JPH02130138A - Molding thermoplastic composite sheet and molded body thereof - Google Patents

Molding thermoplastic composite sheet and molded body thereof

Info

Publication number
JPH02130138A
JPH02130138A JP63285391A JP28539188A JPH02130138A JP H02130138 A JPH02130138 A JP H02130138A JP 63285391 A JP63285391 A JP 63285391A JP 28539188 A JP28539188 A JP 28539188A JP H02130138 A JPH02130138 A JP H02130138A
Authority
JP
Japan
Prior art keywords
sheet
fibers
thermoplastic resin
laminated
laminated sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63285391A
Other languages
Japanese (ja)
Other versions
JP2605384B2 (en
Inventor
Tatsuki Matsuo
達樹 松尾
Hiroshi Kawada
川田 寛
Yoshimasa Takahashi
高橋 良誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63285391A priority Critical patent/JP2605384B2/en
Priority to US07/424,402 priority patent/US5989710A/en
Priority to CA002001142A priority patent/CA2001142C/en
Priority to DE3935264A priority patent/DE3935264B4/en
Publication of JPH02130138A publication Critical patent/JPH02130138A/en
Application granted granted Critical
Publication of JP2605384B2 publication Critical patent/JP2605384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To enhance dynamical strength by forming a multi-axial laminated sheet by blended fiber yarns of reinforcing fibers and a thermoplastic resin. CONSTITUTION:Reinforcing fibers and thermoplastic resin fibers are drawn and aligned to be opened electrostatically and the monofilaments of both of them are mutually entangled in an opened state to form blended fiber yarns. A multi-axis laminated sheet is formed from the blended fiber yarns thus obtained. A plurality of these sheets or one or more of this sheet and other kind of a sheet are laminated and heated to the melting and flowing temp. of the thermoplastic resin fibers to be subjected to press molding. The multi-axis laminated sheet and other kinds of sheets to be laminated are laminated, for example, for the purpose of enhancing the surface smoothness of a molded body, imparting coloring and decorative effect and enhancing weatherability and subjected to press molding to be integrated. Since this multi-axis laminated sheet is composed of yarns arranged straightly, reinforcing effect is effectively developed as compared with a conventional plain fabric.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、補強繊維と熱可塑性樹脂繊維との混繊糸か
ら形成される成形用の熱可塑性コンポジットシートおよ
びその成形体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a moldable thermoplastic composite sheet formed from a mixed yarn of reinforcing fibers and thermoplastic resin fibers, and a molded article thereof.

[従来の技術] 長繊維強化のプラスチックコンポジットは、航空宇宙用
を中心としたいわゆるアドバンストコンポジットと、船
舶、浴槽ユニット、自動車等に使われている汎用FRP
とに大別される。両者ともに、通常はマトリックス樹脂
として熱硬化型の樹脂が用いられており、前者にはエポ
キシ樹、脂、後者には不飽和ポリエステル樹脂が用いら
れている。
[Conventional technology] Long fiber reinforced plastic composites include so-called advanced composites mainly for aerospace applications, and general-purpose FRPs used for ships, bathtub units, automobiles, etc.
It is broadly divided into. In both cases, a thermosetting resin is usually used as the matrix resin, and the former uses an epoxy resin or resin, and the latter uses an unsaturated polyester resin.

このように、マトリックス樹脂として熱硬化型樹脂を用
いると、成形後にマトリックス樹脂を硬化させるための
硬化処理が必要であること、およびコンポジットの靭性
が欠けるという欠点がある。
As described above, when a thermosetting resin is used as the matrix resin, there are drawbacks that a curing treatment is required to harden the matrix resin after molding and that the composite lacks toughness.

マトリックス樹脂として熱可塑性樹脂を用いれば、上記
欠点を改良できることが知られている。
It is known that the above drawbacks can be improved by using a thermoplastic resin as the matrix resin.

