JPH02132309A - Sectional shape detecting method - Google Patents

Sectional shape detecting method

Info

Publication number
JPH02132309A
JPH02132309A JP28705488A JP28705488A JPH02132309A JP H02132309 A JPH02132309 A JP H02132309A JP 28705488 A JP28705488 A JP 28705488A JP 28705488 A JP28705488 A JP 28705488A JP H02132309 A JPH02132309 A JP H02132309A
Authority
JP
Japan
Prior art keywords
light
sectional shape
refractive index
cutting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28705488A
Other languages
Japanese (ja)
Inventor
Koji Oka
浩司 岡
Moritoshi Ando
護俊 安藤
Satoshi Iwata
敏 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28705488A priority Critical patent/JPH02132309A/en
Publication of JPH02132309A publication Critical patent/JPH02132309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To reflect cutting light completely on the surface of a light- transmissive material and to accurately detect its sectional shape by dipping the light transmissive body in liquid whose refractive index is larger than the refractive index of the light transmissive body. CONSTITUTION:The light transmissive body (e.g., resist pattern) 101 which has the refractive index n2 is formed on a substrate 100. When the sectional shape of this body 101 is detected, this body 101 is dipped in the liquid 102 which has the refractive index n1 larger than the refractive index n2. Then optical cutting is performed by projecting linearly-sectioned cutting light 103, but the incidence angle theta1 of the cutting light 103 incident on the light transmissive body 101 from the liquid 102 is set to such a value that the total reflection condition is satisfied on the surface of the body 101. Consequently, the cutting light 103 never enters the body 101 internal reflected light is therefore ceased completely; and only surface reflected light 104 is detected and the sectional shape of the body 101 is accurately detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光切断法を用いた断面形状検知方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a cross-sectional shape detection method using optical sectioning.

〔従来の技術〕[Conventional technology]

従来、例えばシリコンウエーハ上に形成されたレジスト
パターンの断面形状を検知する場合等には、光切断法を
用いた断面形状検知方法が採用されている。
Conventionally, for example, when detecting the cross-sectional shape of a resist pattern formed on a silicon wafer, a cross-sectional shape detection method using a light cutting method has been adopted.

この断面形状検知方法は、断面直線状の光線(以下、切
断光という。)を検知対象物体の表面に対して斜めに照
射して当該検知対象物体の表面に光切断線を投影し、そ
の反射光を例・えば二次元光センサに導くことにより、
当該検知対象物体の断面輪郭線に対応した光切断画像を
得るものである。
In this cross-sectional shape detection method, a light beam with a straight cross section (hereinafter referred to as cutting light) is irradiated obliquely onto the surface of the object to be detected, a light cutting line is projected onto the surface of the object to be detected, and the light is reflected For example, by guiding light to a two-dimensional optical sensor,
A light section image corresponding to the cross-sectional contour of the object to be detected is obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の断面形状検知方法にあ
っては、検知対象物体が光透過性を有する場合、第3図
(a)に示すように、切断光1は検知対象物体2の表面
で反射されるのみならず、検知対象物体2の内部におい
ても反射される。
However, in such conventional cross-sectional shape detection methods, when the object to be detected has optical transparency, the cutting light 1 is reflected by the surface of the object to be detected 2, as shown in FIG. 3(a). Not only is it reflected, but it is also reflected inside the object 2 to be detected.

その結果、二次元光センサ(図示せず)には、表面反射
光3と内部反射光4との双方が導入されてしまい、第3
図(b)に示されるように、光切断画像中には表面反射
光3による光切断線5の他に、内部反射光による光切断
線6が現れ、これにより断面形状を正確に検知すること
ができないという問題点があった。
As a result, both the surface reflected light 3 and the internally reflected light 4 are introduced into the two-dimensional optical sensor (not shown), and the third
As shown in Figure (b), in addition to the light section line 5 caused by the surface reflected light 3, a light section line 6 caused by the internal reflection light appears in the light section image, which makes it possible to accurately detect the cross-sectional shape. The problem was that it was not possible.

本発明は、上記の問題点を解決するためになされたもの
であり、その目的とするところは検知対象物体が光透過
性を有する場合においても、その断面形状を正確に検知
することができる断面形状検知方法を提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems, and its purpose is to provide a cross-sectional shape that can accurately detect the cross-sectional shape of an object to be detected even when the object has optical transparency. An object of the present invention is to provide a shape detection method.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に、本発明に係る断面形状検知方法の原理図を示
す。
FIG. 1 shows a principle diagram of the cross-sectional shape detection method according to the present invention.

第1図において、基板(例えば、シリコンウェハ)10
0上には屈折率n2を有する光透過性物体(例えば、レ
ジストパターン)101が形成されている。
In FIG. 1, a substrate (e.g. silicon wafer) 10
A light-transmissive object (for example, a resist pattern) 101 having a refractive index n2 is formed on the surface.

このような状態において、光切断法を用いて光透過性物
体101の断面形状を検知する場合、本発明ではこれを
次のようにして行う。
In such a state, when detecting the cross-sectional shape of the light-transmitting object 101 using the light cutting method, the present invention performs this as follows.

