JPH02134237A - Composite base board - Google Patents

Composite base board

Info

Publication number
JPH02134237A
JPH02134237A JP28669788A JP28669788A JPH02134237A JP H02134237 A JPH02134237 A JP H02134237A JP 28669788 A JP28669788 A JP 28669788A JP 28669788 A JP28669788 A JP 28669788A JP H02134237 A JPH02134237 A JP H02134237A
Authority
JP
Japan
Prior art keywords
alloy
metal
thermal expansion
thermal conductivity
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28669788A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yajima
矢島 喜代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP28669788A priority Critical patent/JPH02134237A/en
Publication of JPH02134237A publication Critical patent/JPH02134237A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent accumulation of distortion to be a cause for peel or the like by forming a ceramic layer having a large heat conductivity to a metal with small thermal expansion coefficient and/or the surface of an alloy. CONSTITUTION:A ceramics layer having a large heat conductivity (k) is formed on the metal with small thermal expansion coefficient of 3 - 8 X 10<-6>1/ deg.C and/or the surface of an alloy. It is preferable that as a ceramics layer having large heat conductivity (k), a crystallized glass containing MgO, B2O3, BaO, SiO2 is blended in 10 - 65wt.% with one or two kinds or more selected from the group consisting of AlN, SiC, cubic BN and diamond. It is given alloys of 42 alloy (42% Ni, remainder Fe), 426 alloy (42% Ni, 6% Cr, remainder Fe) invar (Ni 36.5%, remainder Fe) or the like as a metal and/or alloy with small thermal expansion coefficient (alpha), and a cladding material of three layered construction of copper/invar/copper as a metal and alloy.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は電子回路用基板に関する。更に詳しくは熱放
散性が良好で、なおかつヒートショックによる剥離が生
じ難い回路基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electronic circuit board. More specifically, it relates to a circuit board that has good heat dissipation properties and is less likely to peel off due to heat shock.

(従来の技術) 電子装置の製造時には、す板上にその装置の回路を構成
する各種の電子素子を組立または形成するのが通常であ
る。
(Prior Art) When manufacturing electronic devices, it is common to assemble or form various electronic elements constituting the circuits of the device on a substrate.

この回路基板には一般には有機プラスチック基板が使用
されているが、この有機プラスチック基板は80℃以上
の高温にさらすことができない欠点をしっている。基板
が高温にさらされる場合にはアルミナなどのセラミック
ス材料が使用される。
Organic plastic substrates are generally used for this circuit board, but this organic plastic substrate has the disadvantage that it cannot be exposed to high temperatures of 80° C. or higher. Ceramic materials such as alumina are used when the substrate is exposed to high temperatures.

アルミナ基板は耐熱性4J−+−分であり、電子回路用
の基板として多用されているが、製造に比較的費用を要
し、またもろいため比較的大ぎな寸法のものを作ること
は実用的でなく、また穴あけや機械加工を容易に行うこ
とができない難点がある。
Alumina substrates have a heat resistance of 4J-+- minutes and are often used as substrates for electronic circuits, but they are relatively expensive to manufacture and are brittle, so it is not practical to make them with relatively large dimensions. Moreover, there is a drawback that drilling and machining cannot be performed easily.

また何よりも、現在問題となっている基板としての熱放
散性が劣り、高発熱の回路で11別途放熱板を必要とす
る。
Moreover, above all, the heat dissipation performance of the board is poor, which is currently a problem, and a separate heat sink is required for circuits that generate a lot of heat.

熱伝導性の良い即ち熱放散性の良好な電子回路用回路基
板としてはBed、AtJN、S i Cがある、Be
Oはその毒性のため、日本では生産されておらず、米国
から僅かに輸入されているのみである。AΩNは、ここ
数年、にわかに脚光を浴び初め研究がさかんである。S
iCも大分研究されていたが、AIINがでてから、や
)影が薄くなった。
Circuit boards for electronic circuits with good thermal conductivity, that is, good heat dissipation properties include Bed, AtJN, SiC, and Be.
Due to its toxicity, O is not produced in Japan and only a small amount is imported from the United States. AΩN has suddenly been in the spotlight over the past few years, and research has been active. S
iC was also widely studied, but after AIIN came out, it became less popular.

AIIN、SiCは共に原料が高価であると共に、製法
も特別な方法のため、基板として広く用いるには高価す
ぎる。
Both AIIN and SiC are too expensive to be widely used as substrates because their raw materials are expensive and their manufacturing methods are special.

