JPH0212979B2 - - Google Patents

Info

Publication number
JPH0212979B2
JPH0212979B2 JP57055483A JP5548382A JPH0212979B2 JP H0212979 B2 JPH0212979 B2 JP H0212979B2 JP 57055483 A JP57055483 A JP 57055483A JP 5548382 A JP5548382 A JP 5548382A JP H0212979 B2 JPH0212979 B2 JP H0212979B2
Authority
JP
Japan
Prior art keywords
component
weight
parts
compound
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57055483A
Other languages
Japanese (ja)
Other versions
JPS58173150A (en
Inventor
Koichi Sakai
Teruhisa Fukumoto
Yutaka Mikamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5548382A priority Critical patent/JPS58173150A/en
Publication of JPS58173150A publication Critical patent/JPS58173150A/en
Publication of JPH0212979B2 publication Critical patent/JPH0212979B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は難燃性樹脂組成物に関する。更に詳し
くは臭素化ビスフエノール類から得られるポリカ
ーボネートオリゴマーおよび特定の臭素化モノエ
ポキシ化合物を難燃剤として配合した難燃性樹脂
組成物に関する。 ポリエチレンテレフタレート、ポリブチレンテ
レフタレート等で代表される熱可塑性ポリエステ
ルは、機械特性、電気特性、熱的特性等の優れた
諸特性を利用して、電気電子部品、機械部品、自
動車部品等に広く利用されている。ところで、こ
れらの用途では上記特性以外にも難燃性が強く要
求されており、熱可塑性ポリエステルを難燃化し
ようとする試みは古くから行われてきた。 熱可塑性ポリエステルの難燃化には、主として
ハロゲン化合物の難燃剤が用いられているが、こ
れらの難燃剤は一般に耐熱性が低かつたり、樹脂
の着色若しくは物性低下を生じさせたり、または
加熱したときに樹脂の表面に析出(チヨーキン
グ)して、外観を悪くすると共に、電気部品の接
点を腐蝕したりする欠点があつた。 例えば、ポリエチレンテレフタレートに水酸
基、カルボキシル基のような活性基を有するハロ
ゲン化合物を配合するとポリマーの粘度低下が著
しく、またヘキサブロモベンゼン、デカブロモジ
フエニールエーテルの様に比較的低分子量のハロ
ゲン化合物を配合する射出成形時これら化合物の
昇華物が金型表面や成形品表面に付着し、商品価
値を大きく低下させる。 比較的分子量の高い、従つてチヨーキング現象
を起さない難燃剤としては、例えば臭素化ビスフ
エノール類から得られるポリカーボネートオリゴ
マー(例えば、特開昭48−52884号公報、特開昭
49−14568号公報等)や臭素化ビスフエノール類
から得られたジグリシジルエーテル化合物(例え
ば、特公昭53−18068号、特公昭53−11017号等)
が代表的である。前者については熱可塑性ポリエ
ステルに添加した場合、靭性の低下を伴うと共に
成形時の耐熱安定性を大巾に低下せしめる。 又、後者については成形性が今一つ充分ではな
く、特に成形温度が高い場合、着色又はゲル化を
伴うという欠点がある。 本発明者らは、かかる不都合のない難燃剤を見
出すべく鋭意検討した結果、臭素化ビスフエノー
ル類から得られたポリカーボネートオリゴマー特
定の臭素化モノエポキシ化合物ならびに特定の有
機金属化合物よりなる群から選ばれる化合物を特
定割合配合したものが、靭性が高く、耐熱性も改
良され、かつチヨーキングも起さない優れた難燃
性樹脂組成物であることを見出し、本発明に到達
したものである。 すなわち、本発明は (A) 熱可塑性ポリエステル、 (B) 一般式() 〔但し、式中R1はアルキル基または臭素原子
であり、pは0または1〜5の整数であり、m
は2以上の数及びnは0または1以上の数であ
つて2m+n40を満足する。〕 で示されるカーボネート単位を有する化合物 (C) 一般式() 〔但し、式中R2はアルキル基または臭素原子
