JPH02132389A - Light applied magnetic field sensor - Google Patents

Light applied magnetic field sensor

Info

Publication number
JPH02132389A
JPH02132389A JP28576188A JP28576188A JPH02132389A JP H02132389 A JPH02132389 A JP H02132389A JP 28576188 A JP28576188 A JP 28576188A JP 28576188 A JP28576188 A JP 28576188A JP H02132389 A JPH02132389 A JP H02132389A
Authority
JP
Japan
Prior art keywords
wavelength
light
magneto
magnetic field
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28576188A
Other languages
Japanese (ja)
Inventor
Hisamitsu Takahashi
高橋 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28576188A priority Critical patent/JPH02132389A/en
Publication of JPH02132389A publication Critical patent/JPH02132389A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve accuracy and sensitivity by setting the center wavelength of light used for magnetic field measurement nearby zero-point wavelength and its half-value width to >=10nm, and nearly eliminating the quantity of light on a shorter wavelength side than the absorption end wavelength of a magnetooptic element at upper-limit temperature of use. CONSTITUTION:The wavelength distribution of light which passes through the magnetooptic element 5 is set so that temperature variation in Verdet's constant V'e is nearly zero. Here, the center wavelength is set nearby the zero-point wavelength of the Verdet's constant Ve and the quantity of light on the shorter- wavelength side than the absorption end wavelength is set almost to zero. Namely, light having center wavelength and half-value width corresponding to the composition ratio X of the magnetooptic element 5 is used and the quantity of light on the shorter wavelength side than the absorption end wavelength is set almost to zero, thereby almost eliminating the temperature variation in effective Verdet's constant V'e. Consequently, the light-applied magnetic field sensor which has high accuracy and high sensitivity and does not depend upon temperature and humidity is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、ファラデー回転能(磁気旋光性)を有する
磁気光学素子を用いて磁界(又は、磁界を発生させる電
流)を検出する光応用磁界センサに関し、特に温度依存
性が小さく高精度且つ高感度の光応用磁界センサに関す
るものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is an optical application magnetic field that detects a magnetic field (or a current that generates a magnetic field) using a magneto-optical element having Faraday rotation ability (magneto-optical rotation). The present invention relates to sensors, and particularly to optical magnetic field sensors that have low temperature dependence, high precision, and high sensitivity.

[従来の技術] 第3図は従来の光応用磁界センサを示す構成図であり、
図において、(1)はLD  (レーザダイオード)又
はLED(発光ダイオード)等からなる光源、(2)は
光源(1)から放射された光を伝送する光ファイバ、(
3)は光ファイバ(2)の先端に配設されたコリメータ
レンズ、(4)はコリメータレンズ(3》を介した光を
偏光させる偏光子である。
[Prior Art] Figure 3 is a configuration diagram showing a conventional optical magnetic field sensor.
In the figure, (1) is a light source consisting of an LD (laser diode) or LED (light emitting diode), etc., (2) is an optical fiber that transmits the light emitted from the light source (1), (
3) is a collimator lens disposed at the tip of the optical fiber (2), and (4) is a polarizer that polarizes the light that has passed through the collimator lens (3).

(5)はファラデー回転能を有する磁気光学素子であり
、偏光子(4)を介した光が入射されるように配設され
ている。磁気光学素子(5)は、マンガンMnの組成比
をXとしたとき、 Cd.4MBTe(但し、O<x<0.7)を満たす半
導体の単結晶材料からなり、これについては、例えば「
ジャーナル・オブ・クリスタル・グロース(Journ
al of Crystal Grouith)」(第
52巻、1981年)の第614〜618頁に記載され
ている。
(5) is a magneto-optical element having Faraday rotation ability, and is arranged so that light via the polarizer (4) is incident thereon. The magneto-optical element (5) has a composition ratio of Cd. It is made of a semiconductor single crystal material that satisfies 4MBTe (O<x<0.7), for example,
Journal of Crystal Growth
Al of Crystal Growth) (Vol. 52, 1981), pages 614 to 618.

(6)は磁気光学素子(5)を通過した光が入射される
検光子であり、その偏光方向が偏光子(4)に対して相
対角度が45゜となるように配設されてい,る。く7)
は検光子(6)を介した光を収束するコンデンサレンズ
、(8)はコンデンサレンズ(6)を入射端として光を
伝送する光ファイバ、くっ)は受光素子を含み光ファイ
バ(8)を介した光を検出する光受信器である。
(6) is an analyzer into which the light that has passed through the magneto-optical element (5) is incident, and is arranged so that its polarization direction is at a relative angle of 45° with respect to the polarizer (4). . 7)
is a condenser lens that converges the light that has passed through the analyzer (6), (8) is an optical fiber that transmits light with the condenser lens (6) as the input end, and (k) is a condenser lens that includes a light receiving element and is transmitted through the optical fiber (8). This is an optical receiver that detects the light that is generated.

