JPH02130517A - Polarized wave coupler - Google Patents

Polarized wave coupler

Info

Publication number
JPH02130517A
JPH02130517A JP28381488A JP28381488A JPH02130517A JP H02130517 A JPH02130517 A JP H02130517A JP 28381488 A JP28381488 A JP 28381488A JP 28381488 A JP28381488 A JP 28381488A JP H02130517 A JPH02130517 A JP H02130517A
Authority
JP
Japan
Prior art keywords
light
polarization
prism
film
branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28381488A
Other languages
Japanese (ja)
Other versions
JPH0675139B2 (en
Inventor
Norihisa Naganuma
典久 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63283814A priority Critical patent/JPH0675139B2/en
Priority to US07/431,240 priority patent/US5223975A/en
Priority to EP19890120884 priority patent/EP0368335A3/en
Publication of JPH02130517A publication Critical patent/JPH02130517A/en
Publication of JPH0675139B2 publication Critical patent/JPH0675139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce loss due to absorption and to prevent the output level of monitor light, etc., from depending upon the plane of polarization of incident light by arranging a 1/4-wavelength plate between a polarized wave coupling prism and a branch prism and making circular polarized light incident on the branch prism. CONSTITUTION:The polarized wave coupling prism 11, 1/4-wavelength plate 15, and branch prism 16 are fixed mutually and united by using an adhesive. The optical axis, etc., of the 1/4-wavelength plate 15 is so set that two planes of polarization of the incident light are at 45 deg. to the plane of polarization is light which becomes an ordinary light beam and an extraordinary light beam as to birefringent crystal forming the 1/4-wavelength plate 15, so the two linearly polarized light beams which are incident on the 1/4-wavelength plate 15 on the same optical axis are converted into circular polarized light beams respectively. Consequently, even when a dielectric multi-layered film is used for the branch film 18 of the branch prism, the branch ratio does not depend upon the direction of the polarization. Consequently, transmitted light power or reflected light power does not have polarization dependency and the absorption loss of the branch film is reduced.

Description

【発明の詳細な説明】 概   要 偏波面が互いに直交する光を合成する偏波結合器に関し
、 吸収による損失が小さく、モニタ光等の出力レベルが入
射偏波面に依存せず、且つ、構成が簡略な偏波結合器の
提供を目的とし、 偏波面が互いに直交する入射光を同一光釉上に出射する
偏波結合プリズムと、該偏波結合プリズムの出射光軸上
に配置されるモニタ光取り出し用の分岐プリズムとを具
備して構成される偏波結合器において、上記分岐プリズ
ムとして誘電体多層膜を具備した分岐プリズムを用い、
上記偏波結合プリズムと上記分岐プリズムとの間に1/
4波長板を配置し、上記分岐プリズムへの入射光が円偏
光となるようにして構成する。
[Detailed Description of the Invention] Overview This invention relates to a polarization coupler that combines lights whose polarization planes are orthogonal to each other, which has low loss due to absorption, the output level of monitor light, etc. does not depend on the incident polarization plane, and has a simple configuration. In order to provide a simple polarization coupler, we have developed a polarization coupling prism that outputs incident lights whose polarization planes are orthogonal to each other onto the same optical glaze, and a monitor light that is placed on the output optical axis of the polarization coupling prism. In a polarization coupler configured with a branching prism for extraction, a branching prism equipped with a dielectric multilayer film is used as the branching prism,
1/2 between the polarization coupling prism and the branching prism.
A four-wavelength plate is arranged so that the light incident on the branching prism becomes circularly polarized light.

産業上の利用分野 本発明は偏波面が互いに直交する光を合成する偏波結合
器に関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a polarization coupler that combines lights whose polarization planes are orthogonal to each other.

