JPH0212981A - Piezoelectric lens insertion type solid state laser resonator - Google Patents

Piezoelectric lens insertion type solid state laser resonator

Info

Publication number
JPH0212981A
JPH0212981A JP16370988A JP16370988A JPH0212981A JP H0212981 A JPH0212981 A JP H0212981A JP 16370988 A JP16370988 A JP 16370988A JP 16370988 A JP16370988 A JP 16370988A JP H0212981 A JPH0212981 A JP H0212981A
Authority
JP
Japan
Prior art keywords
lens
piezoelectric
light
optical
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16370988A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Yoshiaki Kuroda
黒田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP16370988A priority Critical patent/JPH0212981A/en
Publication of JPH0212981A publication Critical patent/JPH0212981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To realize the stabilization of an optical output by disposing a piezoelectric concave lens system, continuously compensating a thermal lens effect and holding an optimum resonant state. CONSTITUTION:Focal lengths of piezoelectric concave lenses 2, 4 are varied in response to an output power from a resonator formed of a rear mirror 1, the lens 2, a laser rod 3, the lens 4, and front mirror 5, and so composed as to hold an optimum resonant state. A piezoelectric material employs a piezoelectric lens of a PLZT transparent material to spectrally separate a light by the shape change of the lens. That is, the light incident to the mirror 1 is distributed to lights having different frequencies and low energy lights, matched under phase matching conditions by an optical resonator 3, the focal length is condensed by the lens 4, and a coherent light of necessary frequency can be output by the optical filter 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ加工、光計測等に利用する固体レーザ
共振器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in solid-state laser resonators used in laser processing, optical measurement, and the like.

(従来の技術) 第2図は、従来技術による固体レーザ共振器の全体構成
図である。一対の光共振器(7)の間に非線型光学素子
(Limb’s)  (6)を配置することによって、
光(ν1)は非線型光学素子の効果(光パラメトリツク
効果)の発生機構が働いて光(νりと光(ν工)が発振
状態に置かれる。光制御光学系(9)では、光(ν、)
(ポンピング周波0.53μm)が分光され、必要とす
る光(ν2)(出力周波数0.96μm)と不要とする
光(ν、)(アイドラ周波数1.18μm)が直進して
、光学フィルタ(8)を通過することによって光(ν2
)が発振状態となる。すなわち、高いエネルギーの光子
(フォトン)が低いエネルギーの二つの光子に分光され
て放出され茗。(オプトエレクトロニクスの基IM:啓
学出版1984年1月80P) このように、光パラメ
トリツク効果はコヒーレント光を調整するのに利用でき
るため、光制御技術としてつぎのような応用方法が考え
られている。その一つの方法は、共振器内部のビーム形
状および強度をビームスプリッタでモニターすることに
より、発振時における光の内部ビーム形状および出力を
検知する方法であり、ビーム径と光強度のデータをコン
ピュータに入力し光の内部ビーム形状および出力を計算
して最適化を計る。この場合、制御系はピエゾマイクロ
メータ及びパルスメータで構成される。
(Prior Art) FIG. 2 is an overall configuration diagram of a solid-state laser resonator according to the prior art. By placing nonlinear optical elements (Limb's) (6) between a pair of optical resonators (7),
The light (ν1) is placed in an oscillation state by the generation mechanism of the effect (optical parametric effect) of a nonlinear optical element.The light control optical system (9) (ν,)
(pumping frequency 0.53 μm) is separated, and the necessary light (ν2) (output frequency 0.96 μm) and unnecessary light (ν, ) (idler frequency 1.18 μm) are passed straight through an optical filter (8 ) by passing the light (ν2
) becomes oscillating. In other words, a high-energy photon is split into two low-energy photons and released. (Fundamentals of Optoelectronics IM: Keigaku Publishing, January 1984, p. 80) In this way, since optical parametric effects can be used to adjust coherent light, the following application methods are being considered as light control technology. There is. One method is to detect the internal beam shape and output of the light during oscillation by monitoring the beam shape and intensity inside the resonator with a beam splitter, and the data on the beam diameter and light intensity are stored in a computer. Optimize by calculating the internal beam shape and output of the input light. In this case, the control system is composed of a piezo micrometer and a pulse meter.

このようなビームスプリフタ系で光学系を制御する方法
に代わって、圧電モジュールによって光制御する方法も
考えられている。
Instead of such a method of controlling the optical system using a beam splitter system, a method of controlling light using a piezoelectric module has also been considered.