次に、第3図に示した従来の光応用磁界センサの動作に
ついて説明する。
Next, the operation of the conventional optical magnetic field sensor shown in FIG. 3 will be explained.

光源(】〉から放射された光は、光ファイバ(2)を介
してコリメータレンズ(3)に導かれ、千行光となった
後、偏光子(4)により直線偏光されて磁気光学素子(
5)を通過する。
The light emitted from the light source ( ) is guided to the collimator lens (3) via the optical fiber (2), becomes a thousand lines of light, and is then linearly polarized by the polarizer (4) and sent to the magneto-optical element (
5).

このとき、光の通過方向に磁界Hが印加されると、直線
偏光された光はファラデー効果により偏光面が微少角度
θだけ回転する。そして、磁気光学素子(5)の端部か
ら放射された光のうち、45゜の偏光角度の成分が検光
子(6)を通過し、コンデンサレンズ(7)及び光ファ
イバ(8)を介して光受信器(9)に受光され、光量の
信号として計測される。
At this time, when a magnetic field H is applied in the direction in which the light passes, the plane of polarization of the linearly polarized light is rotated by a small angle θ due to the Faraday effect. Of the light emitted from the end of the magneto-optical element (5), a component with a polarization angle of 45° passes through the analyzer (6) and is transmitted via the condenser lens (7) and the optical fiber (8). The light is received by the optical receiver (9) and measured as a light amount signal.

この光量変化は、(通常交流の)磁界■1の変化に相当
するので、光応用磁界センサは磁界H又は磁界Hを発生
させる電流を検出することができる。
This change in the amount of light corresponds to a change in the (usually alternating current) magnetic field (1), so the optical magnetic field sensor can detect the magnetic field H or the current that generates the magnetic field H.

磁気光学素子く5)を通過中のファラデー効果による偏
光面の回転角θは、磁気光学素子(5)の長さをLとす
ると、 θ−L−Ve−H      ・・・■但し、■e:ベ
ルデ定数 で表わされる。ここで、偏光子(4)と検光子(6)と
の偏光方向の相対角度が45゜であることから、検光子
(6)を通過する光の光量■は、偏光子(4)からの光
量をIoとし、磁気光学素子(5)での透過率を1とす
れば、 I 一I o(1 +sin2θ)/2Io[1+si
n(2L・Vel{)]/2  − ■どなる。■式か
ら明らかなように、検光子(6)を通過する光量■は、
検光子(6)の相対角度45゜により半減された光量に
相当する直流バイアス成分I o / 2と、磁界Hの
強度変化に相当ずる交流成分I o−sin(2L−V
e−H)/2とを含んでいる。従って、光量■は交流成
分の変化に対して直線的に変化し、光量■の変化即ち光
の信号変化に基づいて磁界Hを測定することができる。
The rotation angle θ of the plane of polarization due to the Faraday effect while passing through the magneto-optical element (5) is as follows: θ-L-Ve-H ...■ However, ■e : Expressed by Verdet constant. Here, since the relative angle of the polarization directions between the polarizer (4) and the analyzer (6) is 45 degrees, the amount of light passing through the analyzer (6) is the amount of light from the polarizer (4). If the light intensity is Io and the transmittance at the magneto-optical element (5) is 1, then I - I o (1 + sin2θ)/2Io [1 + si
n(2L・Vel{)]/2 − ■Roar. ■As is clear from the formula, the amount of light passing through the analyzer (6) is:
A DC bias component Io/2, which corresponds to the light intensity halved by the relative angle of 45° of the analyzer (6), and an AC component Io-sin(2L-V), which corresponds to the change in the intensity of the magnetic field H.
e−H)/2. Therefore, the amount of light (2) changes linearly with changes in the alternating current component, and the magnetic field H can be measured based on the change in the amount of light (2), that is, the change in the light signal.

又、交流成分と直流バイアス成分との比で与えられるセ
ンサ感度Rは、回転角θが非常に小さいので、 R =sin(2L −Ve4{ ) 均2L・V e−H    ・・・■ となり、光ファイバ(8)の伝送損失とは無関係にベル
デ定数Veに依存する。ベルデ定数Veは温度により変
動するため、センサ感度Rはベルデ定数Veに依存した
温度特性を有し、同一の磁界I]に対しても温度により
測定値が異なってしまう。
Also, since the rotation angle θ is very small, the sensor sensitivity R given by the ratio of the AC component and the DC bias component is as follows: It depends on the Verdet constant Ve regardless of the transmission loss of the optical fiber (8). Since the Verdet constant Ve varies depending on the temperature, the sensor sensitivity R has a temperature characteristic that depends on the Verdet constant Ve, and the measured value differs depending on the temperature even for the same magnetic field I.

