JPH02131206A - Coated optical fiber - Google Patents

Coated optical fiber

Info

Publication number
JPH02131206A
JPH02131206A JP63284007A JP28400788A JPH02131206A JP H02131206 A JPH02131206 A JP H02131206A JP 63284007 A JP63284007 A JP 63284007A JP 28400788 A JP28400788 A JP 28400788A JP H02131206 A JPH02131206 A JP H02131206A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
sensitizer
energy ray
coated optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63284007A
Other languages
Japanese (ja)
Inventor
Takeshi Nonaka
毅 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63284007A priority Critical patent/JPH02131206A/en
Publication of JPH02131206A publication Critical patent/JPH02131206A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve the curing rate of a resin in a short period of time and to improve the energy ray curing type resin-coated optical fiber by adding a specific additive to the resin. CONSTITUTION:A sensitizer having >=1X10<5> mol coefft. of light absorption is incorporated into a coating layer 2 of the energy ray curing type resin on the outer periphery of the optical fiber 1. The sensitizer is particularly preferably incorporated into the energy ray curing type resin at a ratio of >=0.1pt.wt. and <10pts.wt. A metal complex compd. is more particularly preferable as such sensitizer. The curing rate of the resin is increased in this way and the complete curing of the resin even under the conditions of high-speed drawing is possible in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバの外周に例えば紫外線等のエネルギ
ー線により硬化する樹脂の被覆層を形成した被覆光ファ
イバの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a coated optical fiber in which a coating layer of a resin that is cured by energy rays such as ultraviolet rays is formed on the outer periphery of the optical fiber.

[従来の技術] 光通信に用いる光ファイバにおいては、光学ガラスファ
イバ、石英系ガラスファイバに限らず、いずれもファイ
バ化した孝直ちにその外周にプラスチック被覆を施すこ
とが望ましいとされている。
[Prior Art] In optical fibers used for optical communications, it is desirable to apply a plastic coating to the outer periphery of any optical fiber, not only optical glass fibers or quartz-based glass fibers, as soon as they are made into fibers.

これは、ファイバ化されることにより発生するファイバ
表面の傷や裸ファイバの状態で空気に曝されることによ
るクラックの成長で、ファイバの強度が劣化するのを防
ぐためである。このようなプラスチック層としては、一
般に熱硬化型のシリコーン樹脂や紫外線硬化型樹脂(以
下、「UV樹脂」と略称する)が用いられており、近年
は特にこのUV樹脂被覆ファイバの需要が増大している
This is to prevent the strength of the fiber from deteriorating due to scratches on the surface of the fiber that occur when the fiber is made into a fiber or cracks that grow when the bare fiber is exposed to air. Thermosetting silicone resins and ultraviolet curable resins (hereinafter referred to as "UV resins") are generally used for such plastic layers, and the demand for UV resin-coated fibers has increased in recent years. ing.

このUV樹脂は短時間で硬化する性質を有することから
コーティング材、ボッティング材にも使用されているが
、より生産性を高めるという目的で、できるだけ早く要
求される特性に近付ける改良、すなわち樹脂組成物の硬
化速度を上げるための改良がなされている。
Because this UV resin has the property of curing in a short time, it is also used in coating materials and botting materials, but in order to further increase productivity, improvements have been made to bring the required properties as quickly as possible, namely the resin composition. Improvements have been made to increase the rate of hardening of materials.

[発明が解決しようとする課題] 本発明はこのような当該樹脂中に特定の添加剤を加える
ことで短時間で硬化速度を向上させ、かつ極めて短時間
で要求される物性を獲得できるエネルギー線硬化型樹脂
被覆光ファイバのさらなる改良品を提供することを目的
とするものである。
[Problems to be Solved by the Invention] The present invention provides an energy beam that can improve the curing speed in a short time by adding specific additives to the resin, and can acquire the required physical properties in an extremely short time. The object of the present invention is to provide a further improved curable resin-coated optical fiber.