また両者共、セラミックス焼結体であるために脆い、割
れ易いという欠点を有しており、−4法帖度も出し難い
Furthermore, since both are ceramic sintered bodies, they have the disadvantage of being brittle and easily cracked, and it is difficult to achieve a -4 degree.

このような難点のない基板として、ホウロウ基板があり
、有機プラスチック基板とセラミックス基板の両方の好
ましい特性を兼ね具えている。
Enamel substrates are available as substrates that do not have these drawbacks, and have the favorable characteristics of both organic plastic substrates and ceramic substrates.

ホウロウ基板は有機プラスチック板と同様に大きな寸法
のものも作ることができ、ホウロウ被覆の前に芯材は自
由に穴あけなどの加工成形をすることができる。また耐
熱性もガラス組成を調整することによって、900℃の
変形温度をもつようにでき、一般に800〜850℃も
の温度で基板を焼成またはくり返し再焼成することがで
きる。
Enameled substrates can be manufactured in large sizes, similar to organic plastic plates, and the core material can be freely shaped, such as by drilling holes, before being coated with enamel. In addition, the heat resistance can be made to have a deformation temperature of 900°C by adjusting the glass composition, and the substrate can generally be fired or repeatedly refired at temperatures as high as 800 to 850°C.

放熱性につ(1ても、芯材は金属であるので、アルミナ
よりはるかに熱伝導率が高く、従ってアルミナ基板ぐ必
要とする放熱板も不要である。
Regarding heat dissipation (1), since the core material is metal, its thermal conductivity is much higher than that of alumina, so there is no need for a heat dissipation plate, which is required for an alumina substrate.

しかしながらホウロウ基板の場合は、表面のホウOつ層
自体は熱伝導率は小さく、放熱の妨げとなる。回路基板
においては一般に表面に機成した回路での発熱を急速に
除去することが求められている。
However, in the case of an enamel substrate, the enamel layer itself on the surface has a low thermal conductivity and hinders heat radiation. In circuit boards, it is generally required to rapidly remove heat generated by circuits formed on the surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このようにホウロウ基板の放熱性に対づる要求は限度が
なく、ダイヤモンド、へIN、stc等がl3fffi
ではあるが使われようとしている。
In this way, there is no limit to the requirements for the heat dissipation properties of enamel substrates, and diamond, ferrite, stc, etc.
However, it is about to be used.

しかし、これらの材料は甚だPililliであるので
、混成集積回路(HIC)などの一般に使用される回路
基板にはコスト上から実用的でない。
However, these materials are extremely bulky, making them impractical for commonly used circuit boards such as hybrid integrated circuits (HICs) due to cost considerations.

本出願人は、このような現況から先に通常のホウOつ用
ガラスに熱伝導率の高いAIN等の材料を所定5A?!
合させることにより全体としての熱伝導率を高め得るこ
とを見出し、出願している。このものでは、その後の研
究の結果、次の様な問題のあることが判明した。1なわ
ち、ホウロウ被覆層の熱伝導性が向上した結果、ヒート
ショックなどにより、被覆に歪が蓄積され易くなり、剥
離が生じ易くなる。このため通常のホウロウ基板におい
ては、これら熱伝導性に優れたセラミックス粒子を多量
に添加することが難しくなり、期待した程大きな効果が
得られないことが判明した。
Given this current situation, the present applicant first decided to use a material such as AIN, which has high thermal conductivity, on ordinary glass for heating at a predetermined 5A? !
We have discovered that the overall thermal conductivity can be increased by combining these two methods, and have filed an application. As a result of subsequent research, it was discovered that this product had the following problems. 1. That is, as a result of the improved thermal conductivity of the enamel coating layer, strain is likely to be accumulated in the coating due to heat shock, etc., and peeling is likely to occur. For this reason, it has been found that it is difficult to add a large amount of these ceramic particles with excellent thermal conductivity to a normal enamel substrate, and it is not possible to obtain as great an effect as expected.

本発明の目的は、ホウロウ被覆層に熱伝導率にの大きい
セラミックス層を形成しても、剥離などの原因となる歪
の%積の起らない複合基板を提供することである。
An object of the present invention is to provide a composite substrate in which even if a ceramic layer having a high thermal conductivity is formed on the enamel coating layer, the % product of strain that causes peeling does not occur.

〔課題を解決するための手段〕[Means to solve the problem]

末完町名は前記課題を解決するため鋭意研究を行った。 Suekan Town conducted extensive research to resolve the above issues.