であり、kは0または1〜5の整数であり、
R3,R4はそれぞれ水素またはメチル基であり、
qは平均重合度を表わし1〜10の数である。〕 で示されるモノエポキシ化合物 (D) ステアリン酸カルシウム、テレフタル酸ナト
リウム及びモンタン酸ナトリウムよりなる群か
ら選ばれた1種以上の化合物 からなる組成物であつて、(A)成分100重量部当り
(B)成分1〜50重量部及び(D)成分0.01〜2重量部で
あり、かつ(B)成分と(C)成分の重量比が1:0.01〜
1:5であることを特徴とする難燃性樹脂組成物
に関する。 本発明において用いる(A)成分の熱可塑性ポリエ
ステルとはジカルボン酸成分とジオール成分から
なるポリエステルまたはオキシカルボン酸成分若
しくはこれとジオール成分とからなるポリエステ
ルであり、特にテレフタル酸又は2,6―ナフタ
リンジカルボン酸成分と炭素数2〜6の脂肪族グ
リコール成分とから得られるポリアルキレンテレ
フタレート又はポリアルキレンナフタレートを好
ましく用いる。 当然のことではあるが上記ポリアルキレンテレ
フタレート又はポリアルキレンナフタレート以外
のポリエステル、例えばこれらに他の第3成分を
共重合したものや他のジカルボン酸又はジオール
の組み合せによるポリエステルも用いることがで
きる。これらのポリエステルのうち、好ましいの
はポリエチレンテレフタレート、ポリプロピレン
テレフタレート、ポリブチレンテレフタレート及
びこれらに他の第3成分を共重合したものであ
り、特に好ましいのはポリエチレンテレフタレー
トとポリブチレンテレフタレートである。 これらのポリエステルとしては固有粘度が0.4
以上、更には0.5以上のものが好ましい。本発明
において難燃剤として用いる(B)成分の化合物は臭
素化ビスフエノール類より得られるポリカーボネ
ートオリゴマー、すなわち一般式() 〔但し、式中R1はアルキル基または臭素原子で
あり、pは0または1〜5の整数であり、mは2
以上の数及びnは0または1以上の数であつて2
m+n40を満足する。〕 で示されるカーボネート単位を有する化合物であ
る。この化合物は、通常ハロゲン化ビスフエノー
ルAまたはこれとビスフエノールAの混合物、カ
ーボネート前駆体(例えばフオスゲン、ジフエニ
ルカーボネート等)およびフエノール化合物を反
応、重合することによつて得られる。m+nは該
化合物の平均重合度を表わし、2〜40の範囲が望
ましく、更に好適には3〜30である。難燃性とし
ての効果は、主としてハロゲン化ビスフエノール
成分すなわちmに依存するためm>nが望まし
い。 本発明において用いる(C)成分の臭素化エポキシ
化合物は一般式() 〔但し、式中R2はアルキル基または臭素原子で
あり、kは0または1〜5の整数であり、R3
R4はそれぞれ水素またはメチル基であり、qは
平均重合度であつて、1〜10の整数である。〕 で示されるモノエポキシ化合物であり、通常テト
ラブロモビスフエノールAとエピクロルヒドロリ
ン等のエピハロヒドリン又はメチルエピハドヒド
リンとより得られるブロモ化ビスフエノールAジ
グリシジルエーテルとブロモ化フエノール又はブ
ロモ化アルキルフエノールを、アルカリ金属の水
酸化物、ハロゲン化物あるいは第3級アミンなど
の触媒を用いて80〜25℃で加熱反応させて得るこ
とができる。又、出発物質としてブロモ化フエノ
ールのグリシジルエーテル又はブロモ化アルキル
フエノールグリシジルエーテルを用い、これにブ
ロモ化ビスフエノールAを付加させた後、エピハ
ロヒドリンと水酸化ナトリウム又は水酸化カリウ
ムを用いてグリシジルエーテル化反応又はブロモ
化ビスフエノールAジグリシジルエーテルと付加
反応させることによつても得ることができる。 一般式()において、R2としては臭素原子
が好ましい。kは1〜5、更には2〜3であるこ
とが好ましい。更にまたqは、平均重合度を表わ
しており、1〜10の範囲にあることが必要である
が、好ましくは1〜5である。 これらの難燃剤の添加量は、熱可塑ポリエステ
ル成分(A)100重量部当り(B)成分が1〜50重量部、
好ましくは3〜30重量部であり、(C)成分の添加量
は、(B)成分と(C)成分の重量比が1:0.01〜1:5
の範囲にある必要がある。更に好ましくは、(B)成
分と(C)成分の重量比が1:0.1〜1:2の範囲で
ある。この重量比において(C)成分の量が1:0.01
よりも少ないと本発明の目的である靭性および耐
熱性の向上が損なわれるので好ましくない。一方
(C)成分が1:5よりも大きくなつても特に靭性の
低下が認められ好ましくない。 本発明において用いる(D)成分はステアリン酸カ
