JPH0213098A - Piezo-oscillator - Google Patents

Piezo-oscillator

Info

Publication number
JPH0213098A
JPH0213098A JP63160879A JP16087988A JPH0213098A JP H0213098 A JPH0213098 A JP H0213098A JP 63160879 A JP63160879 A JP 63160879A JP 16087988 A JP16087988 A JP 16087988A JP H0213098 A JPH0213098 A JP H0213098A
Authority
JP
Japan
Prior art keywords
resin
acoustic impedance
piezoelectric
porous
filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63160879A
Other languages
Japanese (ja)
Inventor
Shinichi Hashimoto
新一 橋本
Shiro Saito
斉藤 史郎
Mamoru Izumi
守 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63160879A priority Critical patent/JPH0213098A/en
Publication of JPH0213098A publication Critical patent/JPH0213098A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To maintain the feature of a porous piezoelectric-ceramics that an acoustic impedance is small and simultaneously, to prevent a characteristic from being changed in a manufacturing process by filling the hole of the porous piezoelectric-ceramics with a resin, in which the acoustic impedance is 2Mrayls or below, beforehand, and curing it. CONSTITUTION:For example, a porous piexoelectric-oscillation plate is fitted to a liquid resin with a viscosity 3000CPS or below, and an air in the hole is removed by a vacuum pad. Thus, by filling the hole with the resin and curing the filling resin, a piezoelectric-oscillation plate is obtained. For the piezoelectric- oscillation plate obtained in such a way, when the hole rate of the porous ceramic before the filling of the resin is 0.5 and the acoustic impedance of the filling resin is 2Mrayls or below, the change of the acoustic impedance can be suppressied to the degree of 25%. Consequently, a fear that the characteristic is changed because the other resin, etc., soak in the manufacturing process of an ultrasonic probe, etc., is eliminated, and the feature that the acoustic impedance of the porous piezoelectric-ceramics is small can be maintained.

Description

【発明の詳細な説明】 し発明の目的〕 (産業上の利用分野) この発明は、超音波診断装置などの探触子に用いられる
圧電振動子に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (Industrial Application Field) The present invention relates to a piezoelectric vibrator used in a probe of an ultrasonic diagnostic device or the like.

(従来の技術) 従来、生体の内部に超音波を送シ、その反射波によシ内
部の状態を検査する超音波診断装置の探触子などに用い
られる圧電振動子には音響インピーダンスが20あるい
は30 Mrayls以上といった大きな音響インピル
ダンスを持つ圧電材料が用いられているが、生体の音響
インピーダンスは1.5Mrayls程度と小さいため
音響マ、テング層を形成することによシ超音波伝播の高
効率化を図っている。しかし、圧電振動子と生体の音響
インピーダンスの差が大きいため、音響マツチング層を
形成すると生体からのエコー信号の周波数スペクトラム
にリップルが生じ易く、エコー信号のパルス幅が長くな
シ分解能の低下をまねいていた。特にこれは圧電振動子
の音響インピーダンスが10Mray−1s以上で顕著
であり、リップルが少なく短い良好な超音波パルスを得
るためには音響インピーダンスを10Mrayls以下
にすることが望まれている。
(Prior Art) Conventionally, piezoelectric vibrators used in probes of ultrasonic diagnostic equipment that transmit ultrasonic waves into the inside of a living body and examine the internal state using the reflected waves have an acoustic impedance of 20. Alternatively, a piezoelectric material with a large acoustic impedance of 30 Mrayls or more is used, but since the acoustic impedance of a living body is as small as about 1.5 Mrayls, it is possible to increase the ultrasonic propagation by forming an acoustic magnetic layer and a proboscis layer. We are trying to improve efficiency. However, since there is a large difference in acoustic impedance between the piezoelectric vibrator and the living body, forming an acoustic matching layer tends to cause ripples in the frequency spectrum of the echo signal from the living body, leading to a decrease in resolution due to the long pulse width of the echo signal. was. This is particularly noticeable when the acoustic impedance of the piezoelectric vibrator is 10 Mray-1s or more, and in order to obtain short and good ultrasonic pulses with few ripples, it is desired that the acoustic impedance is 10 Mrayls or less.

近年、圧電セラミックと樹脂などを組み合わせた複合圧
電体や、高分子圧電体といった音響インピーダンスが小
さな圧電材料が注目されている。
In recent years, piezoelectric materials with low acoustic impedance, such as composite piezoelectric materials that combine piezoelectric ceramics and resins, and polymer piezoelectric materials, have attracted attention.