[課題を解決するための手段] 本発明者等は上記の目的を達成すべく研究開発に努めた
結果、モル吸光係数がI×10″′以上の増感剤を添加
したエネルギー線硬化型樹脂被覆が、高速線引きの条件
でも樹脂を完全に硬化できる優れた被覆光ファイバを実
現することを見出した。
[Means for Solving the Problems] As a result of research and development efforts by the present inventors to achieve the above object, the present inventors have developed an energy ray-curable resin to which a sensitizer with a molar absorption coefficient of I×10'' or more is added. It has been found that the coating provides an excellent coated optical fiber in which the resin can be completely cured even under high speed drawing conditions.

すなわち本発明は光ファイバの外周にエネルギー線硬化
型樹脂の被覆層を有する被覆光ファイバにおいて、該エ
ネルギー線硬化型樹脂中にモル吸光係数がIXIO’以
上の増感剤を含有することを特徴とする被覆光ファイバ
である。
That is, the present invention provides a coated optical fiber having a coating layer of an energy ray curable resin on the outer periphery of the optical fiber, characterized in that the energy ray curable resin contains a sensitizer having a molar extinction coefficient of IXIO' or more. It is a coated optical fiber.

上記増感剤はエネルギー線硬化型樹脂中に0.1重量部
以上10重量部未満の割合で含有されていることが特に
好ましく、このような増感剤とじて金属錯体化合物が特
に好ましい例として挙げられる。
It is particularly preferable that the above-mentioned sensitizer is contained in the energy beam curable resin in a proportion of 0.1 parts by weight or more and less than 10 parts by weight, and a particularly preferable example of such a sensitizer is a metal complex compound. Can be mentioned.

本発明においてエネルギー線硬化型樹脂とは、例えば紫
外線、放射線等のエネルギー線を照射されることにより
硬化する樹脂をいう。本発明の被覆樹脂はエネルギー線
硬化型樹脂が好ましく、特に好ましくは(メタ)アクリ
ルオリゴマー、反応性希釈剤、重合開始剤にモル吸光係
数が1×1×100以上の増感剤を加えたものを基本組
成とするものである。
In the present invention, the energy ray curable resin refers to a resin that is cured by being irradiated with energy rays such as ultraviolet rays and radiation. The coating resin of the present invention is preferably an energy ray-curable resin, and particularly preferably a resin containing a (meth)acrylic oligomer, a reactive diluent, a polymerization initiator, and a sensitizer having a molar absorption coefficient of 1 x 1 x 100 or more. The basic composition is

本発明に係わる(メタ)アクリルオリゴマーは、ポリオ
ール成分、イソシア不一ト成分及びアクリレート成分か
らなり、ポリオール成分としては、ポリオキシテトラメ
チレングリコール,ボリプロビレングゾコール ボリエ
チレングリコール等のポリエーテルボリオール、ポリオ
レフィングリコール,ポリエステルボリオール,ボリカ
ーボネートポリオール,ポリカブロラクトンポリオール
等が挙げられる。インシアネート成分としては、トリレ
ンジイソシアネート,ジフェニルメタンジイソシアネー
ト,p−フェニレンジイソシアネート,ヘキサメチレン
ジイソシアネート,キシリレンジイソシアネート,イソ
ホロンジイソシアネート等が挙げられる。また、アクリ
レート成分としては、2−ヒドロキシエチル(メタ)ア
クリレート,2ヒドロキシブ口ピル(メタ)アクリレー
ト,等のヒドロキシアルキル基の炭素数が2〜4程度の
ものが用いられる。
The (meth)acrylic oligomer according to the present invention consists of a polyol component, an isocyanate component, and an acrylate component, and the polyol component includes polyether polyols such as polyoxytetramethylene glycol, polypropylene glycol, polyethylene glycol, etc. , polyolefin glycol, polyester polyol, polycarbonate polyol, polycabrolactone polyol, and the like. Examples of the incyanate component include tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, and the like. Further, as the acrylate component, those having a hydroxyalkyl group having about 2 to 4 carbon atoms are used, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxybutypyl (meth)acrylate, and the like.

