JPH021345B2 - - Google Patents

Info

Publication number
JPH021345B2
JPH021345B2 JP56060398A JP6039881A JPH021345B2 JP H021345 B2 JPH021345 B2 JP H021345B2 JP 56060398 A JP56060398 A JP 56060398A JP 6039881 A JP6039881 A JP 6039881A JP H021345 B2 JPH021345 B2 JP H021345B2
Authority
JP
Japan
Prior art keywords
magnetic field
cathode ray
ray tube
current
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56060398A
Other languages
Japanese (ja)
Other versions
JPS57174833A (en
Inventor
Shigeya Ashizaki
Masamichi Kimura
Toshio Kuramoto
Kanji Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6039881A priority Critical patent/JPS57174833A/en
Publication of JPS57174833A publication Critical patent/JPS57174833A/en
Publication of JPH021345B2 publication Critical patent/JPH021345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/56Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses
    • H01J29/566Arrangements for controlling cross-section of ray or beam; Arrangements for correcting aberration of beam, e.g. due to lenses for correcting aberration

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Details Of Television Scanning (AREA)

Description

【発明の詳細な説明】 本発明は、単電子銃形陰極線管のネツク部に、
非点収差歪補正用の四極磁界発生器を装着してな
る高解像度特性の陰極線管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a network for a single electron gun type cathode ray tube.
The present invention relates to a high resolution cathode ray tube device equipped with a quadrupole magnetic field generator for correcting astigmatism distortion.

一般に、データ・デイスプレイ装置に用いられ
る陰極線管に対しては、蛍光体スクリーンの周辺
部においても中央部におけると同様の高解像度が
要求される。しかし、陰極線管における電子ビー
ムは、偏向量の増大に伴つて収差の影響を大きく
受けるから、第1図に示すように蛍光体スクリー
ン1の周辺部に生じるビームスポツト(輝点)
2,3,4は、蛍光体スクリーン1の中央部に生
じるビームスポツト5に比して長大となり、周辺
部での解像度は低くなる。
In general, cathode ray tubes used in data display devices are required to have the same high resolution at the periphery of the phosphor screen as at the center. However, since the electron beam in a cathode ray tube is greatly affected by aberrations as the amount of deflection increases, beam spots (bright spots) that occur around the periphery of the phosphor screen 1 as shown in FIG.
2, 3, and 4 are longer than the beam spot 5 formed at the center of the phosphor screen 1, and the resolution at the periphery is lower.

一方、かかる歪み対策としての既知のダイナミ
ツク・フオーカス補正は、軸対称レンズによる補
正であるから、蛍光体スクリーン1のコーナ部付
近に生じるビームスポツト3の大きさおよび形状
を第2図図示のように改善できても、中央垂直軸
上の周辺部付近および中央水平軸上の周辺部付近
に生じるビームスポツト2,4の大きさおよび形
状を改善し得ない。なお、前記コーナ部付近にお
いては、水平偏向による歪みと垂直偏向による歪
みとの相殺により、ビームスポツトに非点収差歪
みをほとんど生じない。
On the other hand, since the known dynamic focus correction as a measure against such distortion is correction using an axially symmetrical lens, the size and shape of the beam spot 3 generated near the corner of the phosphor screen 1 can be adjusted as shown in FIG. Even if it can be improved, it cannot improve the size and shape of the beam spots 2, 4 that occur near the periphery on the central vertical axis and near the periphery on the central horizontal axis. In the vicinity of the corner, the distortion caused by the horizontal deflection and the distortion caused by the vertical deflection cancel each other out, so that almost no astigmatic distortion occurs in the beam spot.

本発明の陰極線管装置においては、四極磁界発
生器を使用して非点収差歪みの発生を防止するの
であり、これを以下図面に示した実施例とともに
説明する。
In the cathode ray tube device of the present invention, a quadrupole magnetic field generator is used to prevent the occurrence of astigmatic distortion, and this will be explained below in conjunction with an embodiment shown in the drawings.

第3図において、陰極線管6は、陰極7、制御
電極8、第1加速電極9、集束電極10、第2加
速電極11および電極支持用絶縁体12等からな
る電子銃13をネツク部14に内装し、フエース
パネル部15の内面に蛍光体スクリーン16を有
している。そして、ネツク部14の外周面に四極
磁界発生器17および偏向ヨーク18を装着して
いる。
In FIG. 3, the cathode ray tube 6 includes an electron gun 13 consisting of a cathode 7, a control electrode 8, a first accelerating electrode 9, a focusing electrode 10, a second accelerating electrode 11, an electrode supporting insulator 12, etc. It is provided internally and has a phosphor screen 16 on the inner surface of the face panel section 15. A quadrupole magnetic field generator 17 and a deflection yoke 18 are attached to the outer peripheral surface of the neck portion 14.