ルシウム、テレフタル酸ナトリウム及びモンタン
酸ナトリウム等の有機酸金属塩である。 (D)成分の添加割合は、(A)成分100重量部当り
0.01〜2重量部、好ましくは0.02〜1重量部であ
る。(D)成分添加量が0.01重量部よりも少ない場合
には耐熱性改良効果が不充分であり、又2重量部
を越える場合にも耐熱性改良効果が認められず、
成形時に発泡等を拌つてくるため好ましくない。 本発明の難燃性樹脂組成物には、本発明の目的
を損なわない範囲で他の添加剤を添加することが
できる。特に本発明の組成物には難燃性を更に向
上せしめる目的で周期律表第b族金属の化合物
を添加することが望ましい。特にこの化合物とし
てはアンチモン化合物が好ましい。このアンチモ
ン化合物としては300℃未満で分解又は系中の他
の化合物と反応しないものであることが好まし
く、特に三酸化アンチモンが好ましい。その添加
量は、(B)成分および(C)成分の全重量100重量部に
対して10〜200重量部の範囲が適当である。 又、本発明の組成物には、更に樹脂の溶融安定
性を向上せしめるためにリン化合物を添加せしめ
ることが望ましい。リン化合物としては、リン
酸、リン酸トリメチル、リン酸ジメチルエチル、
リン酸トリエチル、リン酸トリイソプロピル、リ
ン酸トリブチル、リン酸トリフエニル、リン酸ト
リベンジル、リン酸トリシクロヘキシル等の如き
リン酸エステル、亜リン酸、亜リン酸トリエチ
ル、亜リン酸トリメチル、亜リン酸トリエチル、
亜リン酸トリフエニル、トリス(2,4―ジ―t
―ブチルフエニル)ホスフアイト等の如き亜リン
酸エステル;フエニルフオスフオン酸、フエニル
フオスフオン酸フエニル等の如きフオスフオン酸
誘導体等を例示できる。これらのリン化合物は1
種のみを用いても2種以上を用いてもよい。リン
化合物の添加量は(D)成分1重量部あたり0.01〜5
重量部の範囲が望ましい。これらリン化合物の添
加は、本発明の組成物を製造する際に同時に添加
することも可能であるが、特に好ましい方法は
(A),(B),(C),(D)の各成分をあらかじめ加熱溶融に
より予備的に混合したのち、リン化合物を添加す
る方法である。 更に、本発明の難燃性樹脂組成物に配合可能な
添加剤としては、ガラス繊維、カーボン繊維、金
属繊維等の如き繊維状充填剤や各種の無機充填
剤、核剤、滑剤、酸化防止剤、紫外線吸収剤、着
色剤、帯電防止剤を挙げることができる。 更に本発明の目的を損わない範囲で他の熱可塑
性樹脂を含有せしめてもよい。これらの熱可塑性
樹脂の例としてはポリエチレン、ポリプロピレ
ン、イオン性共重合体、エチレン―酢ビ共重合
体、エチレン―アクリル酸エステル共重合体、ポ
リスチレン、アクリロニトリル―スチレン共重合
体、アクリロニトリル―ブタジエン―スチレン共
重合体、ポリアミド等を挙げることが出来るが、
本発明の目的である靭性向上を更にはかるために
は各種熱可塑性のエラストマー添加が効果的であ
る。熱可塑性のエラストマーとしては例えば、ポ
リウレタンエラストマー、ポリエステルエラスト
マー、アクリル酸エステル系エラストマー、オレ
フイン系エラストマーを挙げることができる。 本発明の組成物は種々の方法で製造しうる。例
えば、各成分を共に押出成形機中に入れて成形用
ペレツトを作る。あるいは各成分をドライブレン
ドして得られた組成物を直接射出成形またはトラ
ンスフアー成形により成形する等である。 以下実施例により本発明を詳述する。なお例中
の部は重量部である。またポリエステルの固有粘
度はオルソクロルフエノールを溶媒として35℃で
測定したものである。 実施例1〜4及び比較例1〜5 固有粘度1.10のポリブチレンテレフタレート
100重量部当り下記に示す構造の(B)成分および(C)
成分、(D)成分のステアリン酸カルシウムならびに
三酸化アンチモンを表1に示した割合で配合し、
65mmφのベント式押出機を用いてシリンダー温度
240℃で溶融混合押出し、ペレツトを得た。 得られたペレツトから射出成形機を用い、シリ
ンダー温度230℃および260℃で表1に示した試験
法に適した試験片を作成し、それぞれ評価した。
その結果を表1に示す。 〔B〕成分: 一般式 (B1);上記一般式においてm=5,n=0 (B2);上記一般式においてm=5,n=1 〔C〕成分: (Br含有量52.5%、軟化点102℃) 尚、比較例として〔C〕成分の難燃剤の代りに
テトラブロモビスフエノールAジグリシジルエー
テル(エポキシ当量400)を用いた例も表1に示
した。 表1の結果から、本発明の組成物は優れた靭性
ならびに耐熱安定性を有していることが明らかで
ある。