本発明に係わる反応性希釈剤としては、例えば2−エチ
ルへキシルアクリレート,テトラヒド口フルフリルアル
コールカブbラクトン付加物の(メタ)アクリレート,
ノニルフェノールエチレンオキサイド付加物の(メタ)
アクリレート,ポリエチレングリコールジ(メタ)アク
リレート,ボリブロピレングリコールジ(メタ)アクリ
レート,ビスフェノールジエチレングリコールジ(メタ
)アクリレート,水添ピスフェノールトリエチレングリ
コールジ(メタ)アクリレート.トリメチロールブロバ
ントリ (メタ)アクリレート,ペンタエリスリトール
トリ (メタ)アクリレート,ビスフェノールジグリシ
ジルエーテルから合成したエボキシ(メタ)アクリレー
ト等のモノないしポリ(メタ)アクリレート類、ジアリ
ルアジペートジアリルフタレート,トリアリルトリメリ
テート,トリアリルイソンアヌレート等のアクリルエス
テル類、スチレン,ビニルアセテート,N−ビニルピロ
リドン,N,N’−ジメチルアクリルアミド,N,N’
−ジメチルアミノブロピルアクリルアミド,N,N’−
ジメチルアミノエチルアクリレート等のビニル化合物類
を挙げることができる。
Examples of the reactive diluent according to the present invention include 2-ethylhexyl acrylate, (meth)acrylate of tetrahydrofurfuryl alcohol cabb lactone adduct,
Nonylphenol ethylene oxide adduct (meth)
Acrylate, polyethylene glycol di(meth)acrylate, polybropylene glycol di(meth)acrylate, bisphenol diethylene glycol di(meth)acrylate, hydrogenated pisphenol triethylene glycol di(meth)acrylate. Mono- or poly(meth)acrylates such as trimethylolbrobantri(meth)acrylate, pentaerythritoltri(meth)acrylate, eboxy(meth)acrylate synthesized from bisphenol diglycidyl ether, diallyl adipate diallyl phthalate, triallyl trimellitate , acrylic esters such as triallylisonanurate, styrene, vinyl acetate, N-vinylpyrrolidone, N,N'-dimethylacrylamide, N,N'
-dimethylaminopropylacrylamide, N,N'-
Vinyl compounds such as dimethylaminoethyl acrylate can be mentioned.

本発明に係わる重合開始剤としては、樹脂組成物をエネ
ルギー線の照射によって迅速に硬化させることができる
ものが好まし《、特に紫外線硬化型塗料の開始剤として
用いられているものが適している。このような重合開始
剤の主なものとしては、ベンソイン,ベンゾインメチル
エーテル,ベンゾインエチルエーテル,ペンゾインイソ
ブ口ビルエーテル,ペンゾインイソブチルエーテル,2
−メチルベンゾイン,ベンジル,ベンジルジメチルケタ
ール ベンジルジエチルケタール等を挙げることができ
る。
The polymerization initiator used in the present invention is preferably one that can quickly cure the resin composition by irradiation with energy rays, and in particular, those used as initiators for ultraviolet-curing paints are suitable. . The main polymerization initiators include bensoin, benzoin methyl ether, benzoin ethyl ether, penzoin isobutyl ether, penzoin isobutyl ether,
-Methylbenzoin, benzyl, benzyl dimethyl ketal, benzyl diethyl ketal, and the like.

本発明に係わる増感剤はそのモル吸光係数が1×1×1
00以上のものであり、以下のような金属錯体化合物が
挙げられる。表1に各増感剤の吸収極大波長とモル吸光
係数を示す。
The sensitizer according to the present invention has a molar extinction coefficient of 1×1×1
00 or more, and the following metal complex compounds can be mentioned. Table 1 shows the maximum absorption wavelength and molar extinction coefficient of each sensitizer.