しかしながら、熱可塑性樹脂の溶融温度が高いことから
、連続した補強繊維に溶融樹脂を含浸させるのは技術的
に困難なことである。比較的ルーズに集合しランダムに
配列した長繊維マットには、溶融樹脂を含浸しやすいこ
とから、このような長繊維マットに含浸する方法が行な
われているが、この方法によれば、補強繊維の含を率を
高くすることができないことおよび補強繊維のシート面
方向の配向度が低いため、コンポジットの力学的特性を
十分に高めることができないという欠点がある。
However, since the melting temperature of thermoplastic resin is high, it is technically difficult to impregnate continuous reinforcing fibers with molten resin. Since long fiber mats that are relatively loosely assembled and randomly arranged are easily impregnated with molten resin, a method of impregnating such long fiber mats has been used. The disadvantage is that the mechanical properties of the composite cannot be sufficiently enhanced due to the inability to increase the content of reinforcing fibers and the low degree of orientation of the reinforcing fibers in the sheet surface direction.

そこで、このような問題を解消するため、補強繊維と熱
可塑性樹脂繊維とを混合して、混繊糸とし、これをシー
ト状にしたものを、熱可塑性樹脂繊維が溶融流動する温
度にまで加熱してプレス成形することが試みられている
。このような熱可塑性コンポジットでは、溶融樹脂を含
浸させたものに比べて、補強繊維の含有率を著しく高め
ることができる。
Therefore, in order to solve this problem, reinforcing fibers and thermoplastic resin fibers are mixed to form a mixed yarn, which is made into a sheet shape and heated to a temperature where the thermoplastic resin fibers melt and flow. Attempts have been made to press mold the material. In such thermoplastic composites, the content of reinforcing fibers can be significantly increased compared to those impregnated with molten resin.

[発明が解決しようとする課題] しかしながら、このような従来の熱可塑性コンポジット
であっても、力学的強度が不十分な場合があり、従来よ
りも高い力学特性を有する熱可塑性コンポジットが望ま
れていた。
[Problems to be solved by the invention] However, even such conventional thermoplastic composites may have insufficient mechanical strength, and there is a desire for thermoplastic composites with higher mechanical properties than conventional ones. Ta.

それゆえに、この出願に係る発明の目的は、従来よりも
高い力学的強度を発揮させることのできる成形用の熱可
塑性コンポジットシートおよびその成形体を提供するこ
とにある。
Therefore, an object of the invention according to this application is to provide a thermoplastic composite sheet for molding and a molded product thereof that can exhibit higher mechanical strength than conventional sheets.

[課題を解決するための手段および作用]本発明者等は
、熱可塑性コンポジットにおける力学的強度を従来より
も向上させるため鋭意研究を行なった結果、補強繊維と
熱可塑性樹脂繊維との混繊糸を多軸積層シートとするこ
とにより、従来よりも大幅に力学的強度が改善されるこ
とを見い出し、この出願に係る発明をなすに至った。
[Means and effects for solving the problem] The present inventors conducted extensive research to improve the mechanical strength of thermoplastic composites compared to conventional ones, and as a result, the present inventors developed a blended yarn of reinforcing fibers and thermoplastic resin fibers. It has been discovered that by forming a multiaxially laminated sheet, the mechanical strength can be significantly improved compared to the conventional one, and the invention according to this application has been completed.

すなわち、請求項1の発明は、補強繊維と熱可塑性樹脂
繊維との混繊糸から形成された多軸積層シートからなる
、成形用熱可塑性コンポジットシートである。
That is, the invention of claim 1 is a thermoplastic composite sheet for molding, which is made of a multiaxially laminated sheet formed from a mixed yarn of reinforcing fibers and thermoplastic resin fibers.

請求項2の発明は、請求項1の発明に従う熱可塑性コン
ポジットシートの成形体であり、補強繊維と熱可塑性樹
脂繊維との混繊糸から形成された多軸積層シートを、熱
可塑性樹脂繊維が溶融流動する温度にまで加熱してプレ
ス成形した熱可塑性コンポジット形成体である。
The invention of claim 2 is a molded body of a thermoplastic composite sheet according to the invention of claim 1, in which a multiaxially laminated sheet formed from a mixed yarn of reinforcing fibers and thermoplastic resin fibers is It is a thermoplastic composite formed by heating to a temperature at which it melts and then press-molding it.