高信頼な光通信システムを構築するために送信側の光源
を二重化しようとする場合には、予めいずれの光源につ
いても出射光が光伝送路に結合されるようにしてふき、
システムの稼動開始当初は一方の光源のみを使用し、そ
の光源が故障したときに他方の光源に切り換えて使用し
、システムダウンを未然に防止するようにしている。偏
波結合器は、この種の高信頼なシステムにおいて、2つ
の光源からの出射光を共通の光伝送路に結合するために
使用される。ところで、送信側光源については、例えば
その経時劣化を監視するために、出射光の一部を分岐し
てモニタリングしておく必要があり、このようなモニタ
リングを良好に行い得る偏波結合器が要望されている。
When duplicating light sources on the transmitting side in order to construct a highly reliable optical communication system, wipe each light source in advance so that the emitted light is coupled to the optical transmission line.
When the system starts operating, only one light source is used, and when that light source breaks down, the other light source is used to prevent the system from going down. Polarization couplers are used in this type of highly reliable system to combine the output light from two light sources into a common optical transmission path. By the way, for the transmitting light source, it is necessary to split a part of the emitted light and monitor it, for example in order to monitor its deterioration over time, and there is a demand for a polarization coupler that can perform such monitoring well. has been done.

従来の技術 第5図は従来の偏波結合器の構成図である。41は誘電
体多層膜等からなる偏波分離(合成)膜41aを有する
偏波結合プリズムであり、このようなプリズムを用いる
ことによって、偏波面が互いに直交する入射光を同一光
軸上に出射することができる。即ち、偏波面(電場ベク
トルの振動面、以下同様)が偏波分離(合成)膜41a
への入射面と平行な入力ボート■からのP (para
llel)波は、偏波分離(合成)膜41aを透過し、
偏波面が偏波分離(合成)膜41aへの入射面と垂直な
入力ボート■からの3 (senkrecht) 波は
、偏波分離(合成)膜41aで反射して、これらの透過
光及び反射光は同一光軸上に出射されるものである。
BACKGROUND OF THE INVENTION FIG. 5 is a block diagram of a conventional polarization coupler. 41 is a polarization coupling prism having a polarization separation (synthesis) film 41a made of a dielectric multilayer film, etc. By using such a prism, incident lights whose polarization planes are orthogonal to each other can be output on the same optical axis. can do. That is, the polarization plane (vibration plane of the electric field vector, the same applies hereinafter) is the polarization separation (synthesis) film 41a.
P (para
llel) wave passes through the polarization separation (synthesis) film 41a,
The 3 (senkrecht) waves from the input boat whose plane of polarization is perpendicular to the plane of incidence to the polarization separation (synthesis) film 41a are reflected by the polarization separation (synthesis) film 41a, and these transmitted and reflected lights are are emitted on the same optical axis.

42は同一光軸上に出射された偏波結合プリズム41の
出射光からモニタ光を取り出すための分岐プリズムであ
り、この分岐プリズム42は、通常、偏波面依存性を抑
えるために金属と5j02 とを交互に積層してなる分
岐膜42aを具備して構成されている。分岐プリズム4
2に入射した光のうち分岐膜42aを透過した光は、主
信号出力ボートから光伝送路に導かれ、分岐プリズム4
2に入射した光のうち分岐膜42aで反射した光は、モ
ニタ光出力ポートから適当な受光器に導かれ、出力光レ
ベルの監視、フィードバック制御等に使用される。
42 is a branching prism for extracting monitor light from the light emitted from the polarization coupling prism 41 emitted on the same optical axis, and this branching prism 42 is usually made of metal and 5j02 in order to suppress polarization dependence. The structure includes a branch film 42a formed by alternately laminating layers. branch prism 4
Of the light incident on the branching prism 4, the light that has passed through the branching film 42a is guided from the main signal output boat to the optical transmission path, and then passes through the branching prism 4.
The light reflected by the branching film 42a among the light incident on the optical fiber 2 is guided from the monitor light output port to a suitable light receiver, and is used for monitoring the output light level, feedback control, and the like.