下記構造式■の有機化合物とC u(1)又はN i(
1)との錯体 下記構造式■の有機金属化合物とN p(N), T 
h(ff),Z r(II)又はtJ (ff)との錯
体下記構造式■の有機化合物とC d(1)又はPd(
1)との錯体 下記構造式■の有機化合物とA u(1)との錯体以上
のような金属錯化合物はエネルギー線硬化型樹脂全IL
IOO重量部に対して0.1〜10重量部添加すること
が好ましい。
An organic compound of the following structural formula (■) and C u (1) or N i (
1) Complex with an organometallic compound of the following structural formula (■) and N p (N), T
Complex with h(ff), Z r(II) or tJ(ff) An organic compound of the following structural formula (■) and C d(1) or Pd(
1) Complex between the organic compound of the following structural formula (■) and A u(1) The above metal complex compounds are energy ray curable resins, all ILs.
It is preferable to add 0.1 to 10 parts by weight per part by weight of IOO.

下記構造式■の有機化合物とC o(1)又はNi(1
)との錯体 表1 本発明の被覆光ファイバの製法は、従来公知のこの種の
樹脂被覆形成法によればよい。例えば光ファイバ母材を
線引炉に送り込み、加熱溶融して光ファイバ(ガラスフ
ァイバ)に線引きし、次に塗布装置により上記のように
反応性希釈剤、重合開始剤、増感剤を添加したエネルギ
ー線硬化型樹脂を塗布した後に、当該エネルギー線を照
射することにより塗布層を硬化させて、被覆被覆ファイ
バとし、引き取りながら巻き取るといった方法である。
An organic compound of the following structural formula (■) and Co(1) or Ni(1)
) Complex Table 1 The coated optical fiber of the present invention may be manufactured by a conventionally known method for forming a resin coating of this type. For example, an optical fiber preform is sent to a drawing furnace, heated and melted to be drawn into an optical fiber (glass fiber), and then a reactive diluent, a polymerization initiator, and a sensitizer are added as described above using a coating device. After applying the energy ray curable resin, the coating layer is cured by irradiating the energy ray to form a coated fiber, which is then wound up while being taken off.

光ファイバの素材・組成等も特に限定されるところはな
い。
There are no particular limitations on the material, composition, etc. of the optical fiber.

[作用] 本発明の被覆光ファイバはモル吸光係数が1×1×10
0以上の増感剤を含有している樹脂を用いているために
、樹脂の硬化速度が速くなり、高速線引きの条件におい
ても樹脂を完全に硬化させることが可能になる。
[Function] The coated optical fiber of the present invention has a molar absorption coefficient of 1×1×10
Since the resin containing 0 or more sensitizer is used, the curing speed of the resin is increased, and it is possible to completely cure the resin even under high-speed wire drawing conditions.

従来光ファイバ用エネルギー線硬化型樹脂例えばUV樹
脂等に用いられてきた増感剤は、モル吸光係数がI X
 1 0’未満のものであった。同じ量のエネルギーを
照射したとするとモル吸光係数の大きいものほど吸収す
るエネルギーは多く、光重合開始剤へのエネルギー移動
は大きくなる。つまり、本発明では樹脂のモル吸光係数
が従来品より大きく、光重合開始剤が受けるエネルギー
量は大きくなる。このことにより従来の樹脂に比べて同
じエネルギーで多くの活性種を作り出すことができる。
Sensitizers conventionally used in energy ray-curable resins for optical fibers, such as UV resins, have a molar absorption coefficient of I
It was less than 10'. Assuming that the same amount of energy is irradiated, the larger the molar extinction coefficient, the more energy is absorbed and the larger the energy transfer to the photopolymerization initiator. That is, in the present invention, the molar extinction coefficient of the resin is larger than that of conventional products, and the amount of energy received by the photopolymerization initiator is increased. This allows more active species to be created with the same energy than with conventional resins.