その結果、ホウロウ基板の金属芯材に熱膨脹係数の小さ
い金属および/または合金を使用することにより解決し
得ることを見い出し本発明を完成した。
As a result, they found that the problem could be solved by using a metal and/or alloy with a small coefficient of thermal expansion for the metal core material of the enamel substrate, and completed the present invention.

すなわち本発明は熱膨脹係数αが3〜8×10−61/
℃と小さい金属および/または合金表面へ、熱伝導率に
の大きいセラミックス層を形成した複合基板である。
That is, the present invention has a thermal expansion coefficient α of 3 to 8×10-61/
This is a composite substrate in which a ceramic layer with high thermal conductivity is formed on the metal and/or alloy surface with low temperature.

熱伝導率にの大きいセラミックス層とし又はMac、B
2O3、Bad、S i O2を含む結晶化ガラスにA
J)N、SiC,キュービックBN。
A ceramic layer with high thermal conductivity or Mac, B
A to crystallized glass containing 2O3, Bad, S i O2
J) N, SiC, cubic BN.

ダイヤモンドからなる群より選んだ1種または2種以上
を10〜65重量%配合したものが好ましい。
It is preferable to mix 10 to 65% by weight of one or more selected from the group consisting of diamonds.

い。stomach.

以下に熱伝導率にの大きいビラミックスとしてAjlN
を代表として説明するが、その他のSiC、キュービッ
クBN、ダイヤモンドでも、あるいはこれらの2種以上
の混合物でも同様である。
AjlN is shown below as a Viramix with high thermal conductivity.
will be described as a representative, but the same applies to other SiC, cubic BN, diamond, or a mixture of two or more of these.

熱l111!服係数αが3〜8 x 10−61 /℃
と小さい金属および/または合金としては/12合金(
42%Ni、残りFe)、426合金(42%Ni。
Heat l111! Coefficient α is 3 to 8 x 10-61/℃
and small metals and/or alloys such as /12 alloy (
42% Ni, balance Fe), 426 alloy (42% Ni.

6%Cr、残りFe)インバー(Ni36.5%、残り
Fe)等の合金、金属および合金としては銅/インバー
/銅の3層構造のクラツド材が挙げられる。
Examples of metals and alloys include alloys such as 6% Cr, remaining Fe) Invar (36.5% Ni, remaining Fe), and cladding materials having a three-layer structure of copper/Invar/copper.

本発明の複合基板の製造方法としては、へ1N微粉末と
MQO−8203、Bad、S ! 02を主成分とす
るアルカリフリーの結晶化ガラスとを例えばイソプロピ
ルアルコール(IPA)中で、ボールミルで粉砕し、こ
のスラリーを用いて泳動電着法により、例えば42合金
表面にAjlNと結晶化ガラスの混合粉末をコーティン
グし、850℃で焼成し、ホウロウ被膜を形成する。
As a method for manufacturing the composite substrate of the present invention, 1N fine powder and MQO-8203, Bad, S! Alkali-free crystallized glass containing AjlN as the main component is ground in, for example, isopropyl alcohol (IPA) with a ball mill, and this slurry is used to deposit AjIN and crystallized glass on the surface of the 42 alloy by electrophoretic electrodeposition. The mixed powder is coated and fired at 850°C to form an enamel film.

結晶化ガラスに添加する熱伝導率にの大きいセラミック
ス吊としては、10重早%未満では添加の効果が小さく
、ポウロウ基板としての熱転i9率が不足である。また
65重Q%を超えると、基板の表面性状が悪化してくる
When adding a ceramic material having a high thermal conductivity to crystallized glass, if the amount is less than 10% by weight, the effect of the addition is small, and the thermal conversion rate as a powder substrate is insufficient. Moreover, if it exceeds 65 weight Q%, the surface quality of the substrate will deteriorate.

金属芯材の熱膨脹係数αが3xlO−61/’Cより小
さい金属および/または合金は入手が困難であり、8X
10−61/℃より大きい金属および/または合金では
ヒートショックによる被膜剥離のおそれがある。
Metals and/or alloys whose thermal expansion coefficient α of the metal core material is smaller than 3xlO-61/'C are difficult to obtain;
Metals and/or alloys with a temperature higher than 10-61/°C may cause the film to peel off due to heat shock.