四極磁界発生器17は、集束電極10を包囲す
る位置に設けられ、第4図および第5図に示すよ
うに4個のソレノイドコイル19,20,21,
22を有している。コイル軸19a,20a,2
1a,22aは、ネツク部14の軸23に直交す
る一平面上にあつて、水平偏向軸24に対し45゜
の角度で傾斜し、隣接するもの同士が90゜の角度
差をもつて配設されている。
The quadrupole magnetic field generator 17 is provided at a position surrounding the focusing electrode 10, and includes four solenoid coils 19, 20, 21,
It has 22. Coil shafts 19a, 20a, 2
1a and 22a are located on a plane perpendicular to the axis 23 of the neck portion 14 and are inclined at an angle of 45 degrees with respect to the horizontal deflection axis 24, and adjacent ones are arranged with an angular difference of 90 degrees. has been done.

第5図に示すように接続された4個のソレノイ
ドコイル19,20,21,22は、破線矢印で
示す方向への通電によつて、実線矢印25で示す
方向への磁界を発生する。すなわち、ソレノイド
コイル19,20,21,22は、集束電極10
内を通過する電子ビームに対し、第6図に示す極
性の磁界、つまり、蛍光体スクリーン側からみて
右上および左下がN極で、右下および左上がS極
となる四極磁界を与える。このため、水平偏向作
用を受けることによつて横長楕円に歪むビームス
ポツト26の形状を、真円に近づけることが可能
となる。
The four solenoid coils 19, 20, 21, and 22 connected as shown in FIG. 5 generate a magnetic field in the direction shown by the solid arrow 25 when energized in the direction shown by the broken arrow. That is, the solenoid coils 19, 20, 21, 22 are connected to the focusing electrode 10.
A magnetic field with the polarity shown in FIG. 6 is applied to the electron beam passing through the phosphor screen, that is, a quadrupole magnetic field with N poles at the upper right and lower left and S poles at the lower right and upper left when viewed from the phosphor screen side. Therefore, the shape of the beam spot 26, which is distorted into a horizontally oblong ellipse due to horizontal deflection, can be made closer to a perfect circle.

また、ソレノイドコイル19,20,21,2
2に流通させる電流の向きを逆転させることによ
つて第7図に示すような極性の四極磁界を電子ビ
ームに与えると、垂直偏向作用を受けることによ
つて縦長楕円に歪むビームスポツト27の形状
を、真円に近づけることが可能となる。
In addition, solenoid coils 19, 20, 21, 2
When a quadrupole magnetic field with the polarity as shown in FIG. 7 is applied to the electron beam by reversing the direction of the current flowing through the electron beam 2, the shape of the beam spot 27 is distorted into a vertically elongated ellipse due to the vertical deflection effect. can be made close to a perfect circle.

ソレノイドコイル19,20,21,22に流
通させる電流の大きさは、水平偏向(または垂直
偏向)においては、蛍光体スクリーンの左右両端
部(または上下両端部)でもつとも大きく、蛍光
体スクリーンの中央部で零となる二次曲線的変化
をなすものが理想である。しかし、第8図のaに
破線で示すようなパラボラ波電流でなくても、実
線で示すような三角波電流で十分である。このよ
うな三角波補正電流は、テレビジヨン受像機の偏
向出力回路から波形整形回路を通じてとり出すこ
とができ、第8図のbに示すのこぎり波偏向電流
に同期している。
In horizontal deflection (or vertical deflection), the magnitude of the current flowing through the solenoid coils 19, 20, 21, and 22 is large at both the left and right ends (or at both the top and bottom ends) of the phosphor screen, and at the center of the phosphor screen. The ideal is a quadratic curve that becomes zero at . However, even if it is not a parabolic wave current as shown by the broken line in a of FIG. 8, a triangular wave current as shown by the solid line is sufficient. Such a triangular wave correction current can be extracted from the deflection output circuit of the television receiver through a waveform shaping circuit, and is synchronized with the sawtooth wave deflection current shown in FIG. 8b.

したがつて、従来と同様のダイナミツク・フオ
ーカス補正を行なうとともに、第5図に示すよう
に結線された4個のソレノイドコイル19,2
0,21,22に対し、水平偏向電流に同期した
パラボラ波ないし三角波電流を一方向に、そし
て、垂直偏向電流に同期したパラボラ波ないし三
角波電流を逆方向にそれぞれ流通させると、水平
偏向および垂直偏向によつて生じるビームスポツ
トの非点収差歪みをほぼ完全に除去でき、蛍光体
スクリーンの周辺部においても真円に近いビーム
スポツトを生成せしめることが可能となり、スク
リーン全域で良好な解像度を得ることができる。
Therefore, in addition to performing the same dynamic focus correction as in the past, the four solenoid coils 19 and 2 connected as shown in FIG.
0, 21, and 22, if a parabolic wave or triangular wave current synchronized with the horizontal deflection current is passed in one direction, and a parabolic wave or triangular wave current synchronized with the vertical deflection current is passed in the opposite direction, the horizontal deflection and vertical It is possible to almost completely eliminate astigmatic distortion of the beam spot caused by deflection, and it is possible to generate a beam spot that is close to a perfect circle even at the periphery of the phosphor screen, achieving good resolution across the entire screen. Can be done.