この出願に係る発明に用いられる熱可塑性樹脂繊維とし
ては、たとえば、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、ナイロン66、ポリプロピレン
、全芳香族液晶型ポリエステル、ポリフェニレンサルフ
ァイド、ポリエーテルイミド、ポリエーテルエーテルケ
トンなどを繊維状にしたものが挙げら゛れる。
Examples of thermoplastic resin fibers used in the invention of this application include polyethylene terephthalate, polybutylene terephthalate, nylon 66, polypropylene, fully aromatic liquid crystal polyester, polyphenylene sulfide, polyetherimide, and polyether ether ketone. Examples include those made in the form of

繊維の配向度は、特に限定されるものではなく、高度に
分子配向している延伸糸、中程度に分子配向している半
延伸糸、分子配向が低い未延伸糸などのいずれでもよい
。しかしながら、次の混繊工程に耐え得る程度の力学特
性を有していることが必要である。特に好ましい熱可塑
性樹脂繊維の例としては、分子配向度として、偏光ラマ
ン分光計で測定した強度比Ixy/Iyyが3.0以上
のポリエチレンテレフタレート繊維が好ましい。その典
型的な具体例としては、いわゆるポリエチレンテレフタ
レートの部分的配向ヤーン(Partially  0
riented  Yarn)が挙げられる。偏光ラマ
ン分光計でnI定した強度比■X Y / I y y
は、以下のようにして測定される値である。
The degree of orientation of the fibers is not particularly limited, and may be any drawn yarn with highly molecular orientation, semi-drawn yarn with moderate molecular orientation, or undrawn yarn with low molecular orientation. However, it is necessary to have mechanical properties that can withstand the next fiber mixing process. As an example of a particularly preferable thermoplastic resin fiber, a polyethylene terephthalate fiber having a degree of molecular orientation and an intensity ratio Ixy/Iyy measured with a polarized Raman spectrometer of 3.0 or more is preferable. A typical example is a partially oriented yarn of so-called polyethylene terephthalate (Partially 0
oriented yarn). Intensity ratio determined by polarization Raman spectrometer ■X Y / I y y
is a value measured as follows.

すなわち、まずポリエチレンテレフタレート繊維を繊維
方向に張った状態で固定し、繊維中心部に1μmに絞っ
たビームを照射する。入射光の偏光は、繊維軸方向(Y
)となるようにする。検光子により、散乱光の繊維軸方
向の偏光のピーク強度IYYと、繊維軸と直角方向の偏
光のピーク強度IXYを測定する。630cm−’バン
ドで測定したIY Y +  IX Yの値を、128
0cm−’バンドで比較して、IXY/IYYの値を求
める。
That is, first, a polyethylene terephthalate fiber is fixed in a stretched state in the fiber direction, and a beam focused to 1 μm is irradiated to the center of the fiber. The polarization of the incident light is in the fiber axis direction (Y
). Using an analyzer, the peak intensity IYY of the polarized light in the direction of the fiber axis of the scattered light and the peak intensity IXY of the polarized light in the direction perpendicular to the fiber axis are measured. The value of IY Y + IX Y measured at 630 cm-' band is 128
The value of IXY/IYY is determined by comparing in the 0 cm-' band.

このように強度比1xy/Ivyが3.0以上のものを
用いることが好ましい理由は、成形時の結晶化速度を早
め、機械的特性の良好な成形品が得られるからである。
The reason why it is preferable to use a material with a strength ratio 1xy/Ivy of 3.0 or more is because the crystallization rate during molding can be accelerated and a molded product with good mechanical properties can be obtained.

また、この出願に係る発明で用いられる補強繊維は、特
に限定されるものではないが、たとえばカーボン繊維、
ガラス繊維、アラミド繊維等の連続糸等が挙げられる。
In addition, the reinforcing fibers used in the invention of this application are not particularly limited, but for example, carbon fibers,
Continuous yarns such as glass fibers and aramid fibers are exemplified.