The present invention relates to flame retardant resin compositions. More specifically, the present invention relates to a flame-retardant resin composition containing a polycarbonate oligomer obtained from brominated bisphenols and a specific brominated monoepoxy compound as a flame retardant. Thermoplastic polyesters, represented by polyethylene terephthalate, polybutylene terephthalate, etc., are widely used in electrical and electronic parts, mechanical parts, automobile parts, etc. due to their excellent mechanical, electrical, and thermal properties. ing. Incidentally, in addition to the above properties, flame retardancy is also strongly required for these uses, and attempts to make thermoplastic polyester flame retardant have been made for a long time. Halogen compound flame retardants are mainly used to make thermoplastic polyester flame retardant, but these flame retardants generally have low heat resistance, cause coloring or deterioration of the physical properties of the resin, or are difficult to heat when heated. It sometimes deposits on the surface of the resin (cheeking), resulting in poor appearance and corrosion of the contacts of electrical parts. For example, when a halogen compound having an active group such as a hydroxyl group or a carboxyl group is blended into polyethylene terephthalate, the viscosity of the polymer decreases significantly, and when a halogen compound with a relatively low molecular weight such as hexabromobenzene or decabromodiphenyl ether is blended. During injection molding, sublimated products of these compounds adhere to the surface of the mold and molded product, greatly reducing the product value. Examples of flame retardants that have a relatively high molecular weight and therefore do not cause the yoking phenomenon include polycarbonate oligomers obtained from brominated bisphenols (e.g., JP-A-48-52884, JP-A-Sho 48-52884;
49-14568, etc.) and diglycidyl ether compounds obtained from brominated bisphenols (e.g., Japanese Patent Publication No. 53-18068, Japanese Patent Publication No. 53-11017, etc.)