これを防ぐため、従来の光応用磁界センザは、例えば「
応用物理学(Appl.Phys.Lett.) J(
第46巻、11号、1985年6月1日)の第1016
頁及び第1017頁に記載されたように、L D又はL
EDに干渉フィルタを組み合わせたものを光源(1)と
している。即ち、ベルデ定数Veが温度変化しない零点
波長を中心波長とし且つ半値幅が1肚程度の狭帯域のL
D、又は半値幅が5 0 n m程度の広帯域のLED
に干渉フィルタを組み込んで狭帯域化したものを光源(
1)として用い、温度依存性を小さくしている。
To prevent this, conventional optical magnetic field sensors, for example,
Applied Physics (Appl. Phys. Lett.) J(
Volume 46, No. 11, June 1, 1985) No. 1016
L D or L as described on page and page 1017
A light source (1) is a combination of an ED and an interference filter. That is, a narrow band L whose center wavelength is the zero point wavelength where the Verdet constant Ve does not change with temperature and whose half-value width is about 1 degree.
D, or a broadband LED with a half-width of about 50 nm
A light source (
1) to reduce temperature dependence.

しかし、LDを用いた光応用磁界センサは、例えば[量
子電子機関誌(IEEE Journal of Q 
uantu+nE Iectronic) JのVol
.QE−18,No.l.Oに記載されているように、
LDの光量即ち直流バイアス成分の変動が大きいなめS
N比(精度)が悪くなることが知られている。一方、L
EDに干渉フィルタを組み合わせて狭帯域化すると、光
量が減少してセンサ感度Rが悪くなることは明らがであ
る。
However, an optical magnetic field sensor using an LD has been proposed, for example, in the IEEE Journal of Q
uantu+nE Electronic) J Vol.
.. QE-18, No. l. As stated in O.
Lick S where the fluctuation of the LD light amount, that is, the DC bias component is large.
It is known that the N ratio (accuracy) deteriorates. On the other hand, L
It is obvious that when an interference filter is combined with an ED to narrow the band, the amount of light decreases and the sensor sensitivity R deteriorates.

又、磁気光学素子(5)の透過率は波長に依存し、吸収
端波長より短波長側の光をほとんど透過しないことが知
られており、更に、吸収端波長は温度上昇と共に長波長
側にシフトすることが知られている。従って、使用上限
温度において吸収端波長の影響を除去するために、吸収
端波長以下の光を遮断することが考えられるが、通常の
光学薄膜を用いたフィルタは、例えば「光学薄膜」(共
立出版)の第191〜194頁に記載されているように
、温度や湿度によって透過率が変動することが知られて
いる。
It is also known that the transmittance of the magneto-optical element (5) depends on the wavelength, and that it hardly transmits light with wavelengths shorter than the absorption edge wavelength.Furthermore, the absorption edge wavelength shifts to the longer wavelength side as the temperature rises. known to shift. Therefore, in order to eliminate the influence of the absorption edge wavelength at the upper limit temperature of use, it may be possible to block light below the absorption edge wavelength. ), it is known that transmittance varies depending on temperature and humidity.

第4図は光学薄膜を用いたフィルタの湿度に対する透過
率変化を示し、実線は乾燥した状態、破線は水が付着し
た状態、又、×印及び○印の各点を結んだ曲線はそれぞ
れ水の付着が不完全な状態におりる透過特性である。
Figure 4 shows the change in transmittance of a filter using an optical thin film with respect to humidity. The solid line indicates the dry state, the broken line indicates the state with water attached, and the curves connecting the points marked with x and ○ indicate the state with water attached, respectively. This is a transmission characteristic that occurs when the adhesion of the particles is incomplete.

更に、光源(1)の波長分布は温度に依存し、特にLE
Dの場合は高温になると中心波長が長波長側にシフトす
ることが知られている。
Furthermore, the wavelength distribution of the light source (1) depends on the temperature, especially for LE
In the case of D, it is known that the center wavelength shifts to the longer wavelength side when the temperature increases.

第5図は、例えば6 5 0 n +nの近傍に中心波
長を持つL E Dの温度特性を示し、この場合の中心
波長の変化率は、約0.15n釦/’Cである。
FIG. 5 shows the temperature characteristics of an LED having a center wavelength near 650 n +n, for example, and the rate of change of the center wavelength in this case is about 0.15 n/'C.

