えば銀電極)を焼付塗布する。
Single-crystal silicon solar cells are typically made by thermally diffusing n-type impurities into a p-type silicon single crystal to form a single-crystal silicon layer with a pn structure, and then forming a comb-shaped lead electrode (for example, a silver electrode) on top of the single-crystal silicon layer. An electrode (for example, a silver electrode) is baked and applied under the single crystal silicon layer.

ガラス基板タイプのアモルファスシリコン太陽電池は、
ガラス基板に透明電導11莫(透明電極)が形成され、
その次にp型、i型およびn型の3層のアモルファスシ
リコン層がプラズマ反応で形成され、その次に金属電極
層(例えばアルミニウム層)が形成されている。
Glass substrate type amorphous silicon solar cells are
A transparent conductor (transparent electrode) is formed on the glass substrate,
Next, three amorphous silicon layers of p-type, i-type, and n-type are formed by plasma reaction, and then a metal electrode layer (for example, an aluminum layer) is formed.

金属基板タイプのアモルファスシリコン太陽電池は、金
属基板(一般的にはステンレス・スティール)上にpi
nアモルファスシリコン層を形成し、その上に透明電導
膜(透明電極)を形成し、さらに櫛型の引出し電極(例
えば銀電極)が形成されている。
A metal substrate type amorphous silicon solar cell is a metal substrate (typically stainless steel) that is
An n amorphous silicon layer is formed, a transparent conductive film (transparent electrode) is formed thereon, and a comb-shaped lead electrode (for example, a silver electrode) is formed.

ガラス基板タイプのアモルファスシリコン太陽電池モジ
ュールでは、1枚の絶縁性基板(ガラス基板)上に形成
された各セルは、適当なバターニングによって、透明電
極および裏面電極を通じて隣接するセルとそれぞれ直列
に接続され、高い電圧が得られる。
In a glass substrate type amorphous silicon solar cell module, each cell formed on one insulating substrate (glass substrate) is connected in series with the adjacent cell through a transparent electrode and a back electrode by appropriate patterning. and high voltage can be obtained.

金属基板タイプの中には、セルを金属基板上に垂直方向
に積層し、その上に透明電極を設けることによってアモ
ルファスシリコン大m M池の特徴を生かしたタンデム
タイプ(多層構造)セルがある。
Among the metal substrate types, there is a tandem type (multilayer structure) cell that takes advantage of the characteristics of an amorphous silicon large-millimeter cell by stacking cells vertically on a metal substrate and providing a transparent electrode thereon.

[発明が解決しようとする課題] 太陽電池を機器に実装する際には、液晶表示電卓のよう
に明かりのある場所だけでしか使用しない機器は、太陽
電池だけを独立の電源として用いている。
[Problems to be Solved by the Invention] When solar cells are installed in devices, devices that are used only in bright places, such as liquid crystal display calculators, use only solar cells as an independent power source.

しかし、太陽電池は光が当たっているときだけしか発電
することができず、また蓄電機能がないので、時計、ラ
ジオ、充電器等のように入射光のない13gい所でも動
作する必要がある機器には、予備電源としてバックアッ
プ用の二次電池が付加されている。
However, solar cells can only generate electricity when there is sunlight, and they do not have a power storage function, so they need to operate even in places where there is no incident light, such as watches, radios, chargers, etc. The device is equipped with a backup secondary battery as a backup power source.

太陽電池に二次電池を付加して使用する場合の回路構成
を第4図に示す。逆流防止用ダイオード30により二次
電池33から太陽?池29へ電流が流れるのを防ぎ、電
圧制御回路32あるいは電流制限抵抗31で二次電池3
3の過充電を防いでいる。
FIG. 4 shows a circuit configuration when a solar cell is used with a secondary battery added thereto. Sun from the secondary battery 33 by the backflow prevention diode 30? The voltage control circuit 32 or current limiting resistor 31 prevents current from flowing to the secondary battery 3.
3 prevents overcharging.

太陽光あるいは室内光による太陽電池動作時には、太陽
電池29から負荷34に電力を供給するとともに二次電
池33の充電を行う。
When the solar cell operates using sunlight or indoor light, power is supplied from the solar cell 29 to the load 34 and the secondary battery 33 is charged.