is typical. When the former is added to a thermoplastic polyester, it is accompanied by a decrease in toughness and greatly reduces the heat resistance stability during molding. Moreover, the latter has the disadvantage that its moldability is not quite satisfactory, and that it is accompanied by coloring or gelation, especially when the molding temperature is high. As a result of intensive studies to find flame retardants free from such disadvantages, the present inventors found that polycarbonate oligomers obtained from brominated bisphenols, specific brominated monoepoxy compounds, and specific organometallic compounds were selected from the group consisting of polycarbonate oligomers obtained from brominated bisphenols. The present invention was achieved by discovering that a compound containing a specific proportion of the compound is an excellent flame-retardant resin composition that has high toughness, improved heat resistance, and does not cause yoking. That is, the present invention comprises (A) thermoplastic polyester, (B) general formula () [However, in the formula, R 1 is an alkyl group or a bromine atom, p is 0 or an integer of 1 to 5, and m
is a number of 2 or more, and n is a number of 0 or 1 or more, satisfying 2m+n40. ] Compound (C) having a carbonate unit represented by general formula () [However, in the formula, R 2 is an alkyl group or a bromine atom, k is 0 or an integer of 1 to 5,
R 3 and R 4 are each hydrogen or methyl group,
q represents the average degree of polymerization and is a number from 1 to 10. ] Monoepoxy compound (D) A composition consisting of one or more compounds selected from the group consisting of calcium stearate, sodium terephthalate, and sodium montanate, per 100 parts by weight of component (A).
1 to 50 parts by weight of component (B) and 0.01 to 2 parts by weight of component (D), and the weight ratio of component (B) to component (C) is 1:0.01 to
The present invention relates to a flame retardant resin composition characterized in that the ratio is 1:5. The thermoplastic polyester of component (A) used in the present invention is a polyester consisting of a dicarboxylic acid component and a diol component, or a polyester consisting of an oxycarboxylic acid component or this and a diol component, particularly terephthalic acid or 2,6-naphthalene dicarboxylic acid component. Polyalkylene terephthalate or polyalkylene naphthalate obtained from an acid component and an aliphatic glycol component having 2 to 6 carbon atoms is preferably used. Of course, polyesters other than the above-mentioned polyalkylene terephthalate or polyalkylene naphthalate can also be used, such as polyesters obtained by copolymerizing these with other third components, or polyesters obtained by combining other dicarboxylic acids or diols. Among these polyesters, preferred are polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and those copolymerized with another third component, and particularly preferred are polyethylene terephthalate and polybutylene terephthalate. These polyesters have an intrinsic viscosity of 0.4
Above, more preferably 0.5 or more. The compound (B) component used as a flame retardant in the present invention is a polycarbonate oligomer obtained from brominated bisphenols, that is, the general formula () [However, in the formula, R 1 is an alkyl group or a bromine atom, p is 0 or an integer of 1 to 5, and m is 2
The above numbers and n are 0 or 1 or more, and 2
Satisfies m+n40. ] It is a compound having a carbonate unit shown in the following. This compound is usually obtained by reacting and polymerizing halogenated bisphenol A or a mixture of this and bisphenol A, a carbonate precursor (for example, phosgene, diphenyl carbonate, etc.), and a phenol compound. m+n represents the average degree of polymerization of the compound, and is preferably in the range of 2 to 40, more preferably 3 to 30. Since the flame retardant effect mainly depends on the halogenated bisphenol component, that is, m, it is desirable that m>n. The brominated epoxy compound of component (C) used in the present invention has the general formula () [However, in the formula, R 2 is an alkyl group or a bromine atom, k is 0 or an integer from 1 to 5, and R 3 ,
R 4 is hydrogen or a methyl group, and q is an average degree of polymerization and is an integer from 1 to 10. ] It is a monoepoxy compound represented by brominated bisphenol A diglycidyl ether and brominated phenol or brominated alkyl, which is usually obtained from tetrabromobisphenol A and epihalohydrin such as epichlorohydrin or methyl epihadohydrin. Phenol can be obtained by heating reaction at 80 to 25°C using a catalyst such as an alkali metal hydroxide, halide, or tertiary amine. Furthermore, using brominated phenol glycidyl ether or brominated alkylphenol glycidyl ether as a starting material, brominated bisphenol A is added thereto, and then a glycidyl etherification reaction is carried out using epihalohydrin and sodium hydroxide or potassium hydroxide. Alternatively, it can also be obtained by addition reaction with brominated bisphenol A diglycidyl ether. In the general formula (), R 2 is preferably a bromine atom. It is preferable that k is 1-5, more preferably 2-3. Furthermore, q represents the average degree of polymerization and must be in the range of 1 to 10, preferably 1 to 5. The amount of these flame retardants added is 1 to 50 parts by weight of component (B) per 100 parts by weight of thermoplastic polyester component (A).