四極磁界発生器17は、偏向磁界の影響を受け
ない場所に設置するが、電子ビームのポテンシヤ
ルが低い位置に選ぶのが望ましい。若しも、蛍光
体スクリーンと同一ポテンシヤルの場所に設置す
ると、消費電力がかさむ。一例として、偏向角度
110゜、ネツク部径29.1mmφの18インチ型モノクロ
陰極線管の集束電極外周部に、各100ターン(線
径0.3mm、L=626μH、R=6.8Ω)のソレノイド
コイルを設置し、蛍光体スクリーン電圧(陽極電
圧)18kV、集束電極電圧4.9kVとなした場合、
最適補正電流は、蛍光体スクリーンの中央水平軸
上の左右端において350mA、蛍光体スクリーン
の中央垂直軸上の上下端において200mAとなり、
偏向電力の数分の1の電力でビームスポツトの非
点収差歪みを補正することができる。そして、蛍
光体スクリーンの中央から中央水平軸上の周辺に
いたる距離を横軸にとり、ビームスポツト径を縦
軸にとつてプロツトしてみると、第9図に示すよ
うな特性が得られた。ただし、ここで曲線Aはダ
イナミツク・フオーカス補正を行なわない場合、
曲線Bは同補正を行なつた場合、曲線Cはダイナ
ミツク・フオーカス補正と本発明の非点収差歪補
正とを行なつた場合を示す。
The quadrupole magnetic field generator 17 is installed at a location where it is not affected by the deflection magnetic field, but it is preferably selected at a location where the potential of the electron beam is low. If it is installed at a location with the same potential as the phosphor screen, power consumption will increase. As an example, the deflection angle
A solenoid coil with 100 turns each (wire diameter 0.3 mm, L = 626 μH, R = 6.8 Ω) was installed on the outer periphery of the focusing electrode of an 18-inch monochrome cathode ray tube with a diameter of 110° and a neck diameter of 29.1 mm, and a phosphor screen was installed. When the voltage (anode voltage) is 18kV and the focusing electrode voltage is 4.9kV,
The optimal correction current is 350 mA at the left and right ends on the central horizontal axis of the phosphor screen, and 200 mA at the top and bottom ends on the central vertical axis of the phosphor screen.
Astigmatic distortion of the beam spot can be corrected with a power that is a fraction of the deflection power. When the distance from the center of the phosphor screen to the periphery on the central horizontal axis was plotted on the horizontal axis and the beam spot diameter was plotted on the vertical axis, the characteristics shown in FIG. 9 were obtained. However, here, curve A is obtained when dynamic focus correction is not performed.
Curve B shows the case when the same correction is performed, and curve C shows the case when dynamic focus correction and astigmatism distortion correction of the present invention are performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の陰極線管装置の蛍
光体スクリーン上に生じるビームスポツトの形状
を模式的に示す平面図、第3図は本発明を実施し
た陰極線管装置の一部破断側面図、第4図は同装
置の四極磁界発生器の4個のソレノイドコイルの
配置図、第5図は同ソレノイドコイルの結線図、
第6図および第7図は同四極磁界発生器によつて
生じる磁界と電子ビーム断面との関係を示す図、
第8図は四極磁界発生器に通じる補正電流と偏向
電流との関係を示す波形図、第9図は従来の陰極
線管装置と本発明実施の陰極線管装置とのビー
ム・スポツト径特性を比較する図である。 6……陰極線管、17……四極磁界発生器、1
9,20,21,22……ソレノイドコイル。
1 and 2 are plan views schematically showing the shape of beam spots generated on the phosphor screen of a conventional cathode ray tube device, and FIG. 3 is a partially cutaway side view of a cathode ray tube device according to the present invention. , Fig. 4 is a layout diagram of the four solenoid coils of the quadrupole magnetic field generator of the same device, Fig. 5 is a wiring diagram of the solenoid coil,
6 and 7 are diagrams showing the relationship between the magnetic field generated by the quadrupole magnetic field generator and the electron beam cross section,
Fig. 8 is a waveform diagram showing the relationship between the correction current and the deflection current flowing to the quadrupole magnetic field generator, and Fig. 9 compares the beam spot diameter characteristics of a conventional cathode ray tube device and a cathode ray tube device according to the present invention. It is a diagram. 6... Cathode ray tube, 17... Quadrupole magnetic field generator, 1
9, 20, 21, 22... Solenoid coil.