しかし、分岐膜42aが金属膜を含んでいる場合には、
分岐膜42aにおける吸収損失が大きく、所定レベルの
モニタ光を取り出したときに光伝送路に結合される主信
号のレベルが低下するという問題がある。この点に鑑み
、分岐膜42aとしてAj!20.とTiO2とを交互
に積層してなる誘電体多層膜を用いることが考えられる
が、この場合には分岐膜が金属膜を含む場合と異なり、
第6図に示すように、分岐膜42aへの入射角として装
置構成上都合のよい45°において、分岐膜42aの透
過光パワーの偏波依存性が著しく大きくなる。
However, if the branch film 42a includes a metal film,
There is a problem in that the absorption loss in the branching film 42a is large, and the level of the main signal coupled to the optical transmission path decreases when monitor light of a predetermined level is extracted. In view of this point, Aj! 20. It is conceivable to use a dielectric multilayer film consisting of alternating layers of TiO2 and TiO2, but in this case, unlike the case where the branch film includes a metal film,
As shown in FIG. 6, when the incident angle to the branching film 42a is 45°, which is convenient for the device configuration, the polarization dependence of the power of the light transmitted through the branching film 42a becomes significantly large.

このため、分岐膜として誘電体多層膜を用いる場合には
、第7図に示すような構成が採用される。
Therefore, when a dielectric multilayer film is used as the branch film, a configuration as shown in FIG. 7 is adopted.

この構成例では、分岐膜の透過光パワーの偏波依存が小
さくなるように、分岐膜43aへの入射角が10°程度
と十分小さくなるような構成の分岐プリズム43を用い
、分岐膜43aで反射して取り出されたモニタ光を分岐
プリズムの全反射面43bでさらに反射させて外部に取
り出すようにしている。このように全反射面43bでモ
ニタ光を反射させているのは、分岐膜43aについてほ
ぼ垂直入射であり、全反射面43bで反射させないと偏
波結合プリズム41等により遮蔽されて受光器によりモ
ニタ光をモニタリングすることができないからである。
In this configuration example, the branching prism 43 is configured such that the incident angle to the branching film 43a is sufficiently small, about 10°, so that the polarization dependence of the transmitted light power of the branching film 43a is small. The reflected and extracted monitor light is further reflected by the total reflection surface 43b of the branching prism and is extracted to the outside. The reason why the monitor light is reflected by the total reflection surface 43b is that it is almost perpendicularly incident on the branching film 43a, and if it is not reflected by the total reflection surface 43b, it will be blocked by the polarization coupling prism 41 etc. and will not be monitored by the light receiver. This is because the light cannot be monitored.

発明が解決しようとする課題 このように従来構成であると、分岐プリズムの分岐膜が
金属膜を含んでいる場合には、吸収による損失が大きい
という問題があった。また、金属膜を含んでいる分岐膜
を単に誘電体多層膜に変更しただけでは、モニタ光出力
レベル又は光伝送路に導かれる主信号の出力レベルが入
射光の偏波面に依存するという問題があった。さらに、
この偏波面依存性を排除するために第7図に示すような
構成を採用した場合には、特に分岐プリズムについて構
成が複雑化すると共に煩雑な光軸調整が必要とされると
いう問題があった。
Problems to be Solved by the Invention With the conventional configuration as described above, there was a problem in that when the branching film of the branching prism included a metal film, the loss due to absorption was large. In addition, simply changing the branching film containing a metal film to a dielectric multilayer film poses the problem that the output level of the monitor light or the output level of the main signal guided to the optical transmission line depends on the plane of polarization of the incident light. there were. moreover,
When adopting the configuration shown in Figure 7 to eliminate this polarization plane dependence, there were problems in that the configuration became complicated, especially for the branching prism, and complicated optical axis adjustment was required. .

本発明はこのような事情に鑑みて創作されたもので、吸
収による損失が小さく、モニタ光等の出力レベルが入射
光の偏波面に依存せず、且つ、構成が簡略な偏波結合器
の提供を目的としている。
The present invention was created in view of these circumstances, and provides a polarization coupler that has a small loss due to absorption, the output level of monitor light, etc. does not depend on the polarization plane of the incident light, and has a simple configuration. intended to provide.

課題を解決するための手段 第1図は本発明の原理図である。Means to solve problems FIG. 1 is a diagram showing the principle of the present invention.

2は偏波結合プリズムであり、偏波面が互いに直交する
入射光を同一光軸1上に出射する。
Reference numeral 2 denotes a polarization coupling prism, which emits incident lights whose polarization planes are orthogonal to each other onto the same optical axis 1.