Preferably it is 3 to 30 parts by weight, and the amount of component (C) added is such that the weight ratio of component (B) to component (C) is 1:0.01 to 1:5.
must be within the range. More preferably, the weight ratio of component (B) to component (C) is in the range of 1:0.1 to 1:2. In this weight ratio, the amount of component (C) is 1:0.01
If the amount is less than 1, the objective of the present invention, which is to improve toughness and heat resistance, will be impaired, which is not preferable. on the other hand
Even if the ratio of component (C) exceeds 1:5, it is not preferable because a decrease in toughness is observed. Component (D) used in the present invention is an organic acid metal salt such as calcium stearate, sodium terephthalate, and sodium montanate. The addition ratio of component (D) is per 100 parts by weight of component (A).
The amount is 0.01 to 2 parts by weight, preferably 0.02 to 1 part by weight. (D) If the amount of component added is less than 0.01 part by weight, the heat resistance improving effect is insufficient, and if it exceeds 2 parts by weight, no heat resistance improving effect is observed.
This is not preferable because it causes foaming etc. during molding. Other additives can be added to the flame-retardant resin composition of the present invention as long as they do not impair the purpose of the present invention. In particular, it is desirable to add a compound of a group B metal of the periodic table to the composition of the present invention for the purpose of further improving flame retardancy. Particularly preferred as this compound is an antimony compound. The antimony compound is preferably one that does not decompose or react with other compounds in the system at temperatures below 300°C, and antimony trioxide is particularly preferred. The amount added is suitably in the range of 10 to 200 parts by weight based on 100 parts by weight of the total weight of components (B) and (C). Further, it is desirable to add a phosphorus compound to the composition of the present invention in order to further improve the melt stability of the resin. Phosphorus compounds include phosphoric acid, trimethyl phosphate, dimethylethyl phosphate,
Phosphate esters such as triethyl phosphate, triisopropyl phosphate, tributyl phosphate, triphenyl phosphate, tribenzyl phosphate, tricyclohexyl phosphate, etc., phosphorous acid, triethyl phosphite, trimethyl phosphite, triethyl phosphite ,
Triphenyl phosphite, tris(2,4-di-t)
Phosphite esters such as -butylphenyl) phosphite; phosphoric acid derivatives such as phenylphosphonic acid, phenyl phenylphosphonate, and the like. These phosphorus compounds are 1
Only seeds may be used or two or more types may be used. The amount of phosphorus compound added is 0.01 to 5 parts by weight of component (D).
A range of parts by weight is desirable. Although it is possible to add these phosphorus compounds at the same time when producing the composition of the present invention, a particularly preferred method is
This is a method in which the components (A), (B), (C), and (D) are preliminarily mixed by heating and melting, and then the phosphorus compound is added. Furthermore, additives that can be blended into the flame-retardant resin composition of the present invention include fibrous fillers such as glass fibers, carbon fibers, and metal fibers, various inorganic fillers, nucleating agents, lubricants, and antioxidants. , ultraviolet absorbers, colorants, and antistatic agents. Furthermore, other thermoplastic resins may be contained within a range that does not impair the purpose of the present invention. Examples of these thermoplastic resins include polyethylene, polypropylene, ionic copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, polystyrene, acrylonitrile-styrene copolymers, and acrylonitrile-butadiene-styrene. Examples include copolymers, polyamides, etc.
In order to further improve the toughness, which is the objective of the present invention, it is effective to add various thermoplastic elastomers. Examples of thermoplastic elastomers include polyurethane elastomers, polyester elastomers, acrylic ester elastomers, and olefin elastomers. The compositions of the invention can be manufactured in a variety of ways. For example, the components may be placed together in an extruder to form moldable pellets. Alternatively, the composition obtained by dry blending each component is molded by direct injection molding or transfer molding. The present invention will be explained in detail with reference to Examples below. Note that parts in the examples are parts by weight. Further, the intrinsic viscosity of polyester was measured at 35°C using orthochlorophenol as a solvent. Examples 1 to 4 and Comparative Examples 1 to 5 Polybutylene terephthalate with an intrinsic viscosity of 1.10
Component (B) and (C) with the structure shown below per 100 parts by weight
Ingredients: Calcium stearate and antimony trioxide (component (D)) are blended in the proportions shown in Table 1,
Cylinder temperature using a 65mmφ vented extruder
Pellets were obtained by melt mixing and extrusion at 240°C. Test pieces suitable for the test methods shown in Table 1 were prepared from the pellets obtained using an injection molding machine at cylinder temperatures of 230°C and 260°C, and each was evaluated.