[発明が解決しようとする課題] 従来の光応用磁界センサは以上のように、狭帯域の波長
分布を有する光源(1)を用いているので、十分な精度
及びセンサ感度が得られず、又、広帯域光源に光学フィ
ルタを組み合わせて吸収端波長以下の光を除去しようと
しても光学フィルタの特性が温度や湿度で変化するうえ
、光源(1)の中心波長が温度に依存して変動するため
、十分な精度が得られないという問題点があった。
[Problems to be Solved by the Invention] As described above, the conventional optical magnetic field sensor uses a light source (1) having a narrow band wavelength distribution, so sufficient accuracy and sensor sensitivity cannot be obtained, and Even if you try to remove light below the absorption edge wavelength by combining a broadband light source with an optical filter, the characteristics of the optical filter change depending on temperature and humidity, and the center wavelength of the light source (1) changes depending on the temperature. There was a problem that sufficient accuracy could not be obtained.

この発明は上記のような問題点を解決するためになされ
たもので、高精度且つ高感度の光応用磁界センサを得る
ことを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a highly accurate and highly sensitive optical magnetic field sensor.

[課題を解決するための手段] この発明に係る光応用磁界センサは、磁界測定に用いら
れる光の中心波長を零点波長の近傍として半値幅を10
nm以上とし、且つ使用上限温度での磁気光学素子の吸
収端波長より短波長側の光量をほぼ零として、実効的ベ
ルデ定数の温度変動をほぼ零にすると共に、使用上限温
度での吸収端波長より短波長側の光を遮断するために別
の磁気光学素子を設け、更に、光源及び別の磁気光学素
子を恒温槽内に収納したものである。
[Means for Solving the Problems] The optical magnetic field sensor according to the present invention has a half-value width of 10 with the center wavelength of the light used for magnetic field measurement being in the vicinity of the zero point wavelength.
nm or more, and the amount of light on the shorter wavelength side than the absorption edge wavelength of the magneto-optical element at the upper limit temperature of use is made almost zero, so that the temperature fluctuation of the effective Verdet constant is made almost zero, and the absorption edge wavelength at the upper limit temperature of use is made almost zero. Another magneto-optical element is provided to block light with shorter wavelengths, and the light source and another magneto-optical element are housed in a thermostatic oven.

[作用] この発明においては、ベルデ定数の波長特性が温度変化
により零点波長を中心として相補的に変化することに着
目して零点波長の近傍を中心波長とする広帯域の光を用
いて実効的ベルデ定数の温度変動を相殺し、又、別の磁
気光学素子により吸収端波長より短波長側の光を確実に
遮断し、更に光源及び別の磁気光学素子の温度変化を防
止して安定化する。
[Function] In this invention, focusing on the fact that the wavelength characteristics of the Verdet constant change complementary to each other around the zero point wavelength due to temperature changes, the effective Verdet constant is determined using broadband light with the center wavelength near the zero point wavelength. Temperature fluctuations in the constant are offset, light with wavelengths shorter than the absorption edge wavelength is reliably blocked by another magneto-optical element, and temperature changes in the light source and another magneto-optical element are prevented and stabilized.

[実施例] 以下、この発明の一実施例を図について説明ずる。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す構成図であり、(1
)〜(9)は前述と同様のものである。
FIG. 1 is a block diagram showing one embodiment of the present invention, and (1
) to (9) are the same as described above.

(10)は光源(1)に設けられた別の磁気光学素子で
あり、 Cdl−’yMnyTe 但し、Y:マンガンの組成比(Y<X)で表わされ、磁
気光学素子(5)の組成比Xより小さい組成比Yからな
っている。
(10) is another magneto-optical element provided in the light source (1), Cdl-'yMnyTe, where Y:manganese composition ratio (Y<X), The composition ratio Y is smaller than the ratio X.

一般に、磁気光学素子の吸収端波長は、マンガンの組成
比が大きくなるほど短くなるので、別の磁気光学素子(
10)の吸収端波長は、磁界検出用の磁気光学素子(5
)の吸収端波長よりも長くなっている。従って、この場
合、別の磁気光学素子(10)は、使用上限温度におけ
る磁気光学素子(5)の吸収端波長より短波長側の光を
遮断するように設計されている。
Generally, the absorption edge wavelength of a magneto-optical element becomes shorter as the composition ratio of manganese increases.
The absorption edge wavelength of 10) is determined by the absorption edge wavelength of the magneto-optical element (5) for magnetic field detection.
) is longer than the absorption edge wavelength of Therefore, in this case, the other magneto-optical element (10) is designed to block light having a wavelength shorter than the absorption edge wavelength of the magneto-optical element (5) at the upper limit temperature of use.