光の照射がなく太陽電池が動作しない場合には、太陽電
池29によって充電されていた二次電池33から負荷3
4に無停電で電力が供給される。なお、実際の回路では
、電流制限抵抗31と電圧制御回路32は同時に用いら
れることはなく、どちらか一方が用いられる。
When there is no light irradiation and the solar cell does not operate, the load 3 is transferred from the secondary battery 33 charged by the solar cell 29.
4. Power will be supplied without interruption. Note that in an actual circuit, the current limiting resistor 31 and the voltage control circuit 32 are not used at the same time, but one of them is used.

バックアップ用二次電池33としては、現在、時計の場
合は酸化銀電池が、ラジオおよび充電器の場合はニッケ
ルカドミウム電池が主に用いられている。しかし、太陽
電池の他にこれらの二次電池を付加すると、新たにスペ
ースが必要となり、また、重畳も増え、機器の小型軽量
化の大ぎな妨げとなるという問題があフた。
Currently, as the backup secondary battery 33, silver oxide batteries are mainly used in watches, and nickel cadmium batteries are mainly used in radios and chargers. However, when these secondary batteries are added in addition to the solar cells, additional space is required, and the number of overlapping devices increases, which poses a major hindrance to reducing the size and weight of devices.

本発明は、上述の問題点を解決し、新たに別途二次電池
を設けることなく、負荷に無停電で電力を供給すること
が可能な太陽電池モジュールを提供することを目的とす
るものである。
The present invention aims to solve the above-mentioned problems and provide a solar cell module that can supply power to a load without interruption without providing a separate secondary battery. .

[課題を解決するための手段] このような目的を達成するために、本発明は、光電直接
変換を行う太陽電池素子を複数個直列あるいは並列に組
み合わせて所定の電圧が得られるように基板上に配置し
た太陽電池モジュールにおいて、基板の少なくとも一部
に薄形二次電池を用いたことを特徴とする。
[Means for Solving the Problem] In order to achieve such an object, the present invention provides a structure in which a plurality of solar cell elements that perform photoelectric direct conversion are combined in series or in parallel on a substrate so that a predetermined voltage can be obtained. The solar cell module arranged in the solar cell module is characterized in that a thin secondary battery is used for at least a part of the substrate.

[作 用] 本発明によれば、半導体の量子効果を用いて光電直接変
換を行う太陽電池素子を複数個直列あるいは並列に組み
合わせて所定の電圧が得られるように配置するとともに
、周囲環境に耐えられるように支持板、充填剤およびコ
ート材などで保護された太陽電池モジュール基板の少く
とも一部を薄形二次電池をすることにより、機器の小型
軽量化を図ることができる。
[Function] According to the present invention, a plurality of solar cell elements that perform direct photoelectric conversion using the quantum effect of semiconductors are arranged in series or in parallel so as to obtain a predetermined voltage, and are resistant to the surrounding environment. By using a thin secondary battery as at least a part of the solar cell module substrate protected by a support plate, filler, coating material, etc., it is possible to reduce the size and weight of the device.

[実施例] 以下に本発明の実施例を第1図および第2図に従って説
明する。
[Example] Examples of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は結晶系シリコン太陽電池モジュールの基板に薄
形二次電池を用いた一実施例である。薄形二次電池基板
35上にワイヤ14、電極15および結晶シリコン層が
形成されている。36は薄形二次電池の正極端子、37
は薄形二次電池の負極端子である。なお、端子36およ
び37の位置は使用条件に合わせて任意に設定すること
ができる。
FIG. 1 shows an example in which a thin secondary battery is used as the substrate of a crystalline silicon solar cell module. Wires 14, electrodes 15, and crystalline silicon layers are formed on thin secondary battery substrate 35. 36 is the positive terminal of the thin secondary battery, 37
is the negative terminal of the thin secondary battery. Note that the positions of the terminals 36 and 37 can be arbitrarily set according to the conditions of use.

薄形二次電池基板35と太陽電池の電極15の間は、薄
形二次電池の絶縁性被覆材によって絶縁されている。製
造上は、従来の基板の代わりに薄形二次電池基板35上
に太陽電池を形成させるだけで、特に従来の製造方法と
の差異はない。
The thin secondary battery substrate 35 and the solar cell electrode 15 are insulated by the insulating coating material of the thin secondary battery. In terms of manufacturing, there is no particular difference from the conventional manufacturing method, as the solar cell is simply formed on the thin secondary battery substrate 35 instead of the conventional substrate.