The results are shown in Table 1. [B] Component: General formula (B 1 ); m=5, n=0 in the above general formula (B 2 ); m=5, n=1 in the above general formula [C] component: (Br content 52.5%, softening point 102°C) Table 1 also shows an example in which tetrabromobisphenol A diglycidyl ether (epoxy equivalent 400) was used instead of the flame retardant component [C] as a comparative example. . From the results in Table 1, it is clear that the composition of the present invention has excellent toughness and heat resistance stability.

【表】 実施例5〜12及び比較例6〜8 固有粘度1.03のポリブチレンテレフタレート
100重量部に、実施例1〜4において使用した難
燃剤(B1)、難燃剤(C)、三酸化アンチモン(5重
量部)および表2に示す添加剤(D)を配合し、65mm
φ押出機により射出成形用ペレツトを作成した。
このペレツトを用いて射出成形し、物性を測定し
た。又、一部組成物に対しては表2に示す安定剤
をペレツト表面にまぶしたのち射出成形した。こ
の結果を表2に示す。 表2から本発明の難燃組成物は優れた靭性、耐
熱安定性を有していることが明らかである。特に
本発明組成物にリン化合物を併用した場合とりわ
け耐熱安定性の向上効果が認められる。
[Table] Examples 5 to 12 and Comparative Examples 6 to 8 Polybutylene terephthalate with an intrinsic viscosity of 1.03
The flame retardant (B 1 ) used in Examples 1 to 4, the flame retardant (C), antimony trioxide (5 parts by weight), and the additive (D) shown in Table 2 were blended into 100 parts by weight, and a 65 mm
Pellets for injection molding were prepared using a φ extruder.
This pellet was injection molded and its physical properties were measured. In addition, some of the compositions were injection molded after the pellet surface was sprinkled with the stabilizer shown in Table 2. The results are shown in Table 2. It is clear from Table 2 that the flame retardant composition of the present invention has excellent toughness and heat resistance stability. In particular, when a phosphorus compound is used in combination with the composition of the present invention, the effect of improving heat resistance stability is particularly observed.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) 熱可塑性ポリエステル、 (B) 一般式() [但し、式中R1はアルキル基または臭素原子
であり、pは0または1〜5の整数であり、m
は2以上の数及びnは0または1以上の数であ
つて2m+n40を満足する。] で示されるカーボネート単位を有する化合物、 (C) 一般式() [但し、式中R2はアルキル基または臭素原子
であり、kは0または1〜5の整数であり、
R3,R4はそれぞれ水素またはメチル基であり、
qは平均重合度を表わし1〜10の数である。] で示されるモノエポキシ化合物、及び (D) ステアリン酸カルシウム、テレフタル酸ナト
リウム及びモンタン酸ナトリウムよりなる群か
ら選ばれた1種以上の化合物、 よりなる組成物であつて、(A)成分100重量部当り、
(B)成分1〜50重量部及び(D)成分0.01〜2重量部で
あり、かつ(B)成分と(C)成分の重量比が1:0.01〜
1:5であることを特徴とする難燃性樹脂組成
物。
[Claims] 1 (A) Thermoplastic polyester, (B) General formula () [However, in the formula, R 1 is an alkyl group or a bromine atom, p is 0 or an integer of 1 to 5, and m
is a number of 2 or more, and n is a number of 0 or 1 or more, satisfying 2m+n40. ] A compound having a carbonate unit represented by (C) General formula () [However, in the formula, R 2 is an alkyl group or a bromine atom, k is 0 or an integer from 1 to 5,
R 3 and R 4 are each hydrogen or methyl group,
q represents the average degree of polymerization and is a number from 1 to 10. ] A monoepoxy compound represented by: and (D) one or more compounds selected from the group consisting of calcium stearate, sodium terephthalate and sodium montanate, the composition comprising: 100 parts by weight of component (A) Hit,
1 to 50 parts by weight of component (B) and 0.01 to 2 parts by weight of component (D), and the weight ratio of component (B) to component (C) is 1:0.01 to
A flame retardant resin composition characterized in that the ratio is 1:5.