よって、樹脂の硬化速度が速くなり、高速線引きの条件
におていても樹脂を完全に硬化させることが可能となる
Therefore, the curing speed of the resin increases, and it becomes possible to completely cure the resin even under high-speed wire drawing conditions.

これら、増感剤の添加量としては(メタ)アクリルオリ
ゴマー、反応性希釈剤及び重合開始剤の合計量100重
量部に対して0.1重量部以上10重量部未満の割合で
添加することが好ましい。この量が少なすぎると硬化性
を満足できず、また所定量を越えてもそれ以上の硬化速
度の向上は望めず、逆に表面硬化性のみが向上してしま
うことになる。
The amount of these sensitizers to be added is 0.1 parts by weight or more and less than 10 parts by weight based on 100 parts by weight of the total amount of the (meth)acrylic oligomer, reactive diluent, and polymerization initiator. preferable. If this amount is too small, the curability cannot be satisfied, and if it exceeds the predetermined amount, no further improvement in the curing speed can be expected, and on the contrary, only the surface curability will be improved.

本発明のエネルギー線硬化型樹脂は上記の(メタ)アク
リルオリゴマー、反応性希釈剤、重合開始剤、増感剤を
必須成分とし、これに必要に応してアクリル樹脂、ポリ
アミド樹脂、ポリエーテル樹脂、ポリウレタン樹脂、ポ
リアミドイミド樹脂、シリコーン樹脂、フェノール樹脂
等の各種の変成用樹脂や、有機ケイ素化合物、界面活性
剤等の各種の添加剤を配合してもよく、全体の粘度とし
ては作業性の観点から通常I000〜10.00(lセ
ンチボイズ(25℃)の範囲に調整されていることが望
ましい。
The energy ray-curable resin of the present invention contains the above-mentioned (meth)acrylic oligomer, reactive diluent, polymerization initiator, and sensitizer as essential components, and optionally acrylic resin, polyamide resin, and polyether resin. , various modification resins such as polyurethane resins, polyamideimide resins, silicone resins, and phenol resins, and various additives such as organosilicon compounds and surfactants may be added, and the overall viscosity is determined by the workability. From this point of view, it is usually desirable to adjust the temperature to a range of I000 to 10.00 (1 centivoise (25°C)).

[実施例] 実施例1 撹拌機、冷却器及び温度計を付した5Qの四つ口フラス
コに平均分子11t2 0 0 0のポリオキシテトラ
メチレングリコール1モル、トリレンジイソシア不−ト
2モルを仕込み、60〜70℃で2時間反応させた。次
いで2−ヒドロ半シエチルアクリレート2モルを加え、
赤外線吸収スペクトルによりイソシアネート基の2 2
 7 0cm−’の特性吸収帯が消失するまで反応を続
けた。このようにして得られたウレタンアクリレートオ
リゴマ−60部(以下特記のない限り重量部を表す)に
反応性希釈剤として2−エチルへキシルアクリレート3
7部、重合開始剤としてベンゾインメチルエーテル3部
、増感剤として表1の■−1の金属錯体化合物3部を配
合してエネルギー線硬化型樹脂を得た。
[Example] Example 1 A 5Q four-necked flask equipped with a stirrer, a condenser, and a thermometer was charged with 1 mole of polyoxytetramethylene glycol with an average molecular weight of 11t2000 and 2 moles of tolylene diisocyanate. , and reacted at 60 to 70°C for 2 hours. Then 2 moles of 2-hydro-hemiethyl acrylate are added,
2 2 of isocyanate groups by infrared absorption spectrum
The reaction was continued until the characteristic absorption band at 70 cm-' disappeared. 60 parts of the urethane acrylate oligomer thus obtained (the following parts are by weight unless otherwise specified) were added with 3 parts of 2-ethylhexyl acrylate as a reactive diluent.
7 parts, 3 parts of benzoin methyl ether as a polymerization initiator, and 3 parts of the metal complex compound of 1-1 in Table 1 as a sensitizer to obtain an energy ray-curable resin.