4は偏波結合プリズム2の出射光軸l上に配置されるモ
ニタ光取り出し用の分岐プリズムであり、分岐膜として
誘電体多層膜3を具備している。
Reference numeral 4 denotes a branching prism for extracting monitor light, which is disposed on the output optical axis l of the polarization coupling prism 2, and is provided with a dielectric multilayer film 3 as a branching film.

5は偏波結合プリズム2と分岐プリズム4さの間に配置
された1/4波長板であり、偏波結合プリズム2の出射
光を円偏光に変換して分岐プリズム4に入射させる。
Reference numeral 5 denotes a quarter-wave plate disposed between the polarization coupling prism 2 and the branching prism 4, which converts the light emitted from the polarization coupling prism 2 into circularly polarized light and makes it enter the branching prism 4.

作   用 第2図は1/4波長板50作用を説明するだめの原理説
明補助図であって、便宜上1/4波長板5を構成してい
る複屈折性結晶が正の車軸結晶からなるとしたときの屈
折率楕円体を示している。
FIG. 2 is an auxiliary diagram for explaining the principle of the operation of the quarter-wave plate 50, and for convenience, it is assumed that the birefringent crystal constituting the quarter-wave plate 5 is a positive axle crystal. It shows the index ellipsoid at the time.

いま、1/4波長板5の常光線に対する屈折率をno 
とし、異常光線に対する屈折率の最大値をn#とする(
 n o < n s )。そして、1/4波長板5の
光学軸を2軸とする直交三次元座標軸の原点0を光が矢
印S方向に伝搬しているとし、矢印Sのxy平面への投
影がy軸と一致しているとする。
Now, the refractive index of the quarter-wave plate 5 for ordinary rays is no.
and the maximum value of the refractive index for the extraordinary ray is n# (
n o < n s ). Assume that light is propagating in the direction of arrow S from the origin 0 of the orthogonal three-dimensional coordinate axes whose two axes are the optical axes of the quarter-wave plate 5, and that the projection of arrow S onto the xy plane coincides with the y-axis. Suppose that

このとき、屈折率楕円体は、 X 2/ n o ” + 72/ n a ” + 
22/ n e ” =1で表される。
At this time, the refractive index ellipsoid is
22/ne”=1.

常光線に対する屈折率n o は、常に一定であり、屈
折率楕円体がxy平面で切られる円へと原点○において
伝搬方向Sに直交する面で切られる楕円Bとが交わる点
Pまでの原点0からの距Jtopで表される。また、異
常光線に対する屈折率16′は、伝搬方向Sと2軸とが
なす角θに応じて変化し、前記楕円Bとyz平面とが交
わる点Qまでの原点Oからの距All0Qで表される。
The refractive index no for ordinary rays is always constant, and the origin up to the point P where the circle of the refractive index ellipsoid intersected by the xy plane and the ellipse B cut by the plane perpendicular to the propagation direction S at the origin ○ intersect. It is expressed as the distance Jtop from 0. In addition, the refractive index 16' for the extraordinary ray changes depending on the angle θ between the propagation direction S and the two axes, and is expressed as the distance All0Q from the origin O to the point Q where the ellipse B and the yz plane intersect. Ru.

つまり、異常光線に対する屈折率n、′は、光の伝搬方
向Sに応じてno からn、まで連続的に変化するもの
である。このように光の伝搬方向Sに応じて異常光線に
対する屈折率が変化するので、例えば伝搬方向Sがy軸
と一致するように(θ=90°)複屈折性結晶の光学軸
を設定して常光線に対する屈折率と異常光線に対する屈
折率との差が最大になるようにし、偏波面が互いに直交
する偏波結合プリズム2の出射光の偏波面が常光線の偏
波方向OP及び異常光線の偏波方向OQに対して45°
傾斜するようにして常光線成分及び異常光線成分の振幅
が等しくなるようにし、さらに、常光線成分と異常光線
成分との位相差がπ/2になるように複屈折性結晶の厚
みを設定して1/4波長板5を構成することにより、分
岐プリズム4への入射光を円偏光に変換することができ
る。
In other words, the refractive index n,' for the extraordinary ray changes continuously from no to n depending on the propagation direction S of the light. In this way, the refractive index for extraordinary rays changes depending on the propagation direction S of the light, so for example, the optical axis of the birefringent crystal is set so that the propagation direction S coincides with the y-axis (θ = 90°). The difference between the refractive index for the ordinary ray and the refractive index for the extraordinary ray is maximized, and the polarization plane of the output light of the polarization coupling prism 2 whose polarization planes are orthogonal to each other is set to the polarization direction OP of the ordinary ray and the polarization direction OP of the extraordinary ray. 45° to polarization direction OQ
The birefringent crystal is tilted so that the amplitudes of the ordinary ray component and the extraordinary ray component are equal, and the thickness of the birefringent crystal is set so that the phase difference between the ordinary ray component and the extraordinary ray component is π/2. By configuring the quarter wavelength plate 5, the light incident on the branching prism 4 can be converted into circularly polarized light.