(11》は光源(1)及び別の磁気光学素子(10)を
収納して一定温度に保つ恒温槽である。
(11) is a constant temperature bath that houses the light source (1) and another magneto-optical element (10) and maintains it at a constant temperature.

次に、第1図に示したこの発明の一実施例に動作につい
て説明ずる。尚、磁界Hを検出するための基本的動作は
前述の通りであり、ここでは説明しない。
Next, the operation of one embodiment of the present invention shown in FIG. 1 will be explained. Note that the basic operation for detecting the magnetic field H is as described above, and will not be explained here.

第1図において、磁気光学素子(5)を通過する光の波
長分布は、実効的ベルデ定数Veの温度変動がほぼ零(
実用的には1%以下)となるように設定されている。こ
こでは、中心波長がベルデ定数Veの零点波長の近傍に
設定され、半値幅が10nm以上の広帯域に設定され、
且つ吸収端波長より短波長側の光量がほぼ零となるよう
に設定されている。
In FIG. 1, the wavelength distribution of light passing through the magneto-optical element (5) shows that the temperature fluctuation of the effective Verdet constant Ve is almost zero (
Practically speaking, it is set to 1% or less. Here, the center wavelength is set near the zero point wavelength of the Verdet constant Ve, and the half-width is set to a wide band of 10 nm or more,
Moreover, it is set so that the amount of light on the shorter wavelength side than the absorption edge wavelength is approximately zero.

通常、このような広帯域の波長分布の光を放射ずる光源
(1)としてはLEDが用いられる。又、別の磁気光学
素子(10)により、吸収端波長より短波長側の光は、
更に確実に除去されている。
Usually, an LED is used as the light source (1) that emits light with such a broadband wavelength distribution. In addition, with another magneto-optical element (10), light with a shorter wavelength than the absorption edge wavelength is
It has also been definitely removed.

尚、実効的ベルデ定数veとは、各波長毎のベルデ定数
Ve(λ)を光の波長分布に関し加重平均化して、 ye=SVe(λ)Io(λ)dλ/Io’・=■から
求められる値である。但し、■0(λ)は各波長毎の光
量、又、Io’は平均光量であり、Io’=iIo(λ
)dλ て表わされる(特願昭63−178720号参照)。
In addition, the effective Verdet constant ve is obtained by weighted averaging the Verdet constant Ve (λ) for each wavelength with respect to the wavelength distribution of light, and from ye=SVe(λ)Io(λ)dλ/Io'・=■ This is the value given. However, ■0(λ) is the light intensity for each wavelength, and Io' is the average light intensity, and Io'=iIo(λ
)dλ (see Japanese Patent Application No. 63-178720).

■式から得られる実効的ベルテ定数eを前述の■式に代
入すると、検光子(6)を通過する光量■は、 I 一I o’[L+sin(2L −H −e)]/
2#Io’(1+2L−H−Ve)/2   ・”■と
なる。
Substituting the effective Verthet constant e obtained from the equation (2) into the above equation (2), the amount of light passing through the analyzer (6) is: I - I o'[L+sin(2L -H -e)]/
2#Io'(1+2L-H-Ve)/2 ・"■.

実際は、磁気光学素子(5)の透過率Tは1ではないの
で、光源(1)側の光量をIo(λ)として、各波長毎
の透過率T(λ)を考慮すれば、磁気光学素子く5)を
通過して検光子(6)に入射される透過光量I o7(
λ)が、 Io7(λ)一■o(λ)T(λ)   ・■から求め
られる。従って、実効的ベルデ定数veは、正確には、
■式のIo(λ)に■oTを代入した式、e=5Ve(
λ)I OT(λ)dλ/ S  I OT(λ)dλ
・・■ で表わされる。
Actually, the transmittance T of the magneto-optical element (5) is not 1, so if the light amount on the light source (1) side is Io (λ) and the transmittance T (λ) for each wavelength is considered, the magneto-optical element The amount of transmitted light Io7(
λ) is obtained from Io7(λ)-■o(λ)T(λ) ・■. Therefore, the effective Verdet constant ve is exactly:
■Formula where ■oT is substituted for Io(λ) in the formula, e=5Ve(
λ) I OT(λ) dλ/ S I OT(λ) dλ
...Represented by ■.

この実効的ベルデ定数eの温度変動の割合は、通過光の
半値幅が狭いほど、ベルデ定数Veの波長特性の温度変
動の割合に近くなるので、光の中心波長を零点波長の近
傍に設定すれば、実効的ベルデ定数Veの温度変動はほ
ぼOとなる。
The rate of temperature fluctuation of the effective Verdet constant e becomes closer to the temperature fluctuation rate of the wavelength characteristic of the Verdet constant Ve as the half-width of the passing light becomes narrower, so the center wavelength of the light should be set near the zero point wavelength. For example, the temperature fluctuation of the effective Verdet constant Ve is approximately O.