第1図に示すように光ファイバ1のまわりに上記で得た
エネルギー線硬化型樹脂を塗布して被覆層2を形成し、
硬化させることにより被覆光ファイバ3(本発明品)を
製造した。このとき被覆樹脂が完全に硬化できる最高線
速は1 8 0 m/minであった。
As shown in FIG. 1, the energy ray curable resin obtained above is applied around the optical fiber 1 to form a coating layer 2,
By curing, coated optical fiber 3 (product of the present invention) was manufactured. At this time, the maximum linear speed at which the coating resin could be completely cured was 180 m/min.

実施例2 実施例lと同様にして得られたウレタンアクリレートオ
リゴマ−60部に反応性希釈剤として2エチルへキシル
アクリレート37部、重合開始剤としてベンゾインメチ
ルエーテル3部、増感剤として表1の■−1の金属錯体
化合物3部を配合してエネルギー線硬化型樹脂を得て、
実施例1と同様に被覆光ファイバ(本発明品)を製造し
た。
Example 2 To 60 parts of urethane acrylate oligomer obtained in the same manner as in Example 1, 37 parts of 2-ethylhexyl acrylate as a reactive diluent, 3 parts of benzoin methyl ether as a polymerization initiator, and the following in Table 1 as a sensitizer were added. ■ 3 parts of the metal complex compound of -1 is blended to obtain an energy ray curable resin,
A coated optical fiber (product of the present invention) was manufactured in the same manner as in Example 1.

このとき樹脂が完全に硬化するための最高線速は1 7
 5 m/sinであった。
At this time, the maximum linear speed for the resin to completely cure is 17
It was 5 m/sin.

実施例3 実施例1と同様にして得られたウレタンアクリレートオ
リゴマ−60部に反応性希釈剤として2エチルへキシル
アクリレート37部、重合開始剤としてベンゾインメチ
ルエーテル3部、増感剤として表1の■−1の金属錯体
化合物3部を配合してエネルギー線硬化型樹脂を得て、
実施例1と同様に被覆光ファイバ(本発明品)を製造し
た。
Example 3 To 60 parts of urethane acrylate oligomer obtained in the same manner as in Example 1, 37 parts of 2-ethylhexyl acrylate as a reactive diluent, 3 parts of benzoin methyl ether as a polymerization initiator, and the following in Table 1 as a sensitizer were added. ■ 3 parts of the metal complex compound of -1 is blended to obtain an energy ray curable resin,
A coated optical fiber (product of the present invention) was manufactured in the same manner as in Example 1.

このとき被覆樹脂が完全に硬化するための最高線速は1
 8 0 m/sinであった。
At this time, the maximum linear speed for completely curing the coating resin is 1
It was 80 m/sin.

比較例1 実施例Iと同様にして得られたウレタンアクリレートオ
リゴマ−60部に反応性希釈剤として2エチルへキシル
アクリレート37部、重合開始剤としてベンゾインメチ
ルエーテル3部、増感剤として表1の■−1の金属錯体
化合物を本発明の範囲未満の0.0 9  部を配合し
てエネルギー線硬化型樹脂を得て、実施例1と同様に被
覆光ファイバ(比較品)を製造した。このとき被覆樹脂
が完全に硬化するための最高線速は1 1 0 m/I
Ilinであった。
Comparative Example 1 To 60 parts of urethane acrylate oligomer obtained in the same manner as in Example I, 37 parts of 2-ethylhexyl acrylate as a reactive diluent, 3 parts of benzoin methyl ether as a polymerization initiator, and the following in Table 1 as a sensitizer were added. A coated optical fiber (comparative product) was produced in the same manner as in Example 1 by blending 0.09 parts of the metal complex compound of (1)-1, which is less than the range of the present invention, to obtain an energy ray curable resin. At this time, the maximum linear speed for completely curing the coating resin is 1 10 m/I.
It was Ilin.