すなわち、まず、光透過性物体101を当該光透過性物
体の屈折率n2よりも大きな屈折率n1(n 1> n
s+ )を有する液体102中に浸漬させる。
That is, first, the light-transmitting object 101 has a refractive index n1 (n 1 > n
s+).

その後、従来と同様にして光切断法を実施するのである
が、このとき液体102から光透過性物体101へと入
射する切断光103の入射角度θ1を、次の(1)式に
示すように、当該光透過性物体101の表面において全
反射条件が成立するような値に設定する。
Thereafter, the light cutting method is carried out in the same manner as in the conventional method, but at this time, the incident angle θ1 of the cutting light 103 entering the light-transmitting object 101 from the liquid 102 is determined as shown in the following equation (1). , is set to a value that satisfies the total reflection condition on the surface of the light-transmitting object 101.

〔作用〕[Effect]

このような構成によれば、切断光10Bは光透過性物体
101の表面で完全に反射され、光透過性物体101の
内部に浸入することはなくなる。
According to such a configuration, the cutting light 10B is completely reflected on the surface of the light-transmitting object 101 and does not penetrate into the interior of the light-transmitting object 101.

従って、内部反射光は完全に消滅し、表面反射光104
のみを検知することが可能となる。
Therefore, the internal reflected light completely disappears, and the surface reflected light 104
It becomes possible to detect only

〔実施例〕〔Example〕

第2図に、本発明に係る断面形状検知方法の一実施例を
示す。
FIG. 2 shows an embodiment of the cross-sectional shape detection method according to the present invention.

この実施例では、シリコンウェーハ7上に形成されたレ
ジストパターン(屈折率n2= 1..5)8の断面形
状を光切断法を用いて検知するものとする。
In this embodiment, it is assumed that the cross-sectional shape of a resist pattern (refractive index n2=1..5) 8 formed on a silicon wafer 7 is detected using an optical cutting method.

第2図に示すように、スリッ1・9を通過したレーザ光
10は対物レンズ11の作用により検知対象であるレジ
ストパターン8上に集光され、レジストパターン8の表
面には光切断線12が描かれる。この場合スリット9は
微細なため、光の回折現象の影響を受けるので光切断線
12と直交するよう配置する。
As shown in FIG. 2, the laser beam 10 that has passed through the slits 1 and 9 is focused onto the resist pattern 8 to be detected by the action of the objective lens 11, and a light cutting line 12 is formed on the surface of the resist pattern 8. be painted. In this case, the slit 9 is so small that it is affected by the diffraction phenomenon of light, so it is arranged so as to be perpendicular to the light cutting line 12.

この光切断線12は、対物レンズ13の作用により集光
され、二次元光センサ14の受光面上に結像され、その
結果二次元光センサ14からはレジストパターン8の光
断面画像が得られることとなる。
This light cutting line 12 is focused by the action of the objective lens 13 and formed into an image on the light receiving surface of the two-dimensional photosensor 14, and as a result, an optical cross-sectional image of the resist pattern 8 is obtained from the two-dimensional photosensor 14. That will happen.

以上の基本的な構成に加え、対物レンズ11,13とレ
ジストパターン8との隙間には、検知対象となるレジス
トパターン8の屈折率n2 (n2−1.5)よりも大
きな屈折率n1を有する液体15が満たされる。
In addition to the above basic configuration, the gap between the objective lenses 11 and 13 and the resist pattern 8 has a refractive index n1 larger than the refractive index n2 (n2-1.5) of the resist pattern 8 to be detected. It is filled with liquid 15.

この液体15としては、例えばα−モノクロルナフタリ
ン(n L = 1.  6 3 6) 、α−モノブ
ロムナフタリン(n L = 1−  6 6 2) 
、沃化メチル( n 1−1− .  7 4 1. 
)等が利用可能である。
Examples of the liquid 15 include α-monochloronaphthalene (n L = 1.6 3 6) and α-monobromnaphthalene (n L = 1-6 6 2).
, methyl iodide (n 1-1- . 7 4 1.
) etc. are available.

さらに、液体15から検知対象であるレジス1・パター
ン8へと入射される切断光の入射角度θ1は、レジスト
パターン8の表面において全反射条件が成立するような
角度に設定される。
Further, the incident angle θ1 of the cutting light incident from the liquid 15 onto the resist 1 pattern 8 to be detected is set to an angle such that a total reflection condition is satisfied on the surface of the resist pattern 8.

例えば、液体15として沃化メチルを用いた場合につい
て、光切断線形成用のレーザ光の入射角度θ1を求める
と次ぎのようになる。
For example, when methyl iodide is used as the liquid 15, the incident angle θ1 of the laser beam for forming the optical cutting line is determined as follows.