又、ベルデ定数Veの温度特性は、温度上昇と共に、零
点波長を中心として、短波長側は増大傾向、長波長側は
減少傾向にあり、その温度変動幅は長波長側よりも短波
長側のほうが大きいことが知られている。従って、実効
的ベルデ定数Veの温度変動をほぼ0にするためには、
半値幅が広がるにつれて、中心波長を零点波長よりも長
波長側にシフトさせる必要がある。
In addition, as the temperature rises, the temperature characteristics of the Verdet constant Ve tend to increase on the short wavelength side and decrease on the long wavelength side, centering on the zero wavelength side, and the temperature fluctuation width is larger on the short wavelength side than on the long wavelength side. is known to be larger. Therefore, in order to make the temperature fluctuation of the effective Verdet constant Ve almost 0,
As the half-value width increases, it is necessary to shift the center wavelength to a longer wavelength side than the zero point wavelength.

又、半値幅を広げ過ぎると、使用上限温度の吸収端波長
の影響を受けて光量が減少し、温度変動の割合がほぼ0
にならなくなる。通常、半値幅は10 n In〜5 
0 n m程度に設定されるが、組成比Kを0.7に近
い値に大きく設定すれば、吸収端波長が短くなるので半
値幅を5 0 n m以上にずることもてきる。
In addition, if the half-width is too wide, the amount of light will decrease due to the influence of the absorption edge wavelength of the upper limit temperature, and the rate of temperature fluctuation will be almost 0.
It will no longer become. Normally, the half width is 10 n In ~ 5
Although it is set to about 0 nm, if the composition ratio K is set to a value close to 0.7, the absorption edge wavelength becomes shorter, so the half width can be shifted to 50 nm or more.

即ち、磁気光学素子(5)の組成比κに応じた中心波長
及び半値幅の光を用い、吸収端波長より短波長側の光量
をほぼ零に設定すれば、実効的ベルデ定数eの温度変動
をほぼ0にすることができる。
That is, by using light with a center wavelength and half-width corresponding to the composition ratio κ of the magneto-optical element (5) and setting the light amount on the shorter wavelength side than the absorption edge wavelength to almost zero, temperature fluctuations in the effective Verdet constant e can be reduced. can be reduced to almost 0.

例えば、磁気光学素子(5)の組成比Xが0.38〜0
.56の場合は、中心波長が可視光(630nm〜69
0nm)で半値幅が20nm〜30nmのLEDを光源
く1)とし、又、組成比κが0.04〜0 . 13.
5の場合は、中心波長が赤外線(800nm〜850n
+n)で半値幅が10nm〜20nmのLEDを光源(
1)とすることができる。
For example, the composition ratio X of the magneto-optical element (5) is 0.38 to 0.
.. 56, the center wavelength is visible light (630 nm to 69 nm).
0 nm) and a half width of 20 nm to 30 nm as the light source 1), and the composition ratio κ is 0.04 to 0.0 nm. 13.
5, the center wavelength is infrared (800nm to 850nm)
+n) and a half-value width of 10 nm to 20 nm as a light source (
1).

尚、実効的ベルデ定数eの温度特性は、■式及び■式か
ら明らかなように、光量Io(λ)又は透過光量Io7
(λ)の波長分布が変化しない限りは、ベルデ定数Ve
と同様に直線的に変化ずるけずであるが、実際は、温度
」−昇に伴って吸収端波長が半値幅内の波長に影響する
ため、使用温度範囲内で2%程度変化する。
Furthermore, as is clear from equations (1) and (2), the temperature characteristic of the effective Verdet constant e is determined by the amount of light Io (λ) or the amount of transmitted light Io7
As long as the wavelength distribution of (λ) does not change, the Verdet constant Ve
Similarly, it changes linearly, but in reality, as the temperature rises, the absorption edge wavelength affects the wavelength within the half-width, so it changes by about 2% within the operating temperature range.

しかし、別の磁気光学素子(10)により、吸収端波長
より短波長側の光を遮断しているので、実効的ベルデ定
数veの温度特性は向上し、使用温度範囲内て0.1%
程度の変動幅となる。このとき、別の磁気光学素子(1
0)の付加による全体の光量の減少は、波長分布のうち
のわずかな光量部分のみの遮断であるため5%程度であ
り、センサ感度にほとんど影響を与えない。
However, since another magneto-optical element (10) blocks light with wavelengths shorter than the absorption edge wavelength, the temperature characteristics of the effective Verdet constant ve are improved by 0.1% within the operating temperature range.
The degree of variation varies. At this time, another magneto-optical element (1
The reduction in the overall light amount due to the addition of 0) is about 5% because only a small portion of the light amount in the wavelength distribution is blocked, and has almost no effect on the sensor sensitivity.