柱状の圧電セラミックを縦横に配列し、その間を樹脂で
固めた1−3を複合圧電体や短冊状の圧電セラミックの
間を樹脂で固めた2−2型機合圧電体は、−その構造か
ら通常の圧電セラミックと同等あるいはそれ以上の電気
機械結合係数を得ることができるが音響インピーダンス
を10Mrayls以下にすることは難しく、また高分
子圧電体は3Mra−71s程度の音響インピーダンス
を得ることが可能であるが電気機械結合係数が小さいと
いう欠点がある。圧電セラミック粉末中にバインダーを
混入した後焼成するなどして得られる多孔質圧電セラミ
ックは圧電セラミック中に空孔を含み軽石状になってお
シ、空孔率を大きくすることで音響インピーダンスを1
0 Mrayl s以下にでき通常の圧電セラミックと
同等の電気機械結合係数を得ることができる特徴を持っ
た3−3型抜合圧電材料の一種である。この多孔質圧′
イセラミックを用いて超音波探触子などを構成する場合
、a城内強度が弱いことや製作過程で樹脂などが空孔内
にしみ込み密度及び音速が増大するなどして、多孔質圧
電セラミック自体の特性が変化してしまい、多孔質圧電
セラミックの音響インピーダンスが小さいという特徴を
失ってしまうという問題点があった。
1-3 is a composite piezoelectric body in which column-shaped piezoelectric ceramics are arranged vertically and horizontally, and the spaces between them are hardened with resin.The 2-2 type combined piezoelectric body is a composite piezoelectric body in which columnar piezoelectric ceramics are arranged vertically and horizontally, and the spaces between them are solidified with resin. Although it is possible to obtain an electromechanical coupling coefficient equal to or higher than that of ordinary piezoelectric ceramics, it is difficult to reduce the acoustic impedance to less than 10Mrayls, and it is possible to obtain an acoustic impedance of about 3Mra-71s with polymer piezoelectric materials. However, it has the disadvantage of a small electromechanical coupling coefficient. Porous piezoelectric ceramic, which is obtained by mixing a binder into piezoelectric ceramic powder and then firing it, contains pores in the piezoelectric ceramic and becomes pumice-like.By increasing the porosity, the acoustic impedance can be reduced to 1.
It is a type of 3-3 type piezoelectric material that has the characteristic of being able to obtain an electromechanical coupling coefficient of less than 0 Mrayls and equivalent to that of ordinary piezoelectric ceramics. This porous pressure′
When constructing ultrasonic probes etc. using porous piezoelectric ceramics, the internal strength of the porous piezoelectric ceramics is weak, and resin etc. seeps into the pores during the manufacturing process, increasing the density and sound velocity. There was a problem in that the characteristics of the porous piezoelectric ceramic changed, and the low acoustic impedance characteristic of the porous piezoelectric ceramic was lost.

(発明が解決しようとする課題) 上述したように空孔率の大きな多孔質圧電セラミックは
超音波探触子などを構成する場合、機械的強度が弱く作
業性が悪いことや、裏作過程で背面負荷材等を接着する
接着剤や音響整合層などに用いる樹脂などが空孔内にし
み込み、多孔質圧電セラミック自体の特性が変化してし
まい、またしみ込んだ樹脂の音響インピーダンスが大き
い場合、圧電憑動子全体での音響インピーダンスの増加
が大きく、多孔質圧電セラミックの音響インピーダンス
が小さいという特徴を失ってしまうという問題点があっ
た。
(Problems to be Solved by the Invention) As mentioned above, when a porous piezoelectric ceramic with a large porosity is used to construct an ultrasonic probe, etc., it has weak mechanical strength, poor workability, and Adhesives for bonding load materials, resins used for acoustic matching layers, etc. seep into the pores, changing the characteristics of the porous piezoelectric ceramic itself, and if the acoustic impedance of the soaked resin is large, piezoelectric There was a problem in that the acoustic impedance of the entire transducer increased significantly and the porous piezoelectric ceramic lost its characteristic of low acoustic impedance.