比較例2 実施例1と同様にして得られたウレタンアクリレートオ
リゴマ−60部に反応性希釈剤として2一エチルへキシ
ルアクリレート37部、重合開始剤トしてベンゾインメ
チルエーテル3部、増感剤として3,5−ジブロモビリ
ジンーアゾ−3ジメチルアミノー2ベンゾイックアッシ
ドのF e(1)化合物(モル吸光係数が9.8XIO
’)3部を配合してエネルギー線硬化型樹脂を得て、実
施例1と同様に被覆光ファイバ(比較品)を製造した。
Comparative Example 2 60 parts of urethane acrylate oligomer obtained in the same manner as in Example 1, 37 parts of 2-ethylhexyl acrylate as a reactive diluent, 3 parts of benzoin methyl ether as a polymerization initiator, and 3 parts of benzoin methyl ether as a sensitizer. Fe(1) compound of 3,5-dibromoviridine-azo-3dimethylamino-2benzoic acid (molar extinction coefficient of 9.8XIO
') to obtain an energy beam curable resin, and a coated optical fiber (comparative product) was produced in the same manner as in Example 1.

このとき被覆樹脂が完全に硬化するための最高線速は]
 O O m/winであった。
At this time, the maximum linear speed for completely curing the coating resin is]
It was an O O m/win.

比較例3 実施例1と同様にして得られたウレタンアクリレートオ
リゴマ−60部に反応性希釈剤として2一エチルへキシ
ルアクリレート37部、重合開始剤としてベンゾインメ
チルエーテル3部、増感剤として表1の■−1の金属錯
体化合物を本発明の範囲を越えて12 部を配合してエ
ネルギー線硬化型樹脂を得て、実施例1と同様に被覆光
ファイバ(比較品)を製造した。ところが、被覆層のご
く表面のみが硬化する現象が見られ、著しく外観を損な
っていることがわかった。
Comparative Example 3 To 60 parts of urethane acrylate oligomer obtained in the same manner as in Example 1, 37 parts of 2-ethylhexyl acrylate as a reactive diluent, 3 parts of benzoin methyl ether as a polymerization initiator, and Table 1 as a sensitizer were added. A coated optical fiber (comparative product) was produced in the same manner as in Example 1 by blending 12 parts of the metal complex compound of (1)-1 beyond the scope of the present invention to obtain an energy ray curable resin. However, it was found that only the very surface of the coating layer was hardened, and the appearance was significantly impaired.

以上の実施例、比較例の結果から、モル吸光係数がIX
IO’以上の増感剤を添加することで、完全に硬化する
最高線速が175〜1 8 0 m/+inと、比較品
のそれ( l O O〜1 1 ’Om/IIlin)
より大幅に向上できることが明らかに分かる。また、比
較例3の結果から特に本発明に限定する範囲で増感剤を
添加することが好ましいことも明らかである。
From the results of the above examples and comparative examples, the molar absorption coefficient is IX
By adding a sensitizer of IO' or more, the maximum linear velocity for complete curing is 175 to 180 m/+in, which is that of the comparative product (100 to 11' Om/IIlin).
It is clear that even greater improvements can be made. Furthermore, from the results of Comparative Example 3, it is clear that it is preferable to add a sensitizer within a range specifically limited to the present invention.