又、光源(1)及び別の磁気光学素子(10)は恒温槽
(11)内に収納されて一定温度に保たれているため、
温度変化による中心波長シフトや透過特性シフト等の悪
影響は生じない。更に、別の磁気光学素子(10)は磁
気光学素子(5)と同様に半導体単結晶であるため、安
定であり且つ湿度による影響を受けることもない。
Furthermore, since the light source (1) and another magneto-optical element (10) are housed in a thermostatic chamber (11) and kept at a constant temperature,
Adverse effects such as center wavelength shift and transmission characteristic shift due to temperature changes do not occur. Furthermore, since the other magneto-optical element (10) is a semiconductor single crystal like the magneto-optical element (5), it is stable and not affected by humidity.

以上のように、広帯域の光を用いて磁界検出用の光量を
十分にとることにより、センサ感度は向上し、又、セン
サ感度に相当する実効的ベルデ定数Veの温度変動が少
ないため精度も向上する。
As described above, sensor sensitivity is improved by using broadband light to obtain a sufficient amount of light for magnetic field detection, and accuracy is also improved because there is less temperature variation in the effective Verdet constant Ve, which corresponds to sensor sensitivity. do.

尚、上記実施例では、1つの恒温槽(11)内に光源(
1)及び別の磁気光学素子(10)を収納したが、別の
恒温槽に個別に収納してもよい。
In the above embodiment, a light source (
1) and another magneto-optical element (10) are housed here, but they may be housed individually in separate thermostats.

又、別の磁気光学素子(10)を光源(1)側に設けた
が、第2図のように光受信器(9)側に設け、光源(1
)及び光受信器(9)と共に恒温槽(11)内に収納し
てもよい。
Although another magneto-optical element (10) was provided on the light source (1) side, it was provided on the optical receiver (9) side as shown in FIG.
) and the optical receiver (9) together with the thermostat (11).