このとき、1/4波長板に入射する光が直線偏光でなけ
れば、完全な円偏光に変換することができない。実際偏
波結合プリズム2に入射する偏光は多少楕円偏光化して
いるが、偏光分離(合成)膜を通過する際、高い偏波消
光比(20dB以上)を持つ直線偏光になるので、本構
成によれば、偏波結合プリズム2に入射する前の偏波状
態に関わらず、分岐プリズム4に円偏光を入射すること
ができる。
At this time, unless the light incident on the quarter-wave plate is linearly polarized, it cannot be converted into completely circularly polarized light. In reality, the polarized light that enters the polarization coupling prism 2 is somewhat elliptically polarized, but when it passes through the polarization separation (synthesis) film, it becomes linearly polarized light with a high polarization extinction ratio (20 dB or more), so this configuration is suitable. Accordingly, circularly polarized light can be incident on the branching prism 4 regardless of the polarization state before it is incident on the polarization coupling prism 2.

分岐プリズム4への入射光を円偏光に変換すると、誘電
体多層膜3に入射するP波成分とS波成分について、位
相差は生じているものの振幅は同等であるから、誘電体
多層膜3への入射角が45゜程度に設定されていたとし
ても、透過光パワー又は反射光パワーに偏波依存性が生
じる恐れはなく、分岐プリズム4を複雑な構成とする必
要がなくなる。
When the incident light on the branching prism 4 is converted into circularly polarized light, the P wave component and the S wave component incident on the dielectric multilayer film 3 have the same phase difference but the amplitudes are the same. Even if the incident angle is set to about 45 degrees, there is no fear that polarization dependence will occur in the transmitted light power or the reflected light power, and there is no need for the branching prism 4 to have a complicated configuration.

尚、本発明の構成において、分岐プリズムの分岐膜とし
て誘電体多層膜を用いているのは、分岐膜における吸収
損失を小さくするためである。
In the configuration of the present invention, a dielectric multilayer film is used as the branching film of the branching prism in order to reduce absorption loss in the branching film.

実  施  例 以下本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第3図は本発明の実施例を示す偏波結合器の平面図であ
る。11は偏波結合プリズムであり、三角プリズム12
.13の斜面間に誘電体多層膜等の偏波分離(合成)膜
14を介在させて構成されている。15は1/4波長板
であり、所定厚みの複屈折性結晶から形成されている。
FIG. 3 is a plan view of a polarization coupler showing an embodiment of the present invention. 11 is a polarization coupling prism, and triangular prism 12
.. A polarization separation (synthesis) film 14 such as a dielectric multilayer film is interposed between the slopes 13. Reference numeral 15 denotes a quarter wavelength plate, which is formed from a birefringent crystal having a predetermined thickness.

16は分岐プリズムであり、三角プリズム17.19の
斜面間に誘電体多層膜からなる分岐膜18を介在させて
構成されている。そして、偏波結合プリズム11.1/
4波長板15及び分岐プリズム16は光学接着剤等を用
いて相互固定することにより一体化されている。
A branch prism 16 is constructed by interposing a branch film 18 made of a dielectric multilayer film between the slopes of triangular prisms 17 and 19. And polarization coupling prism 11.1/
The four-wavelength plate 15 and the branching prism 16 are integrated by fixing them to each other using an optical adhesive or the like.