(実施例) 以下に実施例によって、本発明を更に具体的に説明する
が、本発明はこの実施例に限定されるものではない。
(Examples) The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

AIN微粉末を結晶化ガラスとの合Kl ffiの45
Il1%と、Mo01B203 、Bad、S i 0
2を主成分とするアルカリフリーの結晶化ガラスをIP
A中で1時開ボールミルで粉砕した。
Combining AIN fine powder with crystallized glass Kl ffi 45
Il1%, Mo01B203, Bad, S i 0
IP is an alkali-free crystallized glass whose main component is
The mixture was ground in A with a ball mill opened at 1 hour.

このスラリーを用いて泳動lti法により、426合金
表面に八jNと結晶化ガラスの混合粉末をコーティング
し、850℃で焼成し、80μmの厚さの膜を作成した
Using this slurry, a mixed powder of 8jN and crystallized glass was coated on the surface of the 426 alloy by the electrophoresis lti method, and the mixture was fired at 850° C. to form a film with a thickness of 80 μm.

このAIN邑を10重怨%、30重61%、55重量%
、65重量%と変化させて前記と同様の方法で複合基板
を作成した。この5種の複合セラミックスをコーティン
グした基板のαは426合金と変らず、熱放散性も優れ
ていた。
This AIN village is 10 weight%, 30 weight 61%, 55 weight%
, 65% by weight, and produced a composite substrate in the same manner as above. The α of the substrate coated with these five types of composite ceramics was the same as that of the 426 alloy, and its heat dissipation properties were also excellent.

このAll Nff1を451f!1%使用したホウロ
ウ基板50sX50掘を用いて、第1図の如き平面図、
第2図の如き断面図の中央の抵抗発熱体10s+X10
mを挟んで導体回路を形成したものをホウロウ基板上に
形成した。抵抗発熱体はRu O2を使用した。両端の
導体回路にリード線を接続して、5Wの電源に連絡した
。第1表において、第1図0) A点の温度が表の値に
なった時の、第1図の8点の;昌度を測定した。結果を
第1表に示す。
This All Nff1 is 451f! A plan view as shown in Fig. 1 was created using a 1% enamel substrate with a 50s x 50 hole.
Resistance heating element 10s+X10 in the center of the cross-sectional view as shown in Figure 2
A conductive circuit was formed on an enamel substrate with a conductor circuit sandwiching the width of m. RuO2 was used as the resistance heating element. Lead wires were connected to the conductor circuits at both ends and connected to a 5W power source. In Table 1, when the temperature at point A in FIG. The results are shown in Table 1.

第1表 ロウ用鋼板)に熱伝導率にの大きいセラミックス層を形
成したり板と通常のspp <ホウロウ用鋼板)に、通
常のホウ[1つ層〈結晶化ガラスのみ)を形成した基板
とのと−ト・ショックの比較を覆る。(第2表) これにより、本発明の複合基板では、A点と8点のA度
外25℃であるのに対し、同じ426合金を使用しても
、通常のホウロウを使用した場合の温度差は45℃であ
り、本発明の複合基板の方が放散性に優れている事が判
る。
Table 1: A ceramic layer with high thermal conductivity is formed on a steel plate for soldering (see Table 1), and a plate and a normal spp plate are formed. Overturns the comparison between Noto and Shock. (Table 2) As a result, in the composite substrate of the present invention, the temperature at point A and point 8 is 25°C outside A degree, whereas even if the same 426 alloy is used, the temperature is 25°C when ordinary enamel is used. The difference is 45°C, which shows that the composite substrate of the present invention has better dissipation properties.

次に本発明の複合基板と、通常のSPP (ホウ〔発明
の効果〕 本発明の複合基板の熱膨脹係数はS Ga八Sへ塁板上に実装される半導体の熱膨1最係数と
殆んど同等に保持されているのでホウロウ層の熱伝導率
を高くして、熱放散性を上げでも、被膜に歪を生じて剥
離すると云ったヒート・ショックによる障害がない。
Next, the coefficient of thermal expansion of the composite substrate of the present invention and the ordinary SPP (Effects of the Invention) is almost the same as the coefficient of thermal expansion of the semiconductor mounted on the base plate. Even if the thermal conductivity of the enamel layer is increased to improve heat dissipation, there will be no problems due to heat shock such as distortion and peeling of the coating.

しかも熱放散性は、熱伝導率にで表わして、All N
t11味の場合の1/2、Aj203の5倍と、極めて
熱放散性に優れている。
Moreover, the heat dissipation property is expressed in terms of thermal conductivity.
It has extremely excellent heat dissipation, which is 1/2 that of t11 flavor and 5 times that of Aj203.