[発明の効果] 以上のようにこの発明によれば、磁界測定に用いられる
光の中心波長を零点波長の近傍として半値幅を10 n
 m以上とし、且つ使用上限温度での磁気光学素子の吸
収端波長より短波長側の光量をほぼ零として、実効的ベ
ルデ定数の温度変動を相殺すると共に、別の磁気光学素
子を設けて使用上限温度での吸収端波長より短波長側の
光を遮断し、更に、光を放射する光源及び別の磁気光学
素子を恒温槽内に収納して温度変化を防止するようにし
たので、温度及び湿度に依存しない高精度且つ高感度の
光応用磁界センサが得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the center wavelength of the light used for magnetic field measurement is near the zero point wavelength, and the half-width is 10 n.
m or more, and the amount of light on the shorter wavelength side than the absorption edge wavelength of the magneto-optical element at the upper limit temperature of use is set to almost zero to offset temperature fluctuations in the effective Verdet constant, and another magneto-optical element is provided to lower the upper limit of use. Light with wavelengths shorter than the absorption edge wavelength at temperature is blocked, and the light source that emits light and another magneto-optical element are housed in a thermostatic chamber to prevent temperature changes, so temperature and humidity can be reduced. This has the effect of providing a highly accurate and highly sensitive optical magnetic field sensor that does not depend on .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図はこ
の発明の他の実施例を示す特性図、第3図は従来の光応
用磁界センサを示す構成図、第4図は光学薄膜を用いた
フィルタの透過率の湿度に対する変化を示す特性図、第
5図はLEDの中心波長の温度に対する変化を示す特性
図である。 (1)・・光源      (5)・・磁気光学素子(
10)・・別の磁気光学素子 (11)・・・恒温槽     H・・・磁界尚、図中
、同一符号は同一又は相当部分を示す。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a characteristic diagram showing another embodiment of the invention, Fig. 3 is a block diagram showing a conventional optical magnetic field sensor, and Fig. 4 is a block diagram showing a conventional optical magnetic field sensor. A characteristic diagram showing the change in transmittance of a filter using an optical thin film with respect to humidity, and FIG. 5 is a characteristic diagram showing a change in the center wavelength of an LED with respect to temperature. (1)...Light source (5)...Magneto-optical element (
10)...Another magneto-optical element (11)...Thermostatic chamber H...Magnetic field In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 ファラデー効果により磁界の強度を光の信号に変換する
磁気光学素子の材料として、 ▲数式、化学式、表等があります▼ 但し、X:マンガンの組成比(0<X<0.7)を用い
、前記磁気光学素子を通過した光の信号変化に基づいて
前記光の通過方向に印加される磁界を検出する光応用磁
界センサにおいて、 前記信号変化の比例係数となるベルデ定数が温度変化し
ない前記光の波長を零点波長とし、又、各波長毎のベル
デ定数Ve(λ)を前記光の波長分布に関し加重平均化
して、 @V@_e=[∫V_e(λ)I_O_T(λ)dλ]
/[∫I_O_T(λ)dλ]但し、I_O_T(λ)
:各波長毎の透過光量から得られる値を実効的ベルデ定
数 @V@_eとしたとき、 前記光の波長分布を、中心波長が前記零点波長の近傍で
半値幅が10nm以上であり、且つ使用上限温度での前
記磁気光学素子の吸収端波長より短波長側の光量がほぼ
零となるように設定し、 前記実効的ベルデ定数@V@_eの温度変動をほぼ零に
すると共に、 使用上限温度での前記磁気光学素子の吸収端波長より短
波長側の光を遮断するために、 Cd_1_−_YM_n_YT_e 但し、Y:マンガンの組成比(Y<X) で表わされる別の磁気光学素子を設け、 前記光を放射する光源及び前記別の磁気光学素子を恒温
槽内に収納したことを特徴とする光応用磁界センサ。
[Claims] As a material for a magneto-optical element that converts the intensity of a magnetic field into an optical signal by the Faraday effect, there are ▲numerical formulas, chemical formulas, tables, etc.▼ However, X: composition ratio of manganese (0<X<0 .7) in an optical magnetic field sensor that detects a magnetic field applied in the direction of light passing based on a signal change of light passing through the magneto-optical element, wherein the Verdet constant, which is a proportional coefficient of the signal change, is used. The wavelength of the light that does not change in temperature is taken as the zero point wavelength, and the Verdet constant Ve (λ) for each wavelength is weighted averaged with respect to the wavelength distribution of the light, and @V@_e=[∫V_e(λ)I_O_T(λ )dλ]
/[∫I_O_T(λ)dλ] However, I_O_T(λ)
: When the value obtained from the amount of transmitted light for each wavelength is the effective Verdet constant @V@_e, the wavelength distribution of the light is such that the center wavelength is near the zero point wavelength and the half-width is 10 nm or more, and The amount of light on the shorter wavelength side than the absorption edge wavelength of the magneto-optical element at the upper limit temperature is set to be almost zero, and the temperature fluctuation of the effective Verdet constant @V@_e is made almost zero, and the upper limit temperature for use is In order to block light having a wavelength shorter than the absorption edge wavelength of the magneto-optical element, another magneto-optical element having the composition ratio of Y:manganese (Y<X) is provided, and the above-mentioned An optical magnetic field sensor characterized in that a light source that emits light and the other magneto-optical element are housed in a thermostatic oven.
JP28576188A 1988-11-14 1988-11-14 Light applied magnetic field sensor Pending JPH02132389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28576188A JPH02132389A (en) 1988-11-14 1988-11-14 Light applied magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28576188A JPH02132389A (en) 1988-11-14 1988-11-14 Light applied magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH02132389A true JPH02132389A (en) 1990-05-21

Family

ID=17695709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28576188A Pending JPH02132389A (en) 1988-11-14 1988-11-14 Light applied magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH02132389A (en)

Similar Documents

Publication Publication Date Title
US4947107A (en) Magneto-optic current sensor
US4671651A (en) Solid-state optical temperature measuring device
EP0086373B1 (en) Magneto-optical converter
JPS61275627A (en) Measuring device for temperature of optical fiber
US20020145414A1 (en) Magneto-optic current sensor
US6297625B1 (en) Method and device for measuring a magnetic field
KR960015986B1 (en) Magnetic field measurement apparatus
JPH02132389A (en) Light applied magnetic field sensor
JP2005517961A (en) Method for manufacturing sensor head of photoelectric current sensor
Schlarb et al. Interferometric measurement of refractive indices of LiNbO3
JP2948677B2 (en) Optical magnetic field sensor
JPH0228573A (en) Light-applied magnetic field sensor
JPS6285817A (en) Optical fiber inspection device
JPS59107273A (en) Photocurrent and magnetic field sensor
JPS581743B2 (en) Refractive index dispersion measuring device
JPS60263866A (en) Optical electric field sensor
JPH02502760A (en) Device with primary and secondary optical sensor
JPH04143679A (en) Optical magnetic field sensor
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPH04355323A (en) Optical fiber sensor
JPS6190033A (en) Optical pressure measuring device
JP3148614B2 (en) Optical fiber current / magnetic field sensor
JPS5834367A (en) Light applied measuring instrument
JPH0225127Y2 (en)
JPS61193034A (en) Light applying measuring instrument