この発明は、上記の問題点を解決し音響インピーダンス
が小さいという多孔質圧電セラミックの特徴を維持しつ
つ超音波探触子等の製作過程で特性が変化しない多孔質
の圧電撮動子を提供することを目的とする。
The present invention solves the above-mentioned problems and provides a porous piezoelectric sensor whose characteristics do not change during the manufacturing process of an ultrasonic probe, etc., while maintaining the characteristic of porous piezoelectric ceramics such as low acoustic impedance. The purpose is to

〔発明の構成〕[Structure of the invention]

(uA題を解決するための手段) この発明は、多孔質圧電セラミックの空孔内に予め音響
インピーダンスが2Mrayls以下の樹脂を充填し硬
化させることよ構成る。
(Means for Solving the uA Problem) The present invention is constructed by filling the pores of a porous piezoelectric ceramic with a resin having an acoustic impedance of 2 Mrayls or less and curing the resin.

(作用) この発明によれば、多孔質圧電セラミック内に予め樹脂
を充填しであるので超音波探触子等の製作過程で他の樹
脂等がしみ込み特性を変化させる恐れがなく、また充填
させる樹脂の音響インピーダンス2 Mra71s以下
としたため空孔″$ 0.5 、音響インピーダンス7
、5 Mra71 s程度の場合でも音響インピーダン
スの増加を25チ以内にすることができ樹脂充填後の音
響インピーダンスも10 Mra)’l s以下にする
ことができる。このため多孔質圧電セラミックの音響イ
ンピーダンスが小さいという特徴を維持することができ
る。しかし充填させる樹脂の音響インピーダンスが2 
Mra)’Igより大きくなると樹脂充填後の音響イン
ピーダンスを10 Mrayl s以下にすることは困
難となってしまう。
(Function) According to the present invention, since the porous piezoelectric ceramic is filled with resin in advance, there is no fear that other resins will seep into the ultrasonic probe during the manufacturing process and change the characteristics. Since the acoustic impedance of the resin was set to less than Mra71s, the pores were ``$0.5'' and the acoustic impedance was 7.
, 5 Mra)'l s, the increase in acoustic impedance can be kept within 25 inches, and the acoustic impedance after resin filling can also be reduced to 10 Mra)'l s or less. Therefore, the feature of porous piezoelectric ceramic having low acoustic impedance can be maintained. However, the acoustic impedance of the resin to be filled is 2
If the impedance is larger than Mra)'Ig, it becomes difficult to reduce the acoustic impedance after resin filling to 10 Mrayls or less.

(実施例) 以下、図面を参照して本発明の詳細な説明する0 、41図は多孔質圧電セラミックを用いた圧電振動子の
断面図を示したもので、第2図は本発明の実施例に係る
圧電振動板の断面図を示したものである。第1図の断面
図で示すような多孔質の圧電振動板を粘度3000 (
CPS)以下の液体状の樹脂につけ、真空盤によシ空孔
内の空気を取シ除くことによシ空孔内に樹脂を充填し、
充填した樹脂を硬化させることによシ第2図の断面図に
示すような圧電撮動板を得る。このようにして得た圧電
振動板は、樹脂を充填する前の多孔質セラミックの空孔
率を0.5、充填する樹脂の音響インピーダンスを2 
Mrayli以下とした場合、音響インピーダンスの変
化を25%程度に抑えることができる。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. Figures 0 and 41 show cross-sectional views of piezoelectric vibrators using porous piezoelectric ceramics, and Figure 2 shows the implementation of the present invention. 2 is a cross-sectional view of a piezoelectric diaphragm according to an example. A porous piezoelectric diaphragm with a viscosity of 3000 (
CPS) Fill the resin into the holes by soaking it in the following liquid resin and removing the air in the holes using a vacuum plate.
By curing the filled resin, a piezoelectric imaging plate as shown in the sectional view of FIG. 2 is obtained. The piezoelectric diaphragm obtained in this way has a porosity of 0.5 of the porous ceramic before filling with resin, and an acoustic impedance of 2 of the resin to be filled.
When it is less than Mrayli, the change in acoustic impedance can be suppressed to about 25%.