混繊糸を得る方法としては、補強繊維と、熱可塑性樹脂
繊維とを引き揃えて静電気的に開繊させつつ、両者の単
繊維同士を絡合させる方法や、引き揃えて空気噴出乱流
中を通過させ開繊絡合させる方法等が挙げられる。
Methods for obtaining mixed fiber yarns include a method in which reinforcing fibers and thermoplastic resin fibers are aligned and opened electrostatically, and the single fibers of the two are entangled with each other, or the reinforcing fibers and thermoplastic resin fibers are aligned and separated in a turbulent flow of air jets. Examples include a method of opening and entangling the fibers by passing through the fibers.

この出願に係る発明においては、このようにして得られ
た混繊糸から多軸積層シートを形成する。
In the invention according to this application, a multiaxially laminated sheet is formed from the thus obtained mixed fiber yarn.

多軸積層シートは、互いに異なった角度に一軸配向して
引き揃えられた糸の複数層が積層し一体化されたシート
である。このような多軸積層シートとしては、たとえば
二軸に直交した糸の層を積層したものや、0°/45°
/90°/−45°/の4つに配向した糸の層を積層し
たものなどが挙げられる。
A multiaxially laminated sheet is a sheet in which multiple layers of threads uniaxially oriented and aligned at different angles are laminated and integrated. Such multi-axis laminated sheets include, for example, those made by laminating layers of yarn perpendicular to two axes, or those made by laminating layers of yarn perpendicular to two axes,
An example is one in which four layers of threads oriented at /90°/-45°/ are laminated.

シートは、1枚または複数枚を、あるいはこれらと他種
のシートとを積層して、熱可塑性樹脂繊維の溶融流動す
る温度にまでこれを加熱し、プレス成形する。多軸積層
シートと積層される他の種類のシートは、たとえば成形
体の表面の平滑性の向上、着色、装飾的効果付与、耐候
性向上等の目的で積層しプレス成形して一体化されるも
のである。たとえば、耐候性付与の目的では、熱可塑性
樹脂繊維と同じ種類の樹脂フィルムに有効量の紫外線吸
収剤を混合したものを積層することができる。また電磁
波シールド性を付与する目的からは、電磁波シールド効
果のあるシートを表面または中間層に挿入して積層する
ことができる。また導電性付与の目的からは、補強繊維
の一部に導電性の繊維を用いて、混繊糸を形成しこれを
シートにしたものを用いてもよい。表面平滑性を向上さ
せる目的からは、たとえば結晶核剤、無機粒子等を含有
するフィルムを積層させることができる。
The sheet is formed by laminating one or more sheets, or by laminating these sheets with sheets of other types, heating the sheet to a temperature at which the thermoplastic resin fibers melt and flow, and press-molding the sheet. Other types of sheets that are laminated with the multiaxially laminated sheet are laminated and press-formed to be integrated, for example, for the purpose of improving the surface smoothness of the molded product, coloring it, giving it a decorative effect, improving its weather resistance, etc. It is something. For example, for the purpose of imparting weather resistance, a resin film of the same type as the thermoplastic resin fiber mixed with an effective amount of an ultraviolet absorber can be laminated. Further, for the purpose of imparting electromagnetic shielding properties, a sheet having an electromagnetic shielding effect can be inserted into the surface or an intermediate layer and laminated. Furthermore, for the purpose of imparting conductivity, conductive fibers may be used as some of the reinforcing fibers to form a mixed yarn, which may be made into a sheet. For the purpose of improving surface smoothness, for example, a film containing a crystal nucleating agent, inorganic particles, etc. can be laminated.

請求項2の発明において、加熱しプレス成形する方法と
しては、予め多軸積層シートを熱可塑性樹脂繊維の溶融
する温度以上に加熱した後、冷却しながらプレス成形す
る方法と、プレス成形と加熱とを同時を行なう方法など
が挙げられる。プレス装置の簡易さおよびプレス装置の
生産性の面からは前者の方が実用上好ましい。但し、前
者の場合は、熱可塑性樹脂繊維の加熱による収縮等で多
軸積層シートの寸法変化や平面性の崩れを引き起こすお
それがあるため、ピンテンターで張力をかけながら加熱
しプレス機に供給することが好ましい。また、冷却しな
がらプレス成形する際には、熱可塑性樹脂繊維が溶融し
流動性を保ちながら補強繊維のまわりに移動して均一化
するように時間的に考慮する必要がある。
In the invention of claim 2, the heating and press forming method includes a method in which the multiaxially laminated sheet is heated in advance to a temperature higher than the melting temperature of the thermoplastic resin fibers and then press forming while cooling, and a method in which press forming and heating are performed. An example of this method is to perform both at the same time. The former is practically preferable in terms of simplicity of the press device and productivity of the press device. However, in the former case, heating shrinkage of the thermoplastic resin fibers may cause dimensional changes or loss of flatness of the multiaxially laminated sheet, so it is necessary to heat the multiaxially laminated sheet while applying tension with a pin tenter before feeding it to the press. is preferred. Furthermore, when press molding is performed while cooling, it is necessary to consider the time so that the thermoplastic resin fibers melt and move around the reinforcing fibers while maintaining fluidity and become uniform.

[発明の効果コ この出願に係る発明では、コンポジットシートとして多
軸積層シートを用いている。多軸積層シートは糸が直線
的に配列しているため、従来の平織物等に比べると、有
効に補強効果が発揮される。
[Effects of the Invention] In the invention according to this application, a multiaxially laminated sheet is used as the composite sheet. Since the threads of the multiaxially laminated sheet are linearly arranged, it exhibits a more effective reinforcing effect than conventional plain woven fabrics.

また、多軸積層シートを積み重ねたシートが立体的に賦
形加工され・る場合には、層間の糸軸を容易に変角する
ことができ、また層内の糸間隔を拡げる自由度があるた
め、立体賦形加工を容易に行なうことができるという長
所がある。また、この場合、シートの一体化に使用する
スティッチ糸は溶融プレス時に溶融する熱可塑性樹脂、
特に熱可塑性樹脂繊維と同種の樹脂であることが好まし
い。
In addition, when multi-axis laminated sheets are stacked and processed to form three-dimensional shapes, it is possible to easily change the angle of the yarn axis between the layers, and there is also a degree of freedom in expanding the yarn spacing within the layers. Therefore, it has the advantage that three-dimensional shaping processing can be easily performed. In addition, in this case, the stitch thread used to integrate the sheets is a thermoplastic resin that melts during melt pressing.
In particular, it is preferable that the resin is the same type as the thermoplastic resin fiber.

また、この出願に係る発明では、多軸積層シートを用い
ているため、従来のSMC,射出成形品、スタンパブル
シートと比べると、補強繊維の分布状態が均一で高度に
制御された形態をとり得る。
In addition, since the invention according to this application uses a multiaxially laminated sheet, the distribution of reinforcing fibers is uniform and highly controlled compared to conventional SMC, injection molded products, and stampable sheets. obtain.

したがって、目的に適合するよう設計することができる
。たとえば、パンパビーム等の細長い形状の場合、一般
に長平方向に配列した補強繊維の割合が大きくなるよう
シートを配置しプレス成形することができる。また、た
とえば、マツチドダイ金型によるプレス成形等によって
目的とするコンポジットの成形体が得られる。
Therefore, it can be designed to suit the purpose. For example, in the case of an elongated shape such as a pamper beam, the sheets can be arranged and press-formed so that the proportion of reinforcing fibers arranged in the elongated direction is generally increased. Further, a desired composite molded body can be obtained by press molding using a mated die mold, for example.

また、熱可塑性樹脂繊維として、偏光ラマン分光計で測
定した強度比IxY/IYYが3,0以上である高度に
配向したポリエチレンテレフタレート繊維を用いた場合
には、これを混繊糸とし多軸積層シートにして加熱しプ
レス成形するため、補強繊維による補強効果が十分に発
揮されるとともに、ポリエチレンテレフタレート繊維に
おける配向性がプレス成形後のコンポジットにも反映さ
れ得る。したがって、さらに優れた力学的強度を発揮さ
せることができる。
In addition, when highly oriented polyethylene terephthalate fibers with an intensity ratio IxY/IYY measured by a polarized Raman spectrometer of 3.0 or more are used as thermoplastic resin fibers, this can be used as a mixed yarn and multiaxially laminated. Since the sheet is heated and press-molded, the reinforcing effect of the reinforcing fibers is fully exhibited, and the orientation of the polyethylene terephthalate fibers can also be reflected in the composite after press-molding. Therefore, even better mechanical strength can be exhibited.