第2図は金属基板タイプの多層構造アモルファスシリコ
ン太陽電池モジュールの基板に薄形二次電池を用いた他
の実施例を示す。38は構造上電気の導通を確保し太陽
電池の電極の役目を果たすために金属被覆を施した薄形
二次電池基板あるいは金属ケースに入った薄形二次電池
基板である。基板38上にアモルファスシリコン層27
が形成され、その上に透明電極25が形成されている。
FIG. 2 shows another embodiment in which a thin secondary battery is used as the substrate of a metal substrate type multilayer amorphous silicon solar cell module. Reference numeral 38 designates a thin secondary battery substrate coated with a metal to ensure electrical conductivity and to function as an electrode of a solar cell, or a thin secondary battery substrate housed in a metal case. Amorphous silicon layer 27 on substrate 38
is formed, and a transparent electrode 25 is formed thereon.

39は薄形二次電池の正極端子であり、40は薄形2次
電池の負極端子である。この場合も上述の実施例と同様
に、端子39および40の位置は太陽電池モジュールの
使用条件に合わせて任意に設定することができる。
39 is a positive terminal of the thin secondary battery, and 40 is a negative terminal of the thin secondary battery. In this case as well, the positions of the terminals 39 and 40 can be arbitrarily set according to the usage conditions of the solar cell module, as in the above embodiment.

薄形二次電池の端子39および40と太陽電池の透明電
極25の間は絶縁されている。製造上は、従来の基板の
代わりに薄形二次電池基板上に太陽電池を形成させるだ
けで、特に従来の製造方法との差異はない。
The terminals 39 and 40 of the thin secondary battery and the transparent electrode 25 of the solar cell are insulated. In terms of manufacturing, there is no particular difference from conventional manufacturing methods, as the solar cells are simply formed on a thin secondary battery substrate instead of a conventional substrate.

なお、ガラス基板タイプのアモルファスシリコン太陽電
池の場合は、基板が光を通す必要があるので、ガラス基
板の代わりに薄形二次電池を基板に使うことはできない
。ガラス基板タイプのアモルファスシリコン太陽電池に
薄形二次電池を適用する際には、裏面電極の裏に別途設
けなければならない。
Note that in the case of a glass substrate type amorphous silicon solar cell, the substrate must pass light, so a thin secondary battery cannot be used instead of the glass substrate. When applying a thin secondary battery to a glass substrate type amorphous silicon solar cell, a separate battery must be provided behind the back electrode.

以上、結晶系シリコン太陽電池およびアモルファスシリ
コン太陽電池について述べたが、現在実用化されている
他の種類の太陽電池、例えば化合物半導体太陽電池や有
機半導体太陽電池にも本発明を通用することができる。
Although crystalline silicon solar cells and amorphous silicon solar cells have been described above, the present invention can also be applied to other types of solar cells that are currently in practical use, such as compound semiconductor solar cells and organic semiconductor solar cells. .

本発明に適用する薄形二次電池の一例としては111m
以下までの薄形化が可能な特願昭63−185085号
記載の薄形二次電池が挙げられる。この薄形二次電池は
、それぞれ端面が離間対向するように、実質的に同一平
面内に配置された正極部材および負極部材、正極および
負極部材を固定支持する基板、正極および負極部材を含
む密閉室を基板とともに規定するカバ一部材、おにび少
なくとも正極および負極部材の対向端面間に存在するよ
うに密閉室内に収容された正極部材と負極部材との電池
反応に関与する電解質を包含している。両極部材の対向
端面の面積(すなわち、実効電極面積)を大きくするた
めに、平面で見て画電極部材の対向エツジは、それぞれ
対応する櫛形状、波形(三角波、矩形波形等)状、また
は渦巻状であることが好ましい。本二次電池は、正極部
材および負極部材が、従来のようにその厚さ方向に配置
されるのではなく、同一平面上に並設されており、画電
極部材の端面は互いに離間対向しているという点に重要
な特徴を有する。
An example of a thin secondary battery applied to the present invention is 111 m
For example, there is a thin secondary battery described in Japanese Patent Application No. 185085/1985 which can be made as thin as the following. This thin secondary battery includes a positive electrode member and a negative electrode member that are arranged substantially in the same plane so that their end faces are separated and face each other, a substrate that fixedly supports the positive electrode and the negative electrode member, and a sealed container that includes the positive electrode and the negative electrode member. A cover member that defines the chamber together with the substrate, and an electrolyte that participates in the battery reaction between the positive electrode member and the negative electrode member housed in the sealed chamber so as to be present between at least the opposing end surfaces of the positive electrode member and the negative electrode member. There is. In order to increase the area of the opposing end surfaces of the bipolar members (i.e., the effective electrode area), the opposing edges of the picture electrode members when viewed in plan are formed into a corresponding comb shape, waveform (triangular wave, rectangular waveform, etc.), or spiral shape. Preferably, the shape is In this secondary battery, the positive electrode member and the negative electrode member are not arranged in the thickness direction as in the conventional case, but are arranged side by side on the same plane, and the end surfaces of the picture electrode member are spaced apart and facing each other. It has an important feature in that it is