入力ポート■は、フェルール21に挿入固定された偏波
面保存光ファイバ20の出射光が集束性ロッドレンズ等
のレンズ22により概略コリメートされ名ように構成さ
れており、その出射光は例えば入射角45°で偏波分離
(合成)膜14に入射され、また、その偏波面が当該入
射面と平行になるようにされている。入力ポート■は、
フェルール24に挿入固定された偏波面保存光ファイバ
23の出射光がレンズ25により概略コリメートされる
ように構成されており、その出射光は例えば入射角45
で偏波分離(合成)膜14に入射され、その偏波面は当
該入射面と垂直になるようにされ、また、偏波分離(合
成)膜14による反射光軸が入力ポート■からの透過光
軸と一致するようにされている。
The input port ■ is configured as shown in the figure, with the output light of the polarization maintaining optical fiber 20 inserted and fixed in the ferrule 21 being approximately collimated by a lens 22 such as a focusing rod lens, and the output light is emitted at an incident angle of 45, for example. The beam is incident on the polarized wave separation (synthesis) film 14 at an angle of .degree., and its plane of polarization is parallel to the plane of incidence. The input port ■ is
The output light of the polarization maintaining optical fiber 23 inserted and fixed in the ferrule 24 is configured to be approximately collimated by the lens 25, and the output light has an incident angle of 45, for example.
The polarized wave is incident on the polarization separation (synthesis) film 14, and its plane of polarization is perpendicular to the plane of incidence, and the optical axis reflected by the polarization separation (synthesis) film 14 is aligned with the transmitted light from the input port (■). It is made to match the axis.

1/4波長板15は、これを形成している複屈折性結晶
についての常光線及び異常光線となる光の偏波面に対し
て入射光の2つの偏波面がそれぞれ45°の角度をなす
ように光学軸等を設定されているので、同一光軸上で1
/4波長板15に入射した2つの直線偏光は、それぞれ
円偏光に変換される。このため、分岐プリズムの分岐膜
18として本実施例のように誘電体多層膜を用いている
場合でも、当該分岐比が偏波方向に依存せず、従って、
分岐膜18への入射角を45°程度に設定することがで
きる。分岐膜18を透過して分岐プリズム16から出射
した円偏光は、レンズ29により集束されて、フェルー
ル30に挿入固定された光ファイバ31に結合される。
The quarter-wave plate 15 is arranged so that the two planes of polarization of the incident light form an angle of 45° with respect to the plane of polarization of the ordinary ray and the extraordinary ray of the birefringent crystal forming the quarter-wave plate 15. Since the optical axis etc. are set to 1 on the same optical axis,
The two linearly polarized lights incident on the /4 wavelength plate 15 are each converted into circularly polarized lights. Therefore, even when a dielectric multilayer film is used as the branching film 18 of the branching prism as in this embodiment, the branching ratio does not depend on the polarization direction, and therefore,
The angle of incidence on the branching film 18 can be set to about 45°. The circularly polarized light transmitted through the branching film 18 and emitted from the branching prism 16 is focused by a lens 29 and coupled to an optical fiber 31 inserted and fixed into a ferrule 30.

一方、分岐膜38で反射して分岐プリズム16から出射
した円偏光ハ、レンズ26により集束されて、フェルー
ル27に挿入固定された光ファイバ28に結合される。
On the other hand, the circularly polarized light reflected by the branching film 38 and emitted from the branching prism 16 is focused by the lens 26 and coupled to the optical fiber 28 inserted and fixed in the ferrule 27.

光ファイバ31に導入された光は主信号として光伝送路
に送出することができ、光ファイバ28に導入された光
はモニタ光として光源用LDの経時劣化等の監視に用い
ることができる。
The light introduced into the optical fiber 31 can be sent out as a main signal to the optical transmission line, and the light introduced into the optical fiber 28 can be used as monitor light to monitor the deterioration of the light source LD over time.