JP5548382A 1982-04-05 1982-04-05 Flame retardant resin composition Granted JPS58173150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5548382A JPS58173150A (en) 1982-04-05 1982-04-05 Flame retardant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5548382A JPS58173150A (en) 1982-04-05 1982-04-05 Flame retardant resin composition

Publications (2)

Publication Number Publication Date
JPS58173150A JPS58173150A (en) 1983-10-12
JPH0212979B2 true JPH0212979B2 (en) 1990-04-03

Family

ID=12999863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5548382A Granted JPS58173150A (en) 1982-04-05 1982-04-05 Flame retardant resin composition

Country Status (1)

Country Link
JP (1) JPS58173150A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451380B2 (en) * 2006-05-15 2014-03-26 ブロマイン コンパウンズ リミテッド Flame retardant composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523644A (en) * 1975-06-25 1977-01-12 Teijin Ltd Process for manufacturing hollow molded articles
JPS5258752A (en) * 1975-11-11 1977-05-14 Teijin Ltd Flame retardant polyester resin composition
JPS5632538A (en) * 1979-08-24 1981-04-02 Hitachi Chem Co Ltd Flame-retardant composition
JPS5693750A (en) * 1979-12-27 1981-07-29 Mitsubishi Rayon Co Ltd Resin composition
JPS575744A (en) * 1980-06-13 1982-01-12 Toray Ind Inc Flame retardant polyester composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523644A (en) * 1975-06-25 1977-01-12 Teijin Ltd Process for manufacturing hollow molded articles
JPS5258752A (en) * 1975-11-11 1977-05-14 Teijin Ltd Flame retardant polyester resin composition
JPS5632538A (en) * 1979-08-24 1981-04-02 Hitachi Chem Co Ltd Flame-retardant composition
JPS5693750A (en) * 1979-12-27 1981-07-29 Mitsubishi Rayon Co Ltd Resin composition
JPS575744A (en) * 1980-06-13 1982-01-12 Toray Ind Inc Flame retardant polyester composition

Also Published As

Publication number Publication date
JPS58173150A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
EP0004363B1 (en) Flame retarding thermoplastic polyester composition
EP0057415B1 (en) Polyester resin composition
US4417018A (en) Flame-retardant resin composition
EP0516351B1 (en) Flame-retardant polybutylene terephthalate resin composition
JPS59202240A (en) Flame-retardant thermoplastic resin composition
JP3042706B2 (en) Poly (1,4-cyclohexylene dimethylene terephthalate) with improved melt stability
JP2004277706A (en) Polylactic acid-containing plastic composition and plastic molded product
US20050070647A1 (en) Flame retardant composition process for producing the same, flame-retardant resin composition, and molded object thereof
JP2003012781A (en) Polybutylene terephthalate resin and molded article
JPS5937022B2 (en) Heat-resistant resin composition
JPH0240099B2 (en)
JPH0212979B2 (en)
JP2004075756A (en) Polybutylene terephthalate resin composition and molded article
EP0704478B1 (en) Flame-retardant polyester-type resin composition
JPH0651829B2 (en) Polybutylene terephthalate resin composition
JPH03124761A (en) Flame-retardant resin composition
KR101711299B1 (en) Halogen-free flame retardant polyester resin compositions and product by using the same
JP3246627B2 (en) Flame retardant polycarbonate resin composition
JPH0120185B2 (en)
KR100430193B1 (en) Polybutylene Terephthalate Resin Composition
JPH027972B2 (en)
JPH0493349A (en) Flame-retardant resin composition
JPH0616912A (en) Polyester resin composition
JP2620565B2 (en) Flame retardant polyethylene terephthalate resin composition
JPS6318972B2 (en)