従って、電池の厚さを薄くすることができる。Therefore, the thickness of the battery can be reduced.

すなわち、電池がこのような構造をとることによって、
充放電に伴う電池反応の場の進展方向が、電極面と平行
な方向となるので、薄い電極部材用いても、集電部が充
放電によって消失することがなく、電池を薄くすること
ができる。
In other words, when the battery has this structure,
The direction in which the battery reaction field develops during charging and discharging is parallel to the electrode surface, so even if a thin electrode member is used, the current collecting part will not be lost due to charging and discharging, and the battery can be made thinner. .

第3図(A)ないし第3図(C)を用いて、木薄形−次
電池を具体的に説明する。
The thin wooden battery will be specifically explained using FIG. 3(A) to FIG. 3(C).

第3図(A)ないし第3図(C)は特願昭63−185
085号に記載された薄形二次電池の第1の態様を示す
。第3図(B)および第3図(C)は第3図(A)に示
す電池の断面を示す。
Figures 3(A) to 3(C) are patent applications filed in 1985-185.
1 shows a first embodiment of the thin secondary battery described in No. 085. 3(B) and 3(C) show cross sections of the battery shown in FIG. 3(A).

第3図(A)に示すように、平板状基板41Aの一方の
表面(平面)上には、以後詳述するようにそれぞれ櫛状
の正極部材42および負極部材43が並設され、正極部
材42と負極部材43との間の空間には、電池反応に関
与する電解質44が充填されている。正極部材42は、
正極活物質を含む正極材料により形成され、負極部材4
3は、負極活物質を含む負極材料により形成されている
。鉛蓄電池の場合には、正極活物質は二酸化鉛であり、
負極活物質は鉛である。電解質44としては、硫酸等の
ような液体電解質を用いることができる。
As shown in FIG. 3(A), on one surface (plane) of the flat substrate 41A, a comb-shaped positive electrode member 42 and a negative electrode member 43 are arranged in parallel, respectively, as will be described in detail later. The space between 42 and the negative electrode member 43 is filled with an electrolyte 44 that participates in battery reactions. The positive electrode member 42 is
The negative electrode member 4 is formed of a positive electrode material containing a positive electrode active material.
3 is formed of a negative electrode material containing a negative electrode active material. In the case of lead-acid batteries, the positive electrode active material is lead dioxide;
The negative electrode active material is lead. As the electrolyte 44, a liquid electrolyte such as sulfuric acid can be used.

電極部材42および43を覆りて、カバ一部材41Bが
基板41Aに結合されている。カバ一部材41Bは基板
41八とともに密閉室を規定する電池ケース41を構成
している。基板41Aおよびカバ一部材418は、少な
くとも表面が絶縁性を示すものであり、例えば、アクリ
ロニI・リルーブタジエンースチレン樹脂(へBS樹脂
)、フッ素系樹脂等のような耐酸性ポリマー材料、ブラ
スチンク材料あるいはガラス織δ(F強化プラスチック
材料で形成することができる。さらに、硫酸等液体電解
質に含まれる水分の透湿を防止するために、アルミニウ
ム等の金属層を絶縁性高分子材料で被覆したラミネート
材や、ポリ塩化ビニリデン樹脂(PVCD樹脂)で基板
41Aおよびカバ一部材41Bを形成してもよい。なお
、電池ケース41には、電極部材42と43との間の空
間に連imするガス抜き用安全弁45、ならびに正極端
子46および負極端子47が付設されている。
A cover member 41B is coupled to the substrate 41A, covering the electrode members 42 and 43. The cover member 41B and the substrate 418 constitute a battery case 41 that defines a sealed chamber. The substrate 41A and the cover member 418 exhibit insulating properties at least on their surfaces, and are made of, for example, an acid-resistant polymer material such as acryloni I-lylubutadiene-styrene resin (HeBS resin), a fluorine-based resin, or a brass tink material. Alternatively, it can be made of glass woven δ (F-reinforced plastic material).Furthermore, in order to prevent the permeation of moisture contained in liquid electrolyte such as sulfuric acid, a laminate in which a metal layer such as aluminum is coated with an insulating polymer material is used. The substrate 41A and the cover member 41B may be formed of a polyvinylidene chloride resin (PVCD resin) or a polyvinylidene chloride resin (PVCD resin). A safety valve 45, a positive terminal 46, and a negative terminal 47 are provided.