第4図は分岐膜18の透過光パワーと入射角との関係を
示すグラフである。入力ポート■からの光と入力ポート
■からの光について入射角によらずほぼ一定の光パワー
を得ることができ、これらの間に差はほとんど生じてい
ない。従って、従来のように分岐膜への入射角を10°
程度に小さく設定する必要がなく、特に分岐プリズムの
構成を簡略化することができる。
FIG. 4 is a graph showing the relationship between the power of transmitted light through the branching film 18 and the angle of incidence. Almost constant optical power can be obtained for the light from the input port (2) and the light from the input port (2) regardless of the incident angle, and there is almost no difference between them. Therefore, unlike the conventional method, the angle of incidence on the branching film is reduced to 10°.
There is no need to set it as small as possible, and in particular, the configuration of the branching prism can be simplified.

発明の効果 以上詳述したように、本発明によれば、分岐膜として誘
電体多層膜を用いているので、吸収による損失を無くす
ることができ、分岐プリズムに入射する光を円偏光に変
換しているので、分岐プリズムの構成を複雑化すること
なしに主信号出力レベル又はモニタ光出力レベルが入射
光の偏波面に依存するのを防止することが可能になると
いう効果を奏する。
Effects of the Invention As detailed above, according to the present invention, since a dielectric multilayer film is used as the branching film, loss due to absorption can be eliminated, and the light incident on the branching prism can be converted into circularly polarized light. Therefore, it is possible to prevent the main signal output level or the monitor light output level from depending on the polarization plane of the incident light without complicating the configuration of the branching prism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の原理説明補助図、 第3図は本発明の実施例を示す偏波結合器の平面図、 第4図は本発明の実施例にあける分岐膜の透過光パワー
と入射角との関係を示すグラブ、第5図は従来の偏波結
合器の構成図、 第6図は第5図に示される分岐膜が誘電体多層膜である
ときの透過光パワーと入射角との関係を示すグラフ、 第7図は従来の他の偏波結合器の構成図である。 2.11・・・偏波結合プリズム、 3・・・誘電体多層膜、 4.16・・・分岐プリズム、 5.15・・・1/4波長板。 」ト 堝−B月 0Jに理 凹 第1図 (λ1キパ一ト■) (主、イを門i、1.′Aオ\゛−ト)莢 祝任1凹 第3図 OP:n。 OQ:ne 冬光明、/)X理す佑明孝阿劫図 第2図 文化イアf+J/)交力慕を示すグラフ第4図 (へ刀ホ゛−ト■) ↓ 開更頁烹賽尤明図 イタ−来  イダリ   β口 第5図 第 図 (λ1本°−ト■) 一一一(λカボート■) −(モニタ光出力ボ一ト) イン5 の  リ(、1(、イダ弓  〔n第7図
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a supplementary diagram for explaining the principle of the present invention, Fig. 3 is a plan view of a polarization coupler showing an embodiment of the present invention, and Fig. 4 is an embodiment of the present invention. Figure 5 shows the configuration of a conventional polarization coupler, and Figure 6 shows that the branching film shown in Figure 5 is a dielectric multilayer film. FIG. 7 is a graph showing the relationship between transmitted light power and incident angle at a certain time. FIG. 7 is a configuration diagram of another conventional polarization coupler. 2.11...Polarization coupling prism, 3...Dielectric multilayer film, 4.16...Branching prism, 5.15...1/4 wavelength plate. ``To 堝-B month 0J に り concave 1st figure (λ1 kipaito ■) (Lord, I wo gate i, 1.'A o\゛-to) pod Shukuin 1 concave 3rd figure OP: n . OQ:ne Winter Komei, /) Fig. 5 Fig. 5 Fig. 5 (λ1 line °-t■) 111 (λ cover ■) - (Monitor light output port) Figure 7

Claims (1)