[発明の効果] 以上説明したように、本発明は被覆光ファイバの被覆層
中にモル吸光係数がIXIO5以上の増感剤を含有させ
ることにより、樹脂の硬化速度を太き《上昇させること
ができる。このことにより本発明の被覆光ファイバでは
光ファイバの線引速度を上昇しても完全に硬化した被覆
層を形成できるので、その生産性を大幅に向上させるこ
とを可能とする実用的価値の大なる発明である。
[Effects of the Invention] As explained above, the present invention is capable of greatly increasing the curing speed of a resin by incorporating a sensitizer with a molar extinction coefficient of IXIO5 or more into the coating layer of a coated optical fiber. can. As a result, in the coated optical fiber of the present invention, a completely cured coating layer can be formed even when the drawing speed of the optical fiber is increased, which has great practical value as it can greatly improve productivity. This is an invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の被覆光ファイバの断面図である。 I:光ファイバ 2:モル吸光係数がIXIO’以上で
ある増感剤を含有する被覆層、3:被覆光ファイバ。 第1図
FIG. 1 is a cross-sectional view of a coated optical fiber of the present invention. I: Optical fiber 2: Coating layer containing a sensitizer having a molar extinction coefficient of IXIO' or more, 3: Coated optical fiber. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバの外周にエネルギー線硬化型樹脂の被
覆層を有する被覆光ファイバにおいて、該エネルギー線
硬化型樹脂中にモル吸光係数が1×100以上の増感剤
を含有することを特徴とする被覆光ファイバ。
(1) A coated optical fiber having a coating layer of energy ray curable resin on the outer periphery of the optical fiber, characterized in that the energy ray curable resin contains a sensitizer with a molar absorption coefficient of 1 x 100 or more. coated optical fiber.
(2)上記増感剤が金属錯体化合物であることを特徴と
する特許請求の範囲第1項記載の被覆光ファイバ。
(2) The coated optical fiber according to claim 1, wherein the sensitizer is a metal complex compound.
(3)上記増感剤をエネルギー線硬化型樹脂中に0.1
重量部以上10重量部未満の割合で含有することを特徴
とする特許請求の範囲第1項記載の被覆光ファイバ。
(3) Add 0.1 of the above sensitizer to the energy ray curable resin.
The coated optical fiber according to claim 1, wherein the coated optical fiber is contained in a proportion of not less than 10 parts by weight.
JP63284007A 1988-11-11 1988-11-11 Coated optical fiber Pending JPH02131206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284007A JPH02131206A (en) 1988-11-11 1988-11-11 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284007A JPH02131206A (en) 1988-11-11 1988-11-11 Coated optical fiber

Publications (1)

Publication Number Publication Date
JPH02131206A true JPH02131206A (en) 1990-05-21

Family

ID=17673088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284007A Pending JPH02131206A (en) 1988-11-11 1988-11-11 Coated optical fiber

Country Status (1)

Country Link
JP (1) JPH02131206A (en)

Similar Documents

Publication Publication Date Title
EP0333464B1 (en) Polymer claddings for optical fibre waveguides
CN1178074C (en) Quick-action UV curing type coating recipe used for optical fiber
WO2007116704A1 (en) Photocurable coating material
EP1543074B1 (en) Uv-curable resin composition for cladding optical fiber
JPH0232133A (en) Ultraviolet-curing paint for polycarbonate molding
CN111655646B (en) Optical fiber with crosslinked polyester coating
JP2764967B2 (en) Coated optical fiber
EP1276774B1 (en) Photochromic article and method of preparation
JPH02131206A (en) Coated optical fiber
CN110927860B (en) Optical fiber with crosslinked secondary coating
JPH03199217A (en) Liquid curable resin composition
JPH02133338A (en) Coating material for optical glass fiber
JPH0321910A (en) Coated optical fiber
JP6733521B2 (en) UV curable adhesive composition
JPH05209038A (en) Ultraviolet-curable urethane acrylate oligomer
JPH02219009A (en) Coated optical fiber
EP3510004B1 (en) Optical fibre coated with a polyester coating
JPS6345082B2 (en)
CN114634704B (en) Doped nonlinear polyurethane acrylate photo-curing material, and preparation method and application thereof
JPH0264510A (en) Coated optical fiber
JPH02233704A (en) Coated optical fiber
JPH08310841A (en) Coated optical fiber and its production
JPH02223903A (en) Coated optical fiber
JPH0262505A (en) Coated optical fiber
JPH0222609A (en) Coated optical fiber