第3図(B)に示すように、正極部材42は、櫛状であ
り、櫛骨42Bから、実質的に同一形状の複数個の矩形
歯42八が所定の間隔で延出している。負極部材43も
櫛状であり、櫛骨43Bから、実質的に同一形状の複数
個の矩形歯43Aが所定の間隔で延出している。正極部
材の歯42八は、それぞれ、負極部材のI#43Aと接
触することなく、それらの歯43Aの間に入り込んでい
る。かくして、正極部材42と負極部材43とは、それ
らの端面が互いに対向するように配置されることとなる
As shown in FIG. 3(B), the positive electrode member 42 is comb-shaped, and a plurality of rectangular teeth 428 having substantially the same shape extend from a comb bone 42B at predetermined intervals. The negative electrode member 43 is also comb-shaped, and a plurality of rectangular teeth 43A having substantially the same shape extend from a comb bone 43B at predetermined intervals. Each of the teeth 428 of the positive electrode member is inserted between the teeth 43A of the negative electrode member without contacting with I#43A of the negative electrode member. In this way, the positive electrode member 42 and the negative electrode member 43 are arranged such that their end surfaces face each other.

第3図(C)(ここでは、説明の都合上、正極の矩形歯
42Aおよび負極の矩形歯43Aの厚さdは、その幅に
比べて極端に拡大して図示しであるが、実13祭は、厚
さdはビ社42八および43への幅lよりも極めて小さ
いものである)を参照すると、カバ一部材41Bは、電
極部材42および43の表面を密着して覆っており、電
解質44は、電極部材42および43とカバ一部材41
Bとの接触面間に浸入してこの面を侵すことがない。
FIG. 3(C) (Here, for convenience of explanation, the thickness d of the positive electrode rectangular tooth 42A and the negative electrode rectangular tooth 43A are shown extremely enlarged compared to their widths, but the actual 13 (The thickness d is extremely smaller than the width l between the electrode members 42 and 43), the cover member 41B closely covers the surfaces of the electrode members 42 and 43, The electrolyte 44 is connected to the electrode members 42 and 43 and the cover member 41.
It does not penetrate between the contact surfaces with B and attack this surface.

上述した二次電池では、正極部材42および負極部材4
3とは、基板41Aの表面上、すなわち同一平面上に並
設されているので、これらの部材をそれらの厚さ方向に
配設した従来の二次電池と比べると、従来の電池と同一
厚さの電極部材を用いた場合でも、本二次電池はその厚
さを従来の電池の厚さの173程度にすることができる
In the above-described secondary battery, the positive electrode member 42 and the negative electrode member 4
3 are arranged side by side on the surface of the substrate 41A, that is, on the same plane, so compared to a conventional secondary battery in which these members are arranged in the thickness direction, the thickness is the same as that of the conventional battery. Even when a small electrode member is used, the thickness of the present secondary battery can be reduced to about 173 mm, which is the thickness of a conventional battery.

これまでの薄形シールS9蓄電池のような従来の薄形二
次電池は、電池の主要構成要素である正極板、負極板お
よびセパレータが、その厚さ方向に配置されている構造
をとっている。このような構造の電池の薄形化を図るた
めには正極板および負極板等を薄くすればよいが、それ
には以下に述べるように限界がある。上述の構造の従来
の二次電池においては、電池寿命は電極板(特に正極板
)の厚さに大きく依存している。すなわち、当該分野で
よく知られているように、電極板の厚さが薄くなるにつ
れて、電池寿命が短くなるのである。
Conventional thin secondary batteries, such as the conventional thin sealed S9 storage battery, have a structure in which the main components of the battery, such as a positive electrode plate, a negative electrode plate, and a separator, are arranged in the thickness direction. . In order to reduce the thickness of a battery having such a structure, the positive electrode plate, the negative electrode plate, etc. may be made thinner, but there are limits to this as described below. In the conventional secondary battery having the above structure, the battery life largely depends on the thickness of the electrode plate (especially the positive electrode plate). That is, as is well known in the art, as the thickness of the electrode plate decreases, the battery life decreases.