[実施例] 実施例1 ポリエチレンテレフタレート繊維として、単糸の直径が
18μmで、偏光ラマン分光計で測定した強度比I X
 Y / I Y Yが3.5である4550デニール
の連続糸1本を用い、補強繊維として単糸の直径12μ
mのEガラス繊維の1050デニールの連続糸を用いて
、混繊糸を作製した。ガラス繊維の表面には、予め、ビ
ニールシランカップリング剤とポリエステル系接着剤を
アニオン系活性剤で乳化した表面処理剤を、ガラス繊維
に対して0.4%となるように付与している。
[Example] Example 1 As a polyethylene terephthalate fiber, the diameter of a single yarn was 18 μm, and the intensity ratio I
Y/I Y One continuous yarn of 4550 denier with a Y of 3.5 was used as a reinforcing fiber, and the diameter of the single yarn was 12μ.
A mixed fiber yarn was produced using a continuous yarn of 1050 denier and E glass fiber of m. A surface treatment agent made by emulsifying a vinyl silane coupling agent and a polyester adhesive with an anionic activator was applied to the surface of the glass fiber in advance in an amount of 0.4% based on the glass fiber.

混繊の方法としてはタスラン加工法により混繊した。混
繊条件は、ポリエチレンテレフタレート繊維をガラス繊
維に対して063%のオーバーフィードとなるように供
給し、混繊加工速度は100m/min、流体圧力は5
.0kg/cm2となるように混繊した。
The fibers were mixed using the Taslan processing method. The blending conditions were as follows: polyethylene terephthalate fibers were supplied with an overfeed of 0.63% relative to glass fibers, the blending processing speed was 100 m/min, and the fluid pressure was 5.0 m/min.
.. The fibers were mixed so that the weight was 0 kg/cm2.

得られた混繊糸を、糸軸方向0° (マシン方向):8
.7本/cm、糸軸方向45° :2.3本/cm、糸
軸方向90° (幅方向):5.8本/Cm1糸軸方向
−45° :2.3本/cm、および糸軸方向0° :
8.7本/ c mのそれぞれの層を形成し、これらの
5層をポリエチレンテレフタレート連続フィラメント(
75D/36フイラメント)でステイフナして一体化し
、目付け4.8kg/m2の0.5m幅の多軸積層シー
トを得た。
The obtained mixed fiber yarn is oriented at 0° in the yarn axis direction (machine direction): 8
.. 7 threads/cm, yarn axis direction 45°: 2.3 threads/cm, thread axis direction 90° (width direction): 5.8 threads/cm1 thread axis direction -45°: 2.3 threads/cm, and thread Axial direction 0°:
8.7 filaments/cm of each layer and these five layers were made of polyethylene terephthalate continuous filament (
75D/36 filament) to obtain a 0.5 m wide multiaxial laminated sheet with a basis weight of 4.8 kg/m2.

シートのマシン方向の長さが40cm1シ一ト幅方向の
長さが20cmとなるように多軸積層シートを切出し、
この多軸積層シートの端部をピンで固定して、160℃
X30分加熱空気で乾燥した。
A multiaxially laminated sheet was cut out so that the length of the sheet in the machine direction was 40 cm and the length of one sheet in the width direction was 20 cm.
Fix the ends of this multiaxial laminated sheet with pins and heat it to 160°C.
It was dried with heated air for 30 minutes.