(発明惨解決しようとする課題) し、なし、従来の技術では、レーザロッド端面を凹面加
工する方法が採られているが、この方法ではレーザ入力
が増加し、ある程度熱レンズ効果が生じないと補償しす
ぎてしまう光学現象が存在するため、凹レンズとして作
用してしまいがちである。
(Problem to be solved by invention) However, in the conventional technology, a method is adopted in which the end face of the laser rod is machined into a concave surface, but with this method, the laser input increases and a thermal lens effect must occur to some extent. Because there are optical phenomena that overcompensate, they tend to act as concave lenses.

上記のような従来の光学系では、出力パワーのみをモニ
ターしているので利得の変動を光学系の調整にフィード
バックしてしまうため結果として制御系の出力が不安定
になる。
In the conventional optical system as described above, since only the output power is monitored, fluctuations in gain are fed back to the adjustment of the optical system, resulting in unstable output of the control system.

(課題を解決するための手段および作用)本発明は、こ
れに鑑み、固体レーザ共振器のリアミラーとフロントミ
ラーの間に圧電凹レンズを使用することにより、レーザ
ロッドの熱レンズ効果を連続的に補償し、低パワーから
の発振を可能とする。
(Means and effects for solving the problem) In view of this, the present invention continuously compensates for the thermal lens effect of the laser rod by using a piezoelectric concave lens between the rear mirror and the front mirror of the solid-state laser resonator. This enables oscillation from low power.

(実施例) 以下、本発明を第1図に示す実施例を参照して説明する
(Example) The present invention will be described below with reference to an example shown in FIG.

第1図において、リヤミラー(1)、圧電凹レンズ(2
)、レーザロッド(3)、圧電凹レンズ(4)、フロン
トミラー(5)より成る共振器からの出力パワーに応じ
て圧電凹レンズ(2)および(4)の焦点距離を変化さ
せ、最適共振状態を保つ様に構成されている。圧電材料
には、PLZT系透明材料の圧電レンズを使用して、圧
電レンズの形状変化により光を分光する。つまり、リヤ
ミラー(1)に入光した光(νo+ )は圧電凹レンズ
(A)(2)で周波数の異なる光(ν。2)および光(
ν。、)という低エネルギー光に分配され、光共振器(
3)で位相整合条件を整えられて、圧電凹レンズ(B)
(2)によって焦点距離を焦光され、光学フィルタ(5
)で必要周波数のコヒーレント光(ν。、)を出力する
ことができる。
In Figure 1, a rear mirror (1), a piezoelectric concave lens (2)
), a laser rod (3), a piezoelectric concave lens (4), and a front mirror (5). It is configured to maintain A piezoelectric lens made of a PLZT-based transparent material is used as the piezoelectric material, and light is separated into lights by changing the shape of the piezoelectric lens. In other words, the light (νo+) that enters the rear mirror (1) passes through the piezoelectric concave lens (A) (2), and the light (ν.2) and the light (ν.
ν. , ) is distributed into low-energy light called optical resonator ( ).
After adjusting the phase matching conditions in 3), the piezoelectric concave lens (B)
(2), the focal length is focused by the optical filter (5
) can output coherent light (ν., ) at the required frequency.

この本発明の方法は、位相整合条件等に可制御性がある
ため、上記レーザ加工、光計測をはじめ広く光エレクト
ロニクス分野において応用が可能である。
Since the method of the present invention has controllability in phase matching conditions, etc., it can be widely applied in the field of optoelectronics, including the above-mentioned laser processing and optical measurement.

(発明の効果) 本発明による固体レーザ共振器は、圧電凹レンズ系を配
置して熱レンズ効果を連続的に補償し最適共振状態を保
つことによって光学出力の安定化を実現することができ
る。
(Effects of the Invention) The solid-state laser resonator according to the present invention can realize stabilization of optical output by arranging a piezoelectric concave lens system to continuously compensate for thermal lens effects and maintain an optimum resonance state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 本発明の実施例を示す全体構成図第2図 従来
の技術による全体構成図 ・リヤミラー ・圧電レンズ(A) ・レーザロッド ・圧電レンズ(B) ・フロントミラー ・非線型光学素子(LiNb0s) ・光共振器 ・光学フィルタ ・光制御光学系 第1図 第2図 ν1 シ1:ポンビング周波数(0,53μm)シ2:出力周
波数(0,96μm)
Fig. 1 Overall configuration diagram showing an embodiment of the present invention Fig. 2 Overall configuration diagram according to conventional technology - Rear mirror - Piezoelectric lens (A) - Laser rod - Piezoelectric lens (B) - Front mirror - Nonlinear optical element (LiNb0s ) ・Optical resonator・Optical filter・Light control optical system Fig. 1 Fig. 2 ν1 C1: Pumping frequency (0.53 μm) C2: Output frequency (0.96 μm)