上述の構造を有する従来の鉛蓄電池における電極板の厚
さとトリクル充電使用下での電池寿命との関係は、従来
の電池の寿命は、電極板の厚さの減少とともに急激に低
下し、電極板の厚さが1mm以下になると、二次電池と
して繰り返し使用することがほとんど不可能となる。
The relationship between the thickness of the electrode plate and the battery life under trickle charging in a conventional lead-acid battery having the above-mentioned structure is that the life of a conventional battery decreases rapidly as the thickness of the electrode plate decreases; When the thickness of the battery becomes 1 mm or less, it becomes almost impossible to use it repeatedly as a secondary battery.

これは、従来の二次電池構造においては、充放電にとも
なって生じる電池反応の場が、電極板主表面に対して垂
直な方向(厚さ方向)に進展してゆくことに起因してい
る。
This is because, in conventional secondary battery structures, the field of battery reactions that occur during charging and discharging develops in a direction perpendicular to the main surface of the electrode plate (thickness direction). .

つまり、電池が二次電池として機能するためには、電極
中に電池反応に関与しない部分、すなわち集電部が常に
存在していることが必要であるが、電極板の厚さが薄く
なると、充放電にともない、この集電部が消失してしま
うため電池として機能できなくなる。この事情は、電池
をサイクル使用するとぎにも全く同じである。これらの
理由から、例えば従来の薄形シール鉛蓄電池においては
、電池全体の厚さは4〜5IllI11までが薄形化の
限界であった。
In other words, in order for a battery to function as a secondary battery, a part that does not participate in battery reactions, that is, a current collecting part, must always be present in the electrode, but as the thickness of the electrode plate becomes thinner, During charging and discharging, this current collector disappears, making it impossible to function as a battery. This situation is exactly the same when cycling a battery. For these reasons, for example, in conventional thin sealed lead-acid batteries, the limit for reducing the overall thickness of the battery is 4 to 5IllI11.

また、第3図(C)に矢印で示すように、本二次電池で
は、充放電時の電池反応の場の進展方向は、従来の電池
とは異なり、電極部材の厚さ方向と直交する方向(すな
わち、電極の歯の幅と平行な方向)である。そのため矩
形歯(M−位電極)42Aおよび43Aの幅は1〜2m
m以上、例えば3〜4fflI11を確保する必要があ
るが、そのようにすれば、電極の厚さdは1mm以下、
例えば0.1mm以下であっても、従来の薄形二次電池
と同等あるいはそれ以上の電池寿命を確保することがで
きる。
In addition, as shown by the arrow in FIG. 3(C), in this secondary battery, the direction in which the battery reaction field develops during charging and discharging is perpendicular to the thickness direction of the electrode member, unlike in conventional batteries. direction (i.e. parallel to the width of the electrode teeth). Therefore, the width of the rectangular teeth (M-position electrode) 42A and 43A is 1 to 2 m.
m or more, for example 3 to 4fflI11, but if this is done, the electrode thickness d will be 1 mm or less,
For example, even if the thickness is 0.1 mm or less, a battery life equal to or longer than that of conventional thin secondary batteries can be ensured.

すなわち、第3図(A)ないし第3図(C)に示した二
次電池においては、厚さdの薄い電極部材を用いても幅
Aを大きくすることにより、充放電による集電部の消失
を抑制することができる。本発明に適用し得る薄形二次
電池にはこの他に以下のような態様のものがある。
That is, in the secondary batteries shown in FIGS. 3(A) to 3(C), even if a thin electrode member with a thickness of d is used, by increasing the width A, the current collecting portion during charging and discharging can be reduced. Disappearance can be suppressed. Other thin secondary batteries that can be applied to the present invention include the following embodiments.

第2の態様の二次電池は、カバ一部材41Bが電極部材
42および43の上表面と離間して配設されている点に
おいてのみ第1の態様の二次電池と異なる。
The secondary battery of the second embodiment differs from the secondary battery of the first embodiment only in that the cover member 41B is disposed apart from the upper surfaces of the electrode members 42 and 43.