表1に厚さ0.2關、空孔率0.5程度の多孔質圧電セ
ラミックに充填材料として音響インピーダンスI Mr
ayls程度のシリコーン樹脂(商品名YE−5818
)を充填した場合の特性の変化を示す。
Table 1 shows the acoustic impedance I Mr as a filling material for a porous piezoelectric ceramic with a thickness of about 0.2 mm and a porosity of about 0.5.
ayls grade silicone resin (product name YE-5818
) is shown to show the change in characteristics when filled with

表1 〔発明の効果〕 以上説明したように、本発明によれば多孔質圧電セラミ
ック内に予め樹脂を充填しであるので超音波探触子等の
製作過程で他の樹脂等がしみこみ特性を変化させる恐れ
がなく、また充填させる樹脂の音響インピーダンスを2
 Mray1s以下としただめ多孔質圧電セラミックの
音響インピーダンスが小さいという特徴を維持すること
ができる。
Table 1 [Effects of the Invention] As explained above, according to the present invention, since the porous piezoelectric ceramic is filled with resin in advance, other resins, etc. seep in during the manufacturing process of the ultrasonic probe, etc., and the characteristics are changed. There is no risk of changing the acoustic impedance of the resin to be filled.
It is possible to maintain the characteristic that the acoustic impedance of the porous piezoelectric ceramic is small, which is set to be less than Mray1s.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は樹脂を充填する前の多孔質の圧電セラミックを
用いた圧m*動板の断面図、第2図は樹脂を充填後の断
面図である。 1・・・電極、2・・・圧電セラミック、3・・・空孔
、4樹脂。
FIG. 1 is a sectional view of a pressure m* moving plate using porous piezoelectric ceramic before being filled with resin, and FIG. 2 is a sectional view after being filled with resin. 1... Electrode, 2... Piezoelectric ceramic, 3... Hole, 4 Resin.

Claims (1)

【特許請求の範囲】[Claims]  多孔質圧電セラミックの空孔内に音響インピーダンス
が2Mrayls以下の樹脂を充填させることを特徴と
する圧電振動子。
A piezoelectric vibrator characterized in that the pores of a porous piezoelectric ceramic are filled with a resin having an acoustic impedance of 2 Mrayls or less.
JP63160879A 1988-06-30 1988-06-30 Piezo-oscillator Pending JPH0213098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160879A JPH0213098A (en) 1988-06-30 1988-06-30 Piezo-oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160879A JPH0213098A (en) 1988-06-30 1988-06-30 Piezo-oscillator

Publications (1)

Publication Number Publication Date
JPH0213098A true JPH0213098A (en) 1990-01-17

Family

ID=15724347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160879A Pending JPH0213098A (en) 1988-06-30 1988-06-30 Piezo-oscillator

Country Status (1)

Country Link
JP (1) JPH0213098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193194A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic current meter/flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193194A (en) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd Ultrasonic oscillator and ultrasonic current meter/flowmeter

Similar Documents

Publication Publication Date Title
JP2794720B2 (en) Composite piezoelectric vibrator
Janas et al. Overview of fine‐scale piezoelectric ceramic/polymer composite processing
JP2745147B2 (en) Piezoelectric transducer
Caliano et al. Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging
CN101524682A (en) High-frequency ultrasonic transducer made of piezoelectric monocrystalline composite material as well as manufacturing method and application thereof
JPH0239251B2 (en)
US5552004A (en) Method of making an acoustic composite material for an ultrasonic phased array
Krings et al. Acoustic Properties of Stretchable Liquid Metal‐Elastomer Composites for Matching Layers in Wearable Ultrasonic Transducer Arrays
Zhou et al. Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films
Guo et al. Design and fabrication of broadband graded ultrasonic transducers with rectangular kerfs
JPH0213098A (en) Piezo-oscillator
Gebhardt et al. Manufacturing technologies for ultrasonic transducers in a broad frequency range
JPS5821883A (en) Manufacture of composite piezoelectric material
JPH0237175B2 (en)
Herzog et al. High-performance ultrasonic transducers based on PMN-PT single crystals fabricated in 1-3 Piezo-Composite Technology
Wong et al. An ultrawide bandwidth high frequency phased-array ultrasound transducer fabricated using the PMN-0.3 PT single crystal
JPH04149078A (en) Piezoelectric vibrator ultrasonic wave transmitter-receiver and production of piezoelectric material for the transmitter-receiver
JPH04340900A (en) Urtrasonic vibrator transducer and its manufacture
Starke et al. Fine scale piezoelectric 1-3 composites: A new approach of cost effective fabrication
KR102611563B1 (en) Impedance matching material and Manufacturing method thereof
JPS60247159A (en) Ultrasonic probe
Li et al. Soft Mold Process for 1-3 Piezocomposite and Its Application in High Frequency Medical Ultrasound Imaging
JPS59226600A (en) Ultrasonic probe
JPH11113908A (en) Ultrasonic probe
JPS58197251A (en) Manufacture of ultrasonic probe