またAN N、S iC,C−BN、ダイA7モンド等
の単味を使用しないので、コストを極めて低減できる。
Furthermore, since single materials such as ANN, SiC, C-BN, and diamond are not used, costs can be extremely reduced.

このような特有の効果を奏する上に、ホウロウ基板独自
の効果である、長尺物、特殊形状のものも任意に製作で
きる、寸法精瓜がプレス粘度程麿まで出ける、立体回路
構造し可能、回路基板として、金属コアを回路に使える
等の効果をあわせ秦することができる。実用ト、極めて
優れた発明である。
In addition to these unique effects, the unique effects of enamel substrates include the ability to produce long items and special shapes, the ability to produce finely sized melons up to the press viscosity, and the ability to create three-dimensional circuit structures. As a circuit board, the metal core can be used for circuits, etc., and other effects can be achieved. This is an extremely excellent invention in practical use.

Claims (2)

【特許請求の範囲】[Claims] 1.熱膨脹係数αが3〜8×10^−^61/℃と小さ
い金属および/または合金表面へ熱伝導率kの大きいセ
ラミックス層を形成した複合基板。
1. A composite substrate in which a ceramic layer with a high thermal conductivity k is formed on a metal and/or alloy surface with a small coefficient of thermal expansion α of 3 to 8×10^-^61/°C.
2.熱伝導率Kの大きいセラミックス層が MgO、B_2O_3、BaO、SiO_2を含む結晶
化ガラスにAlN、SiC、キュービックBN、ダイヤ
モンドからなる群より選んだ1種または2種以上を10
〜65重量%配合したものである請求項1記載の複合基
板。
2. The ceramic layer with high thermal conductivity K is a crystallized glass containing MgO, B_2O_3, BaO, SiO_2, and one or more selected from the group consisting of AlN, SiC, cubic BN, and diamond.
The composite substrate according to claim 1, wherein the composite substrate contains 65% by weight.
JP28669788A 1988-11-15 1988-11-15 Composite base board Pending JPH02134237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28669788A JPH02134237A (en) 1988-11-15 1988-11-15 Composite base board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28669788A JPH02134237A (en) 1988-11-15 1988-11-15 Composite base board

Publications (1)

Publication Number Publication Date
JPH02134237A true JPH02134237A (en) 1990-05-23

Family

ID=17707815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28669788A Pending JPH02134237A (en) 1988-11-15 1988-11-15 Composite base board

Country Status (1)

Country Link
JP (1) JPH02134237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010484A3 (en) * 2000-07-27 2002-04-18 Cerel Ceramics Technologies Lt Wear and thermal resistant material produced from super hard particles bound in a matrix of glassceramic by electrophoretic deposition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002010484A3 (en) * 2000-07-27 2002-04-18 Cerel Ceramics Technologies Lt Wear and thermal resistant material produced from super hard particles bound in a matrix of glassceramic by electrophoretic deposition

Similar Documents

Publication Publication Date Title
CA2211875C (en) Low dielectric loss glasses
US11046051B2 (en) Metal-on-ceramic substrates
US5206190A (en) Dielectric composition containing cordierite and glass
JPS5811390B2 (en) Method of manufacturing thermally conductive substrate
JPH02134237A (en) Composite base board
JPS61281089A (en) Surface structure of aluminum nitride base material
JPH0243700B2 (en)
JP2000272977A (en) Ceramics circuit substrate
JPH04212441A (en) Ceramic wiring board
JPS58212940A (en) Substrate for microwave circuit and its manufacture
JPH11514627A (en) Multilayer co-fired ceramic composition and ceramic-on-metal circuit board
JP2563809B2 (en) Aluminum nitride substrate for semiconductors
JPS6184037A (en) Aluminium nitride base ceramics substrate
JPH01119557A (en) Colored alumina-based sintered compact
JPH0212888A (en) Enameled wiring board having high heat dissipating properties
JPS59184586A (en) Circuit board for placing semiconductor element
JPS60254638A (en) Glass-ceramic substrate for mounting semiconductor device
JPS61281074A (en) High heat conductivity aluminum nitride sintered body
JP2006199584A (en) Method for producing ceramic circuit board
JPH01301575A (en) Aluminum nitride base for semiconductor
JP2611290B2 (en) Manufacturing method of high thermal conductive ceramic substrate
JPS60145980A (en) Ceramic sintered body with metallized coating and manufacture
JPH03218944A (en) Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof
JPH02240995A (en) Ceramic substrate for electronic component mounting
JPS6229192A (en) Enamelled substrate for electronic circuit