【特許請求の範囲】 偏波面が互いに直交する入射光を同一光軸(1)上に出
射する偏波結合プリズム(2)と、該偏波結合プリズム
(2)の出射光軸(1)上に配置されるモニタ光取り出
し用の分岐プリズムとを具備して構成される偏波結合器
において、 上記分岐プリズムとして誘電体多層膜(3)を具備した
分岐プリズム(4)を用い、 上記偏波結合プリズム(2)と上記分岐プリズム(4)
との間に1/4波長板(5)を配置し、上記分岐プリズ
ム(4)への入射光が円偏光となるようにしたことを特
徴とする偏波結合器。
[Claims] A polarization coupling prism (2) that emits incident lights whose polarization planes are orthogonal to each other on the same optical axis (1), and a polarization coupling prism (2) that emits incident lights on the same optical axis (1); In a polarization coupler configured with a branching prism for extracting monitor light disposed in Combined prism (2) and the above-mentioned branch prism (4)
A polarization coupler characterized in that a quarter wavelength plate (5) is disposed between the branching prism (4) and the light incident on the branching prism (4) to become circularly polarized light.
JP63283814A 1988-11-11 1988-11-11 Polarization coupler Expired - Fee Related JPH0675139B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63283814A JPH0675139B2 (en) 1988-11-11 1988-11-11 Polarization coupler
US07/431,240 US5223975A (en) 1988-11-11 1989-11-03 Polarization beam coupler including a splitter for producing an output monitor beam
EP19890120884 EP0368335A3 (en) 1988-11-11 1989-11-10 Polarization beam coupler adapted to produce output beam for monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63283814A JPH0675139B2 (en) 1988-11-11 1988-11-11 Polarization coupler

Publications (2)

Publication Number Publication Date
JPH02130517A true JPH02130517A (en) 1990-05-18
JPH0675139B2 JPH0675139B2 (en) 1994-09-21

Family

ID=17670495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63283814A Expired - Fee Related JPH0675139B2 (en) 1988-11-11 1988-11-11 Polarization coupler

Country Status (1)

Country Link
JP (1) JPH0675139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156336A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224815A (en) * 1982-12-21 1984-12-17 クロスフィールド エレクトロニクス リミティド Light beam splitter
JPS62293216A (en) * 1986-06-12 1987-12-19 Fuji Photo Film Co Ltd Method for monitoring quantity of light of laser beam
JPS6341821A (en) * 1986-08-08 1988-02-23 Hitachi Ltd Synthesizing device for optical beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224815A (en) * 1982-12-21 1984-12-17 クロスフィールド エレクトロニクス リミティド Light beam splitter
JPS62293216A (en) * 1986-06-12 1987-12-19 Fuji Photo Film Co Ltd Method for monitoring quantity of light of laser beam
JPS6341821A (en) * 1986-08-08 1988-02-23 Hitachi Ltd Synthesizing device for optical beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156336A (en) * 2011-01-26 2012-08-16 Nippon Telegr & Teleph Corp <Ntt> Optical integrated circuit

Also Published As

Publication number Publication date
JPH0675139B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US5319483A (en) Polarization independent low cross-talk optical circulator
US4671613A (en) Optical beam splitter prism
US5223975A (en) Polarization beam coupler including a splitter for producing an output monitor beam
US8965155B1 (en) Heterogeneous waveguide integrated optical isolator and circulator
JPH11326832A (en) Polarizing beam device
EP0488211B1 (en) Polarization independent optical device
JPH0321905A (en) Polarization coupler
US6246518B1 (en) Reflection type optical isolator
JPH02130517A (en) Polarized wave coupler
JP2905847B2 (en) Optical isolator device
JPH0527200A (en) Polarized wave coupler
JPH0634915A (en) Optical isolator, light amplifier provided with the optical isolator, and duplex optical transmission system provided with the optical amplifier
JP2647488B2 (en) Polarization coupler
JP2002296544A (en) 3-port miniaturized optical circulator
JPH0830789B2 (en) Polarization splitting prism
JPS6130247B2 (en)
CN117008350A (en) Orthogonal polarized light regulation and control device, interferometer and grating displacement measurement system
JPS63279627A (en) Two-way optical communication module
JP2000284225A (en) Optical isolator
JP2644314B2 (en) Optical branching / coupling device
JPH01281402A (en) Polarizing beam splitter and optical isolator
JPS63228121A (en) Optical isolator of optical fiber
JPS61112123A (en) Depolarizer
JPH05150114A (en) Beam splitter
JPH06317703A (en) Polarization-independent beam splitter and optical parts formed by using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees