JPH02130436A - Calibration for infrared radiation meter - Google Patents

Calibration for infrared radiation meter

Info

Publication number
JPH02130436A
JPH02130436A JP63285019A JP28501988A JPH02130436A JP H02130436 A JPH02130436 A JP H02130436A JP 63285019 A JP63285019 A JP 63285019A JP 28501988 A JP28501988 A JP 28501988A JP H02130436 A JPH02130436 A JP H02130436A
Authority
JP
Japan
Prior art keywords
infrared
calibration
different
reference radiation
emissivities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63285019A
Other languages
Japanese (ja)
Inventor
Juro Ishida
石田 十郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63285019A priority Critical patent/JPH02130436A/en
Publication of JPH02130436A publication Critical patent/JPH02130436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To calibrate an infrared radiation meter by arranging a plurality of reference radiation sources with different infrared emissivities in the infrared radiation meter wherein light in an infrared wavelength range is condensed and converted into an electrical signal to measure a radiation of infrared rays from an object to be measured. CONSTITUTION:In calibration, a scanning mirror 2 is turned to a direction of a reference radiation source 1a or 1b with a tilt drive section 7 to introduce a calibration light to an optical system 3. A background noise and a sensitivity are corrected by two reference radiation sources with different infrared emissivities. Thus, the use of a plurality of reference radiation sources with different infrared emissivities enables a lower power consumption as compared with a calibration system using black bodies different in temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被撮像物の赤外放射量を測定する赤外放射計
、特にその基準放射源による校正方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared radiometer for measuring the amount of infrared radiation of an object to be imaged, and particularly to a calibration method thereof using a reference radiation source.

〔従来の技術〕[Conventional technology]

従来、この種の赤外放射計、特に人工衛星や飛行機等に
搭載される放射計では、放射計内部から放射による背景
雑音成分を除くために、基準黒体を用いた校正を行なっ
ており、感度の校正を行なうために、温度の異なる二つ
以上の基準黒体を用いている。
Conventionally, this type of infrared radiometer, especially those mounted on artificial satellites and airplanes, have been calibrated using a reference blackbody in order to remove background noise components due to radiation from inside the radiometer. In order to calibrate the sensitivity, two or more reference blackbodies with different temperatures are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の温度の異なる基準黒体を用いる校正方式
では、感度補正の精度を上げるために、常温の基準黒体
の他に、常温と数十底の温度差を持つ基準黒体を必要と
した。これは、特に人工衛星に搭載した場合には、多大
の電力を必要とし、また周囲環境に影響を及ぼし1周囲
の温度を変化させる。
In the conventional calibration method described above that uses reference black bodies with different temperatures, in order to improve the accuracy of sensitivity correction, in addition to the reference black body at room temperature, a reference black body with a temperature difference of several tens of bases from room temperature is required. did. This requires a large amount of electric power, especially when mounted on an artificial satellite, and also affects the surrounding environment and changes the surrounding temperature.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、「赤外波長域の光を集光し電気信号に
変換することにより被測定物体からの赤外放射量を測定
する赤外放射計において、赤外放射率の異なる複数個の
基準放射源を用いることを特徴とする赤外放射計の校正
方式」が得られる。
According to the present invention, in an infrared radiometer that measures the amount of infrared radiation from an object to be measured by condensing light in the infrared wavelength range and converting it into an electrical signal, A method for calibrating an infrared radiometer characterized by using a reference radiation source is obtained.

〔実施例〕〔Example〕

次に、本発明の一実施例を示した図面を参照して、本発
明をより詳細に説明する。
Next, the present invention will be described in more detail with reference to the drawings showing one embodiment of the present invention.

第1図を参照すると、本発明の一実施例は、本発明をチ
ルト機能を持った機械走査式放射計に適用したものであ
る0本実施例は、赤外放射率の異なる二つの基準放射源
1aおよび1bを有している。
Referring to FIG. 1, one embodiment of the present invention is an application of the present invention to a mechanical scanning radiometer with a tilt function. It has sources 1a and 1b.

第1図は放射計の撮像時の構成を示しており、図面下方
からの撮像信号は、走査ミラー2により反射され、光学
系3により集光され、光電変換部4により電気信号に変
換される。光電変換部4は、冷却部5により冷却されて
いる。撮像は、走査ミラー2を走査駆動部6の回転によ
り行なう。
FIG. 1 shows the configuration of the radiometer at the time of imaging. An imaging signal from the bottom of the drawing is reflected by a scanning mirror 2, focused by an optical system 3, and converted into an electrical signal by a photoelectric conversion unit 4. . The photoelectric conversion unit 4 is cooled by a cooling unit 5. Imaging is performed by rotating the scanning mirror 2 by a scanning drive unit 6.

撮像方向を変更するためのチルト機能を実現するために
チルト駆動部7を有している。
A tilt drive unit 7 is provided to realize a tilt function for changing the imaging direction.

第2図を参照して、校正方式について説明する0校正時
には、チルト駆動部7により、走査ミラー2を基準放射
源1aまたは1bの方向に向けることにより、校正光を
光学系3に導く。
Referring to FIG. 2, during zero calibration, the calibration method will be described.The tilt drive section 7 directs the scanning mirror 2 toward the reference radiation source 1a or 1b, thereby guiding the calibration light to the optical system 3.

ここに示した実施例では、赤外放射率の異なる二つの基
準放射源により、背景雑音および感度の補正を行なう。
In the embodiment shown here, background noise and sensitivity correction is performed using two reference radiation sources with different infrared emissivities.