第2の態様の二次電池は、電池寿命は第1の態様の二次
電池と実質的に変わりないが、カバ一部材41Bを電極
部材42および43に密着させる必要がないので、製造
がより簡単である。なお、この二次電池も従来の電池に
比べて、厚さを約173程度に薄くすることができる。
Although the battery life of the secondary battery of the second embodiment is substantially the same as that of the secondary battery of the first embodiment, it is easier to manufacture since it is not necessary to bring the cover member 41B into close contact with the electrode members 42 and 43. It's easy. Note that this secondary battery can also be made thinner, to about 173 cm, compared to conventional batteries.

この電池の具体例として鉛蓄電池について述べる。厚さ
0.65mm、縦50mm、横78mmであり、重さ4
.7kg;体積2.5cm’、電極部材の厚さ0.4m
rnである鉛蓄電池の放電曲線は、鉛蓄電池特有の電圧
経時変化を示すとともに、電池容量としては約40n+
Ahの値が得られた。また、耐久性も充分であり、本二
次電池は実用に供し得る特性を有している。
A lead-acid battery will be described as a specific example of this battery. It is 0.65mm thick, 50mm long, 78mm wide, and weighs 4.
.. 7kg; volume 2.5cm', electrode member thickness 0.4m
The discharge curve of the lead-acid battery, which is rn, shows the voltage change over time peculiar to lead-acid batteries, and the battery capacity is approximately 40n+.
The value of Ah was obtained. Furthermore, the durability is sufficient, and the present secondary battery has characteristics that can be put to practical use.

第3の態様の二次電池においては、離間対向する正極部
材と負極部材が1つの単セルを構成1..3個の単セル
が直列に接続された構造である。薄板状の正極部材およ
び薄板状の負極部材は、基板上に配設されており、負極
と隣り合った単セル同士の正極部材および゛負極部材は
互いに接して設けられ、それらの間では、電池反応は生
じない。この二次電池は第1の態様による二次電池の効
果の他に、それと比べて3倍の電池電圧を得ることがで
きるという効果を有している。
In the secondary battery of the third aspect, a positive electrode member and a negative electrode member facing each other at a distance form one single cell.1. .. It has a structure in which three single cells are connected in series. A thin plate-shaped positive electrode member and a thin plate-shaped negative electrode member are arranged on a substrate, and the positive electrode members and negative electrode members of adjacent single cells are provided in contact with each other, and between them, the battery No reaction occurs. In addition to the effects of the secondary battery according to the first embodiment, this secondary battery has the effect of being able to obtain a battery voltage three times higher than that of the secondary battery according to the first embodiment.

以上の二次電池の他に正極部材および負極部材を、それ
ぞれ、厚さの薄いほぼ正弦波状のパターンに形成しても
よい。また、正極部材および負極部材を、それぞれ厚さ
の薄いのこぎり歯形状(三角波状)に形成してもよい。
In addition to the above-mentioned secondary battery, the positive electrode member and the negative electrode member may each be formed into a thin, substantially sinusoidal pattern. Further, the positive electrode member and the negative electrode member may each be formed into a thin sawtooth shape (triangular wave shape).

さらに、正極部材および負極部材が、それぞれ厚さの薄
い渦巻形状であってもよい。
Furthermore, the positive electrode member and the negative electrode member may each have a thin spiral shape.

なお、本二次電池では、正極部材と負極部材とは基板上
に固定されているので、それらの間には、従来必要であ
ったセパレータを設ける必要がないが、必要に応じてセ
パレータで正極部材と負極部材との間に設けてもよい。
In addition, in this secondary battery, the positive electrode member and the negative electrode member are fixed on the substrate, so there is no need to provide a separator between them, which was required in the past. It may be provided between the member and the negative electrode member.