液体(沃化メチル)の光屈折率を01一1.741、検
知対象であるレジストパターンの光屈折率をn2−1.
.5とすると、全反射条件は、・    1 θ>Sin輸/n)  ・・・(2) となり、 =s i n  ’(1..5/1.741)=59.
  49 であるから、 θl=60° と設定すればよい。
The optical refractive index of the liquid (methyl iodide) is 01-1.741, and the optical refractive index of the resist pattern to be detected is n2-1.
.. 5, the total reflection condition is: 1 θ>Sin import/n) (2) = sin '(1..5/1.741) = 59.
49, it is sufficient to set θl=60°.

すなわち、入射角を01=60°とすれば、切断光はレ
ジスl・パターン8の表面で完全に反射され、その内部
に浸入することはなくなる。
That is, if the incident angle is 01=60°, the cutting light is completely reflected on the surface of the resist l/pattern 8 and does not penetrate into its interior.

従って、内部反射光は完全に消滅し、表面反射光のみを
検知することが可能となる。
Therefore, internally reflected light is completely eliminated, and only surface reflected light can be detected.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば、光切断
法を用いて断面形状を検知するにおいて、対象物体が光
透過性を有する場合においても、その断面形状を正確に
検知することが可能となる。
As is clear from the above description, according to the present invention, when detecting a cross-sectional shape using the optical cutting method, even if the target object has light transparency, the cross-sectional shape can be accurately detected. It becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図は本発明の一実施例を示す図、 第3図(a)は表面反射光と内部反射光との関係を示す
図、 第3図(b)は光透過性を有する物体の光切断画像を示
す図である。 100・・・基板 101・・・光透過性物体 102・・・液体 103・・・切断光 104・・・表面反射光 第 l 図
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a diagram showing an embodiment of the present invention, Fig. 3(a) is a diagram showing the relationship between surface reflected light and internally reflected light, Fig. 3 ( b) is a diagram showing a light section image of a light-transmitting object. 100...Substrate 101...Light-transmitting object 102...Liquid 103...Cutting light 104...Surface reflected light FIG.

Claims (1)

【特許請求の範囲】[Claims] 光切断法を用いて光透過性物体(101)の断面形状を
検知する断面形状検知方法において、前記光透過性物体
(101)を当該光透過性物体の屈折率(n_2)より
も大きな屈折率(n_1)を有する液体(102)中に
浸漬させ、かつ、前記液体(102)から光透過性物体
(101)へと入射する切断光(103)の入射角度(
θ_1)を当該光透過性物体(101)の表面において
全反射条件が成立するような角度に設定することを特徴
とする断面形状検知方法。
In a cross-sectional shape detection method of detecting the cross-sectional shape of a light-transmitting object (101) using a light sectioning method, the light-transmitting object (101) has a refractive index larger than the refractive index (n_2) of the light-transmitting object (n_2). (n_1), and the incident angle (
A cross-sectional shape detection method characterized by setting θ_1) to an angle such that a total reflection condition is satisfied on the surface of the light-transmitting object (101).
JP28705488A 1988-11-14 1988-11-14 Sectional shape detecting method Pending JPH02132309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28705488A JPH02132309A (en) 1988-11-14 1988-11-14 Sectional shape detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28705488A JPH02132309A (en) 1988-11-14 1988-11-14 Sectional shape detecting method

Publications (1)

Publication Number Publication Date
JPH02132309A true JPH02132309A (en) 1990-05-21

Family

ID=17712457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28705488A Pending JPH02132309A (en) 1988-11-14 1988-11-14 Sectional shape detecting method

Country Status (1)

Country Link
JP (1) JPH02132309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173141A (en) * 2019-04-09 2020-10-22 株式会社ミツトヨ Surface shape measuring system and surface shape measuring method using surface shape measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173141A (en) * 2019-04-09 2020-10-22 株式会社ミツトヨ Surface shape measuring system and surface shape measuring method using surface shape measuring instrument

Similar Documents

Publication Publication Date Title
JPS6052021A (en) Apparatus and method for detecting position
JPH02132309A (en) Sectional shape detecting method
JPH01107139A (en) Pattern detecting apparatus
JPH10142489A (en) Method and device for focus detection
KR970003953Y1 (en) Focusing device of semiconductor exposure equipment
JP2666495B2 (en) Refractive index distribution measuring method and refractive index distribution measuring device
JPH0814887A (en) Optical displacement gauge
JPH045556A (en) Method and device for flaw inspection of surface of sphere
JPS6327019A (en) Mask for x-ray exposure
JPH0131958Y2 (en)
JPS58211634A (en) Light detecting method
JPH04151614A (en) Focusing detecting method and microscope specimen for the same
JPH01112138A (en) Alcohol sensor for internal combustion engine
JPH03289506A (en) Surface-defect inspecting apparatus
JPS59138916A (en) Range finder
JPH07103904A (en) Detecting method for defect inside light-transmitting object
JPS61255302A (en) Optical device
JPS5913213A (en) Optical reflection system
JPH0464030A (en) Detecting method for position of focal point
JPS63221310A (en) Automatic focusing mechanism
JPS61174724A (en) Etching end detection apparatus
JPH04198704A (en) Control detecting optical system
JPH06213819A (en) Surface inspecting device
JPH0290009A (en) Measuring apparatus for pitch of helix
JPH01189506A (en) Method for measuring thickness of film