その後、引き続きピンで固定したまま赤外線ヒータで2
80℃まで昇温し、直ちに加圧プレスして厚み2.5m
mの繊維強化ポリエチレンテレフタレートの繊維を得た
。得られたシートについて力学的特性を測定したところ
、シートのマシン方向に曲げ強度88kgf/mm2、
曲げ弾性率3610kgf/mm2、アイゾツト衝撃値
142kgf*cm/cmであり、シート幅方向に曲げ
強度49kgf/mm2、曲げ弾性率2270kgf/
mm2の値であった。これは、ガラスマットにポリプロ
ピレンを含浸した市販のスタンパブルシートの値、すな
わち曲げ強度16.5kgf/mm2、曲げ弾性率55
2kg f/mm2、アイゾツト衝撃値89kgf−c
m/cmに比べて圧倒的に高い値であり、極めて強靭な
シートであることがわかった。
After that, continue to fix it with a pin and heat it with an infrared heater.
Raised the temperature to 80℃ and immediately pressed it to a thickness of 2.5m.
A fiber reinforced polyethylene terephthalate of m was obtained. When the mechanical properties of the obtained sheet were measured, the bending strength in the machine direction of the sheet was 88 kgf/mm2,
The bending elastic modulus is 3610 kgf/mm2, the isot impact value is 142 kgf*cm/cm, the bending strength is 49 kgf/mm2 in the sheet width direction, and the bending elastic modulus is 2270 kgf/cm.
The value was mm2. This is the value of a commercially available stampable sheet made of a glass mat impregnated with polypropylene, that is, the bending strength is 16.5 kgf/mm2, and the bending elastic modulus is 55.
2kg f/mm2, Izotsu impact value 89kgf-c
This value was overwhelmingly higher than m/cm, and it was found that the sheet was extremely tough.

得られたシートを280℃まで昇温した後、50+プレ
ス機でマツチドダイ法によりプレス成形した。直径5c
m、高さ2.5cmの半球状の突起のある表面が平滑な
成形体を得ることができた。
The obtained sheet was heated to 280° C. and then press-molded using a 50+ press machine using a matte die method. Diameter 5c
It was possible to obtain a molded article with a smooth surface and hemispherical protrusions of 2.5 cm and a height of 2.5 cm.

上記の実施例では、多軸積層シートの端部を固定し加熱
しているが、多軸積層シートの端部を固定することなく
、フリーな状態で、160℃×30分加熱空気で乾燥後
、引き続きそのまま赤外線ヒータで280℃まで昇温し
でみた。その結果、機械的強度については上記実施例と
゛同様のものが得られた。しかし、シートは大きく収縮
し、引きつれが生じ、シート表面に皺が生じた。
In the above example, the edges of the multiaxially laminated sheet are fixed and heated, but after drying with heated air at 160°C for 30 minutes in a free state without fixing the edges of the multiaxially laminated sheet. Then, I tried raising the temperature to 280°C using an infrared heater. As a result, mechanical strength similar to that of the above example was obtained. However, the sheet shrank significantly, became taut, and wrinkled the sheet surface.

また、スティッチ糸として200Dのケブラ繊維を用い
て、多軸積層シートを作製し、上記の実施例と同一の条
件で加熱プレス成形して熱可塑性コンポジットのシート
を得た。これをマツチドダイによりプレス成形を試みた
ところ、従来よりも高い力学的強度を有するものは得ら
れたが、成形された半球状突起は均整の面でやや劣って
いた。
Further, a multiaxially laminated sheet was prepared using 200D Kevlar fiber as the stitch thread, and hot press molded under the same conditions as in the above example to obtain a thermoplastic composite sheet. When we tried press-molding this using a mated die, we were able to obtain something with higher mechanical strength than before, but the hemispherical protrusions that were formed were somewhat inferior in terms of symmetry.