Claims (1)

【特許請求の範囲】[Claims] 1 単電子銃形陰極線管のネツク部に装着された
四極磁界発生器が、前記ネツク部の軸を中心とし
た右上、左下、左上および右下に1個ずつ配置さ
れた4個のソレノイドコイルを有し、このソレノ
イドコイルは、右上および左下のものがN極とな
るとき左上および右下のものがS極となる向きに
相互に接続されており、かつ、水平偏向電流に同
期したパラボラ波ないし三角波電流を一方向に、
そして垂直偏向電流に同期したパラボラ波ないし
三角波電流を逆方向にそれぞれ流通させる補正電
流発生回路に接続されて非点収差補正用四極磁界
を発生することを特徴とする陰極線管装置。
1 A quadrupole magnetic field generator attached to the neck of a single electron gun type cathode ray tube activates four solenoid coils, one each placed at the upper right, lower left, upper left, and lower right around the axis of the neck. The solenoid coils are connected to each other in such a direction that the upper right and lower left become N poles, and the upper left and lower right become S poles, and generate a parabolic wave or a parabolic wave synchronized with the horizontal deflection current. Triangular wave current in one direction,
The cathode ray tube device is connected to a correction current generation circuit that flows parabolic wave or triangular wave currents in opposite directions in synchronization with the vertical deflection current to generate a quadrupole magnetic field for astigmatism correction.
JP6039881A 1981-04-20 1981-04-20 Cathode ray tube Granted JPS57174833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039881A JPS57174833A (en) 1981-04-20 1981-04-20 Cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039881A JPS57174833A (en) 1981-04-20 1981-04-20 Cathode ray tube

Publications (2)

Publication Number Publication Date
JPS57174833A JPS57174833A (en) 1982-10-27
JPH021345B2 true JPH021345B2 (en) 1990-01-11

Family

ID=13141009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039881A Granted JPS57174833A (en) 1981-04-20 1981-04-20 Cathode ray tube

Country Status (1)

Country Link
JP (1) JPS57174833A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495224A (en) * 1972-04-28 1974-01-17
JPS51112116A (en) * 1975-03-04 1976-10-04 United Technologies Corp Circuit for correcting astigmatism
JPS5524378A (en) * 1978-08-10 1980-02-21 Matsushita Electric Ind Co Ltd Beam focusing device
JPS5527495A (en) * 1978-08-19 1980-02-27 Stopinc Ag Threeeply system sliding closing appliance
JPS5593640A (en) * 1979-01-10 1980-07-16 Matsushita Electric Ind Co Ltd Electron beam focussing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495224A (en) * 1972-04-28 1974-01-17
JPS51112116A (en) * 1975-03-04 1976-10-04 United Technologies Corp Circuit for correcting astigmatism
JPS5524378A (en) * 1978-08-10 1980-02-21 Matsushita Electric Ind Co Ltd Beam focusing device
JPS5527495A (en) * 1978-08-19 1980-02-27 Stopinc Ag Threeeply system sliding closing appliance
JPS5593640A (en) * 1979-01-10 1980-07-16 Matsushita Electric Ind Co Ltd Electron beam focussing device

Also Published As

Publication number Publication date
JPS57174833A (en) 1982-10-27

Similar Documents

Publication Publication Date Title
US3873879A (en) In-line electron gun
JPH0795429B2 (en) Color display system
JPH03205746A (en) Color picture tube device
JP2780738B2 (en) Color display
JPH07147146A (en) Picture tube device
FI60085C (en) KORREKTION AV STRAOLFORMEN ANVAENDANDE FOEREVISNINGSSYSTEM
JPS5953656B2 (en) cathode ray tube equipment
US5028850A (en) Deflection system with a controlled beam spot
US3639796A (en) Color convergence system having elongated magnets perpendicular to plane of plural beams
US5157301A (en) Color cathode ray tube unit
US5418421A (en) Cathode-ray tube with electrostatic convergence electrode assembly
US2137353A (en) Television tube
JPS58192252A (en) Cathode-ray tube device
JPH021345B2 (en)
JPS6310444A (en) Color crt and color display unit
JPS63198241A (en) Color cathode tube
JPS58818B2 (en) color picture tube
JPH026188B2 (en)
JP2002083557A (en) Cathode-ray tube device
JP3157855B2 (en) Electron gun for color picture tube
JP2804051B2 (en) Color picture tube equipment
JP3074179B2 (en) Cathode ray tube
WO1995021456A1 (en) Color cathode ray tube
JP3039944B2 (en) Convergence device
KR800000610B1 (en) Display system utilizing beam shape correction