Claims (1)

【特許請求の範囲】[Claims] 固体レーザ共振器のリアミラーとフロントミラーとの間
に焦点距離可変の圧電凹レンズを挿入し、レーザロッド
の熱レンズ効果を補償することを特徴とする圧電レンズ
挿入型固体レーザ共振器。
A piezoelectric lens-inserted solid-state laser resonator characterized in that a piezoelectric concave lens with a variable focal length is inserted between a rear mirror and a front mirror of the solid-state laser resonator to compensate for the thermal lens effect of the laser rod.
JP16370988A 1988-06-30 1988-06-30 Piezoelectric lens insertion type solid state laser resonator Pending JPH0212981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16370988A JPH0212981A (en) 1988-06-30 1988-06-30 Piezoelectric lens insertion type solid state laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16370988A JPH0212981A (en) 1988-06-30 1988-06-30 Piezoelectric lens insertion type solid state laser resonator

Publications (1)

Publication Number Publication Date
JPH0212981A true JPH0212981A (en) 1990-01-17

Family

ID=15779145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16370988A Pending JPH0212981A (en) 1988-06-30 1988-06-30 Piezoelectric lens insertion type solid state laser resonator

Country Status (1)

Country Link
JP (1) JPH0212981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458576A2 (en) * 1990-05-23 1991-11-27 Sony Corporation Laser apparatus
JP2001320114A (en) * 2000-05-10 2001-11-16 Inst Of Physical & Chemical Res Laser resonator
WO2003084009A1 (en) * 2002-03-29 2003-10-09 Kataoka Corporation Solid state laser device
EP2523277A1 (en) * 2011-05-09 2012-11-14 Trumpf Laser Marking Systems AG Laser resonator for generating frequency converted laser radiation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0458576A2 (en) * 1990-05-23 1991-11-27 Sony Corporation Laser apparatus
JP2001320114A (en) * 2000-05-10 2001-11-16 Inst Of Physical & Chemical Res Laser resonator
JP4613272B2 (en) * 2000-05-10 2011-01-12 独立行政法人理化学研究所 Laser resonator and adjustment method thereof
WO2003084009A1 (en) * 2002-03-29 2003-10-09 Kataoka Corporation Solid state laser device
EP2523277A1 (en) * 2011-05-09 2012-11-14 Trumpf Laser Marking Systems AG Laser resonator for generating frequency converted laser radiation
WO2012152583A1 (en) * 2011-05-09 2012-11-15 Trumpf Laser Marking Systems Ag Laser resonator for generating frequency-converted laser radiation
US9362704B2 (en) 2011-05-09 2016-06-07 Trumpf Laser Marking Systems Ag Laser resonator for generating frequency-converted laser radiation

Similar Documents

Publication Publication Date Title
US4847851A (en) Butt-coupled single transverse mode diode pumped laser
US4873692A (en) Pulsed tunable solid state laser
JP2753145B2 (en) Frequency doubling laser
KR950002069B1 (en) Second harmonic generator
WO2003007679B1 (en) High intensity and high power solid state laser amplifying system and method
US5577058A (en) Broadly tunable single longitudinal mode output produced from multi longitudinal mode seed source
US5068546A (en) Solid state laser operating with frequency doubling and stabilized by an external resonator
US8494016B2 (en) Mode locked laser system
KR100363237B1 (en) Method and apparatus for generating second harmonic
JP3013121B2 (en) Optical wavelength converter
JP3465478B2 (en) Optical parametric oscillator
EP0378061A2 (en) Apparatus and method for producing blue-green light radiation
JP2629621B2 (en) UV laser equipment
JPH0212981A (en) Piezoelectric lens insertion type solid state laser resonator
US5241551A (en) High average power laser which generates radiation at a wavelength near 530 nm
JPH09298331A (en) Selectable wavelength laser oscillator of variable wavelength laser
JPH03233986A (en) End face exciting type solid state laser oscillator
JP2903817B2 (en) Solid-state laser device
US5384796A (en) Second harmonic generating method and apparatus thereof
CN219917893U (en) Solid laser with bias selection function
JPH0567829A (en) Laser pulse compressor
JPH0595144A (en) Semiconductor laser-excited solid state laser
KR100284759B1 (en) Second harmonic generator
CN116581631A (en) Solid laser and intracavity optical polarizing element for same
JP2651632B2 (en) Optical wavelength converter