また、本実施例の他に、回転走査鏡を用いた機械走査式
放射計にも適用できる。
In addition to this embodiment, the present invention can also be applied to a mechanical scanning radiometer using a rotating scanning mirror.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、赤外放射率の異
なる複数個の基準放射源を用いることにより、温度の異
なる黒体を用いる校正方式に比べ、低消費電力化するこ
とができる。また、基準放射源の温度を高温とする必要
がないので、周囲環境に対する温度上昇等の影響を少な
くできる。
As described above, according to the present invention, by using a plurality of reference radiation sources with different infrared emissivities, power consumption can be reduced compared to a calibration method using black bodies with different temperatures. Furthermore, since it is not necessary to raise the temperature of the reference radiation source to a high temperature, the influence of temperature rise on the surrounding environment can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例による赤外放射
計のそれぞれ撮像時および校正時の構成を示す図である
。 la、lb・・・基準放射源、2・・・走査ミラー3・
・・光学系、4・・・光学変換部、5・・・冷却部、6
・・・走査駆動部、7・・・チルト駆動部。 代理人 弁理士  内 原  晋 第  1 図 第 2 口
FIGS. 1 and 2 are diagrams showing the configuration of an infrared radiometer according to an embodiment of the present invention at the time of imaging and during calibration, respectively. la, lb...Reference radiation source, 2...Scanning mirror 3.
...Optical system, 4... Optical conversion section, 5... Cooling section, 6
... Scanning drive section, 7... Tilt drive section. Agent Patent Attorney Susumu Uchihara 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 赤外波長域の光を集光し電気信号に変換することにより
被測定物体からの赤外放射量を測定する赤外放射計にお
いて、赤外放射率の異なる複数個の基準放射源を用いる
ことを特徴とする赤外放射計の校正方式。
In an infrared radiometer that measures the amount of infrared radiation from an object to be measured by condensing light in the infrared wavelength range and converting it into an electrical signal, multiple reference radiation sources with different infrared emissivities are used. A calibration method for infrared radiometers featuring:
JP63285019A 1988-11-10 1988-11-10 Calibration for infrared radiation meter Pending JPH02130436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63285019A JPH02130436A (en) 1988-11-10 1988-11-10 Calibration for infrared radiation meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285019A JPH02130436A (en) 1988-11-10 1988-11-10 Calibration for infrared radiation meter

Publications (1)

Publication Number Publication Date
JPH02130436A true JPH02130436A (en) 1990-05-18

Family

ID=17686105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285019A Pending JPH02130436A (en) 1988-11-10 1988-11-10 Calibration for infrared radiation meter

Country Status (1)

Country Link
JP (1) JPH02130436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132859A (en) * 1997-10-31 1999-05-21 Mitsubishi Electric Corp Infrared video apparatus
CN102768107A (en) * 2012-07-10 2012-11-07 武汉高德红外股份有限公司 Nonuniformity correcting device and method by aiming at detector pixel response rate
WO2024121983A1 (en) * 2022-12-07 2024-06-13 三菱電機株式会社 Data processing device, data processing method, and data processing program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132859A (en) * 1997-10-31 1999-05-21 Mitsubishi Electric Corp Infrared video apparatus
CN102768107A (en) * 2012-07-10 2012-11-07 武汉高德红外股份有限公司 Nonuniformity correcting device and method by aiming at detector pixel response rate
WO2024121983A1 (en) * 2022-12-07 2024-06-13 三菱電機株式会社 Data processing device, data processing method, and data processing program

Similar Documents

Publication Publication Date Title
US3874799A (en) Method and apparatus for color spectrophotometry
US4687344A (en) Imaging pyrometer
US4965448A (en) Internal calibration source for infrared radiation detector
EP1067371B1 (en) Apparatus for calibrating temperature measurements and measuring currents
US6791610B1 (en) Uncooled focal plane array sensor
CN112834054A (en) Infrared temperature measurement and monitoring system and calibration method thereof
Yoon et al. Thermodynamic radiation thermometry using radiometers calibrated for radiance responsivity
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
US7737403B2 (en) Detector arrangement for electromagnetic radiation and method for measuring electromagnetic radiation
JPH02130436A (en) Calibration for infrared radiation meter
CN212133888U (en) Color CCD self-calibration temperature measuring device based on radiation spectrum
CN111649830A (en) Radiation spectrum-based color CCD self-calibration temperature measuring device and method
RU2324152C1 (en) Thermal imaging technique and device
CN113418613B (en) High-temperature transient measurement system and method based on multispectral colorimetry
CN214309157U (en) Infrared temperature measurement and monitoring system
CN114577446A (en) CCD/CMOS extreme ultraviolet band quantum efficiency detection device and method
US3097300A (en) Thermal detector and reference source
KR102686859B1 (en) Infrared temperature measuring and monitoring system and calibration method thereof
CN105606228B (en) Dual wavelength temperature field imaging device, system and method based on transcoding, coding transform
CN114608703B (en) Double-blackbody high-precision infrared relative spectral responsivity testing device and testing method thereof
Taubert et al. The spectral photon flux of the radiometric calibration spectral source for the NIRSpec instrument of the James Webb Space Telescope
JPH01110225A (en) Infrared radiation meter
CN113588115B (en) Temperature measurement method based on multispectral colorimetric
Zundong et al. Precision photoelectric pyrometer and its calibration
Crouzet et al. Test set up description and performances for HAWAII-2RG detector characterization at ESTEC