[発明の効果] 以上説明したように本発明によれば、モジュール基板に
薄形二次電池を用いることによって、新たに別途二次電
池を設けることなく、負荷に無停電で電力を供給するこ
とが可能な太陽電池モジュールを実現でき、機器の小型
軽量化が可能である。
[Effects of the Invention] As explained above, according to the present invention, by using a thin secondary battery in the module substrate, it is possible to supply power to a load without interruption without providing a separate secondary battery. It is possible to realize a solar cell module that is capable of this, and it is possible to make the equipment smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶系シリコン太陽電池モジュールにおりる本
発明の一実施例を示す図、 第2図はアモルファスシリコン太陽電池モジュールにお
ける本発明の他の実施例を示す図、第3図(八)は本発
明に適用する薄形二次電池の第1の態様の一部破断斜視
図、 第3図(B)は第3図(A)に示した二次電池の水平断
面図、 第3図(C)は第3図(B)のIII −III線に沿
う断面図、 第4図は太陽電池に二次電池を付加して使用する場合の
回路図である。 16・・・結晶シリコン層、 25・・・透明電極、 27・・・アモルファスシリコン層、 35.38・・・薄形二次電池基板、 35.39・・・正極端子、 37.40・・・負極端子。
FIG. 1 is a diagram showing one embodiment of the present invention in a crystalline silicon solar cell module, FIG. 2 is a diagram showing another embodiment of the present invention in an amorphous silicon solar cell module, and FIG. 3 (8) is a partially cutaway perspective view of the first embodiment of the thin secondary battery applied to the present invention; FIG. 3(B) is a horizontal sectional view of the secondary battery shown in FIG. 3(A); (C) is a sectional view taken along the line III--III in FIG. 3(B), and FIG. 4 is a circuit diagram when a solar cell is used with a secondary battery added thereto. 16... Crystalline silicon layer, 25... Transparent electrode, 27... Amorphous silicon layer, 35.38... Thin secondary battery substrate, 35.39... Positive electrode terminal, 37.40...・Negative terminal.

Claims (1)

【特許請求の範囲】[Claims] 1)光電直接変換を行う太陽電池素子を複数個直列ある
いは並列に組み合わせて所定の電圧が得られるように基
板上に配置した太陽電池モジュールにおいて、前記基板
の少なくとも一部に薄形二次電池を用いたことを特徴と
する太陽電池モジュール。
1) In a solar cell module in which a plurality of solar cell elements that perform photoelectric direct conversion are arranged in series or in parallel on a substrate so as to obtain a predetermined voltage, a thin secondary battery is provided on at least a portion of the substrate. A solar cell module characterized by using
JP63287567A 1988-11-16 1988-11-16 Solar battery module Pending JPH02134876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63287567A JPH02134876A (en) 1988-11-16 1988-11-16 Solar battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63287567A JPH02134876A (en) 1988-11-16 1988-11-16 Solar battery module

Publications (1)

Publication Number Publication Date
JPH02134876A true JPH02134876A (en) 1990-05-23

Family

ID=17719009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63287567A Pending JPH02134876A (en) 1988-11-16 1988-11-16 Solar battery module

Country Status (1)

Country Link
JP (1) JPH02134876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048259A (en) * 2018-09-14 2020-03-26 株式会社東芝 Power storage type photocell and power storage type photocell system employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020048259A (en) * 2018-09-14 2020-03-26 株式会社東芝 Power storage type photocell and power storage type photocell system employing the same

Similar Documents

Publication Publication Date Title
JP3531866B2 (en) Thin-film solid lithium ion secondary battery
US4217633A (en) Solar cell system having alternating current output
US4513168A (en) Three-terminal solar cell circuit
JPH0460355B2 (en)
EP1071136B1 (en) Solar electric power apparatus, solar module, and installation method of solar modules
JPS58166681A (en) Semiconductor device
CN109713066A (en) A kind of photovoltaic module
WO2010150833A1 (en) Thin film composite battery and process for production thereof
JPS61283173A (en) Power source element
WO2014114015A1 (en) Solar cell
EP0108492A2 (en) Composite photocell
JPH02134876A (en) Solar battery module
KR101149463B1 (en) Solar cell module having bypass element
JPH08330616A (en) Photoelectric converter
US4140545A (en) Plural solar cell arrangement including transparent interconnectors
JPS61104567A (en) Power source apparatus using solar cell
KR20210019983A (en) Photovoltaic power generation/storage unit and solar power generation/storage system
JP7261923B1 (en) Photovoltaic module and manufacturing method thereof
KR20150060415A (en) Solar cell module
CN218731000U (en) Photovoltaic glass and photovoltaic module
CN219019439U (en) Perovskite battery, battery pack and photovoltaic system
RU2686449C1 (en) Planar high-voltage photoelectric module
JP2004040034A (en) Photoelectric conversion element module
CN117295349B (en) Thin film battery assembly, perovskite battery assembly and photovoltaic system
CN216849964U (en) Heterojunction photovoltaic module