比較例1 上記の実施例と同様の混繊糸を用いて、目付け960g
/m2の平織物を作り、40cmX20Cmに裁断し、
この平織物を縦横が揃うように5層に重ねその端部をピ
ンで固定して上記実施例1゛と同様の方法で加熱プレス
成形し、厚み0.52mmの繊維強化ポリエチレンテレ
フタレートのシートを得た。このシートを用いて上記の
実施例1と同様に、半球状の突起成形体を成形したとこ
ろ、シートが破れてしまい成形体を得ることができなか
った。
Comparative Example 1 Using the same blended yarn as in the above example, the basis weight was 960g.
/ m2 of plain fabric was made and cut into 40cm x 20cm.
This plain woven fabric was stacked in five layers so that the length and width were aligned, the ends were fixed with pins, and hot press molding was performed in the same manner as in Example 1 above to obtain a fiber-reinforced polyethylene terephthalate sheet with a thickness of 0.52 mm. Ta. When this sheet was used to mold a hemispherical protrusion molded body in the same manner as in Example 1, the sheet was torn and the molded body could not be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)補強繊維と、熱可塑性樹脂繊維との混繊糸から形
成された多軸積層シートからなることを特徴とする、成
形用熱可塑性コンポジットシート。
(1) A thermoplastic composite sheet for molding, characterized in that it consists of a multiaxially laminated sheet formed from a blend of reinforcing fibers and thermoplastic resin fibers.
(2)補強繊維と熱可塑性樹脂繊維との混繊糸から形成
された多軸積層シートを、前記熱可塑性樹脂繊維が溶融
流動する温度に加熱してプレス成形したことを特徴とす
る、熱可塑性コンポジット成形体。
(2) Thermoplastic, characterized in that a multiaxially laminated sheet formed from a mixed yarn of reinforcing fibers and thermoplastic resin fibers is press-molded by heating to a temperature at which the thermoplastic resin fibers melt and flow. Composite molded body.
JP63285391A 1988-10-21 1988-11-10 Thermoplastic composite sheet for molding and molded article thereof Expired - Fee Related JP2605384B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63285391A JP2605384B2 (en) 1988-11-10 1988-11-10 Thermoplastic composite sheet for molding and molded article thereof
US07/424,402 US5989710A (en) 1988-10-21 1989-10-20 Molding material for thermoplastic composites
CA002001142A CA2001142C (en) 1988-10-21 1989-10-20 Molding material for thermoplastic composites
DE3935264A DE3935264B4 (en) 1988-10-21 1989-10-23 Molding composition for thermoplastic composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63285391A JP2605384B2 (en) 1988-11-10 1988-11-10 Thermoplastic composite sheet for molding and molded article thereof

Publications (2)

Publication Number Publication Date
JPH02130138A true JPH02130138A (en) 1990-05-18
JP2605384B2 JP2605384B2 (en) 1997-04-30

Family

ID=17690932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63285391A Expired - Fee Related JP2605384B2 (en) 1988-10-21 1988-11-10 Thermoplastic composite sheet for molding and molded article thereof

Country Status (1)

Country Link
JP (1) JP2605384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223343A (en) * 1989-12-11 1991-10-02 Toray Ind Inc Fiber-reinforced foam and its production
JP2015128873A (en) * 2014-01-08 2015-07-16 王子ホールディングス株式会社 Multilayered molded product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223343A (en) * 1989-12-11 1991-10-02 Toray Ind Inc Fiber-reinforced foam and its production
JP2015128873A (en) * 2014-01-08 2015-07-16 王子ホールディングス株式会社 Multilayered molded product

Also Published As

Publication number Publication date
JP2605384B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JP3821467B2 (en) Reinforcing fiber base material for composite materials
US3664909A (en) Needled resin fibrous article
US5445693A (en) Method of producing a formable composite material
US5529826A (en) Fabric-faced thermoplastic composite panel
JP4988229B2 (en) A hybrid composite material excellent in surface smoothness and a molding method thereof.
JPH08260276A (en) Composite yarn,permanently deformable and shrinkable or shrunk fabric material prepared of this yarn and its preparation and use
JPH08284035A (en) Composite yarn and parmanently deformable textile material prepared of it,its preparation and its use
US3063883A (en) Reinforced resin laminates
JPH01200914A (en) Resin impregnating method
JP6369178B2 (en) Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform
JPH10292255A (en) Reinforcing fibrous substrate for composite material
JPH02130138A (en) Molding thermoplastic composite sheet and molded body thereof
JP2697008B2 (en) Molding method of fiber reinforced thermoplastic composite
JPS6387228A (en) Manufacture of composite body
JP2006291369A (en) Multiaxial woven fabric and composite material using the same
JPH02308824A (en) Material for thermoplastic composite
US7135226B1 (en) Composite fabric product and method of manufacturing the same
JPH01111040A (en) Blended fabric and molded article thereof
JP3882274B2 (en) Molding materials for fiber reinforced thermoplastic composites
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
JPH05154900A (en) Curved-face molded piece and production thereof
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
JP2581107B2 (en) Knitted fabric for composite molding
JPH01280031A (en) Production of conjugated yarn
JP2926736B2 (en) Multi-layer thermoplastic composite molding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees