JPH02129097A - Operative substance for magnetic freezer - Google Patents

Operative substance for magnetic freezer

Info

Publication number
JPH02129097A
JPH02129097A JP63280502A JP28050288A JPH02129097A JP H02129097 A JPH02129097 A JP H02129097A JP 63280502 A JP63280502 A JP 63280502A JP 28050288 A JP28050288 A JP 28050288A JP H02129097 A JPH02129097 A JP H02129097A
Authority
JP
Japan
Prior art keywords
magnetic
ions
single crystal
garnet
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63280502A
Other languages
Japanese (ja)
Other versions
JP2694545B2 (en
Inventor
Takenori Numazawa
健則 沼澤
Hideo Kimura
秀夫 木村
Michinori Sato
佐藤 充典
Hiroshi Maeda
弘 前田
Masaru Sakamoto
勝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Eneos Corp
Original Assignee
National Research Institute for Metals
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nippon Mining Co Ltd filed Critical National Research Institute for Metals
Priority to JP63280502A priority Critical patent/JP2694545B2/en
Publication of JPH02129097A publication Critical patent/JPH02129097A/en
Application granted granted Critical
Publication of JP2694545B2 publication Critical patent/JP2694545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To dilute the magnetic interaction of a garnet type single crystal to lower the transition temperature thereof and thereby to enable to efficiently realize a superlow temperature of <=1K by substituting a part of the magnetic ions of the garnet type single crystal containing the magnetic ions of rare earth elements. CONSTITUTION:A garnet single crystal represented by a composition formula: (R1-xDx)3B6O12 (R is one kind or more of rare earth element magnetic ions such as Gd, Dy and Er; D is one kind or more of non-magnetic ions such as Y and La; B is Ga and/or Al; 0.1<=x<=0.70) is used as an operative substance for magnetic freezers useful in space or in other extremely low temperature environments.

Description

【発明の詳細な説明】 本発明は、IK以下の、極低温環境を効率よく生成する
磁気冷凍機用の作業物質に関するものであり、特には希
土類磁性イオン(Gd、Dy等)を含むガーネットを非
磁性イオン(Y、La等)により希釈したことを特徴と
する磁気冷凍作業物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a working material for a magnetic refrigerator that efficiently generates an extremely low temperature environment below IK. The present invention relates to a magnetic refrigeration material that is diluted with non-magnetic ions (Y, La, etc.).

本発明磁気冷凍作業物質は宇宙その他の極限環境を含め
た広い分野での利用が期待される。
The magnetic refrigeration material of the present invention is expected to be used in a wide range of fields including space and other extreme environments.

L&立且l 磁気冷凍法は、磁性体を強磁界中に置き、磁気スピンを
整列状態にすると発熱が起こり、この熱を取り去った後
磁界を除いて磁気スピンをかく乱状態とすると吸熱が起
こり、外部の冷凍対象物から熱を奪い冷凍作用を示す現
象を原理とするものである。磁気冷凍法は、従来からの
気体圧縮−膨張冷凍法に比べて、冷凍効率が高いこと、
圧縮機が不要なこと、小型軽量化等の多くの優れた特徴
を有しており、特に現在では絶対零度に近い超低温の環
境を生成するシステムとして、宇宙その他の極限環境を
含めた広い分野での利用が期待されている。
In the magnetic freezing method, heat is generated when a magnetic material is placed in a strong magnetic field and the magnetic spins are aligned, and when this heat is removed and the magnetic field is removed to disturb the magnetic spins, heat absorption occurs. It is based on the phenomenon of removing heat from external objects to be frozen and exhibiting a freezing effect. Magnetic refrigeration has higher refrigeration efficiency than conventional gas compression-expansion refrigeration.
It has many excellent features such as no need for a compressor, small size and light weight, and is currently being used in a wide range of fields including space and other extreme environments as a system that generates ultra-low temperature environments close to absolute zero. is expected to be used.

しかしながら、IK以下の生成を目標とした場合、従来
用いられて来たカリミ重−バン等の磁性イオンを含んだ
水和物は、いずれも吸・脱水による変質等化学的安定性
に乏しい為、取扱いが極めて困難である上、熱伝導率が
悪(、カルノーサイクルによる連続的な磁気冷凍サイク
ルを実現するための致命的な障害となっていた。
However, when the goal is to produce a product with an IK or less, the conventionally used hydrates containing magnetic ions, such as Karimi heavy vanes, have poor chemical stability such as deterioration due to absorption and dehydration. In addition to being extremely difficult to handle, it had poor thermal conductivity (which was a fatal obstacle to realizing a continuous magnetic refrigeration cycle using the Carnot cycle).

1に以下の生成には、磁性イオンを含み、それらの磁気
的相互作用が弱く、転移温度の低い磁性体が要求される
。希土類の磁性イオン(Gd。
1. The following generation requires a magnetic material that contains magnetic ions, has weak magnetic interaction, and has a low transition temperature. Rare earth magnetic ions (Gd.

Dy等)を含むGGGやDAGとして知られるガーネッ
ト型単結晶は磁気熱量効果が大きく熱伝導率が高いこと
で知られており、1.8にや4.2Kを生成する磁気冷
凍に用いられてはきたが、これらは常磁性から反強磁性
への転移温度が高いために、IK以下のカルノーサイク
ルの実行には不十分である。
Garnet-type single crystals known as GGG and DAG, which contain Dy, etc.), are known to have a large magnetocaloric effect and high thermal conductivity, and are used in magnetic refrigeration that generates between 1.8 and 4.2 K. However, these materials have a high transition temperature from paramagnetism to antiferromagnetism, so they are insufficient to carry out the Carnot cycle below IK.

また、固体レーザ用材料として知られているEr又はN
dのイオンをドープしたYAG (Y−AIBOll)
単結晶を用いた断熱消磁の報告も為されているが、冷凍
機を考えた時その冷却能力の低さが問題であった。即ち
、この場合は、非磁性体のYAG99%に対し、Er、
Nd等の磁性体を1%添加するものであるが、その結果
として到達温度は0°Kに近く、申し分ないが、冷却能
力値が極めて低い値であった。
In addition, Er or N, which is known as a material for solid-state lasers,
YAG doped with d ions (Y-AIBOll)
There have been reports of adiabatic demagnetization using single crystals, but when considering refrigerators, their low cooling capacity was a problem. That is, in this case, Er,
Although 1% of a magnetic material such as Nd was added, the temperature reached was close to 0°K, which was satisfactory, but the cooling capacity value was extremely low.

が       よ   と   る 近時、宇宙その他の極限環境を含めた広い分野での応用
技術への関心が高まりつつある。それに伴ない、磁気冷
凍は非常に重要な手段となっており、上記の問題点を解
決し、取扱いが容易なことに加えて、熱伝導率が良(、
十分な冷凍能力を得ることのできる、1に以下の超低温
を生成可能な磁気冷凍作業物質の開発が切望されている
In recent years, there has been increasing interest in applied technologies in a wide range of fields, including space and other extreme environments. Along with this, magnetic refrigeration has become an extremely important means, and in addition to solving the above problems and being easy to handle, it also has good thermal conductivity (
There is a strong need for the development of a magnetic refrigeration material that can generate ultra-low temperatures of 1 or less and has sufficient refrigeration capacity.

本発明の目的は、上記の要求を満たす新規な磁気冷凍作
業物質を開発することである。
The aim of the present invention is to develop a new magnetic refrigeration working material that meets the above requirements.

占  ゛するための 既に述べたように、希土類の磁性イオンを含むガーネッ
ト型単結晶は磁気熱量効果が大きく熱伝導率が高いこと
で知られており、1.8にや4.2Kを生成する磁気冷
凍に用いられて来た。しかし、これは常磁性から反強磁
性への転移温度が高いために、IK以下の超低温の創出
は困難視されていた。しかし、本発明者等は、その固有
の優れた性能に注目し、その転移温度の低減化を試みる
べく研究を重ねた結果、希土類の磁性イオンを含むガー
ネット型単結晶の磁性イオンの一部を非磁性イオン(Y
、La等)で置換して磁気的相互作用を希釈することに
より、ここに初めて転移温度を低下させ、IK以下の超
低温を実現することに成功した。
As mentioned above, garnet-type single crystals containing rare earth magnetic ions are known to have a large magnetocaloric effect and high thermal conductivity, generating between 1.8 and 4.2 K. It has been used for magnetic refrigeration. However, since the transition temperature from paramagnetism to antiferromagnetism is high, it has been considered difficult to create an ultra-low temperature below IK. However, the inventors of the present invention focused on its inherent excellent performance, and as a result of repeated research in an attempt to reduce its transition temperature, the present inventors discovered that some of the magnetic ions in garnet-type single crystals, including rare earth magnetic ions, Non-magnetic ion (Y
, La, etc.) to dilute the magnetic interaction, we succeeded for the first time in lowering the transition temperature and achieving an ultra-low temperature below IK.

この知見に基づいて、本発明は、 組成式(R+−D−) s Bi 01*(R=Gd、
Dy、Er等の1種以上の希土類磁性イオン I)=+Y、La等の1種以上の非磁性イオンB=Ga
及び又はA1 で表わされ、且つXの値が 0、10≦x≦0.70 の範囲にある) を有する、希土類磁性イオンを含むガーネット単結晶を
非磁性イオンにより希釈したことを特徴とする磁気冷凍
作業物質を堤供する。
Based on this knowledge, the present invention has the following compositional formula (R+-D-) s Bi 01* (R=Gd,
One or more rare earth magnetic ions such as Dy and Er I) = +One or more non-magnetic ions such as Y and La B = Ga
and or A1, and the value of Provide magnetic refrigeration working materials.

1肚立^盗工f1 本発明で使用される磁気冷凍方式自体は周知である。第
3図の原理図に示すように、従来の方式と同様に磁気冷
凍作業物質1に吸熱、排熱用熱スィッチ2.3を取り付
け、マグネット4によってカルノーサイクルを制御する
。カルノーサイクルの実行に対しては作業物質の高熱伝
導性が要求される。
The magnetic refrigeration system itself used in the present invention is well known. As shown in the principle diagram of FIG. 3, a thermal switch 2.3 for absorbing and exhausting heat is attached to the magnetically refrigerated material 1, and the Carnot cycle is controlled by the magnet 4, as in the conventional method. High thermal conductivity of the working material is required for the implementation of the Carnot cycle.

本発明で用いる材料は、(R,、D、)、 B、0.2
の組成を有するガーネット型単結晶である。ここで、R
=Gd、Dy、Er、Ce、Nd、Sm。
The material used in the present invention is (R,,D,), B, 0.2
It is a garnet type single crystal with a composition of Here, R
=Gd, Dy, Er, Ce, Nd, Sm.

Eu、Tb、Ho等の少なくとも1種の希土類磁性イオ
ン D=Y、La等の少なくとも1種の非磁性イオン B=Ga及び又はAI 0.10≦x≦0.70 を表わす。
At least one rare earth magnetic ion such as Eu, Tb, Ho, etc. D=Y, at least one non-magnetic ion such as La, B=Ga, and/or AI 0.10≦x≦0.70.

希土類の磁性イオンを含むガーネット型単結晶は磁気熱
量効果が大きく熱伝導率が高いため、従来1.8にや4
.2Kを生成する磁気冷凍に用いられて来たものである
。しかし常磁性から反強磁性への転移温度が高い為、従
来IK以下の生成は困難とされてきた0本発明は、磁性
イオンの一部を非磁性イオンで置換することによって磁
気的相互作用を希釈し、転移温度を低下させることによ
り、IK以下の生成を可能としたものである。
Garnet-type single crystals containing rare earth magnetic ions have a large magnetocaloric effect and high thermal conductivity.
.. It has been used in magnetic refrigeration to generate 2K. However, due to the high transition temperature from paramagnetism to antiferromagnetism, it has been considered difficult to generate IK or less. By diluting it and lowering the transition temperature, it is possible to produce it at a temperature below IK.

上記組成式のXは、制限範囲未満にすると、十分な転移
温度の低下が得られず、IK以下の生成は困難であり、
他方上記の制限範囲を超えると十分な冷凍能力を得るこ
とができないので上記の範囲内で選ぶことが必要である
。本発明磁気冷凍用作業物質は、適正な希釈度Xの選択
により0.2〜0.5にの最低到達温度と、15以上の
冷凍能力を提供する。
If X in the above compositional formula is less than the limited range, a sufficient reduction in the transition temperature will not be obtained and it will be difficult to produce a temperature below IK,
On the other hand, if it exceeds the above-mentioned limit range, sufficient refrigerating capacity cannot be obtained, so it is necessary to select it within the above-mentioned range. The working material for magnetic refrigeration of the present invention provides a minimum temperature of 0.2 to 0.5 and a refrigeration capacity of 15 or more by selecting an appropriate dilution X.

本ガーネット単結晶の熱伝導率はGGGとほぼ同様で、
4にで無酸素銅のl/10程度とカルノーサイクルの実
行に対して必要とされる十分の高熱伝導性を有している
The thermal conductivity of this garnet single crystal is almost the same as GGG,
It has a high thermal conductivity of about 1/10 that of oxygen-free copper, which is sufficient for carrying out the Carnot cycle.

化学的にも安定であり吸湿性もないので取扱いは従来に
比べて極めて容易になる。
It is chemically stable and non-hygroscopic, making handling much easier than before.

また冷凍能力も組成式制限範囲内であれば、熱伝導率の
値が従来のものに比べて10から100倍程度大きいの
で、希釈による冷凍能力の低下分、サイクルの高速化に
より補うことが可能となり、トータルとしての冷凍能力
は従来のものと同程度以上を得ることができる。
In addition, if the refrigerating capacity is within the composition formula limit, the thermal conductivity value is about 10 to 100 times higher than that of conventional ones, so the decrease in refrigerating capacity due to dilution can be compensated for by speeding up the cycle. Therefore, the total refrigerating capacity can be equivalent to or higher than that of the conventional system.

本発明に従う(R,一つり。)i B101sの組成を
有するガーネット型単結晶は、磁性及び非磁性種それぞ
れの酸化物原料粉な混合(ボールミル等)し、金型ブレ
ス、CIP等で成形後、焼結(1100〜1550℃)
し、チョクラルスキー法等により単結晶とすることによ
り製造される。
A garnet-type single crystal having a composition of (R, one) i B101s according to the present invention is obtained by mixing magnetic and non-magnetic oxide raw material powders (by ball mill, etc.), molding by mold press, CIP, etc. , sintering (1100-1550℃)
It is produced by forming it into a single crystal using the Czochralski method or the like.

K1週 磁気冷凍作業物質として従来主に1.8にの生成に用い
られている、ガーネット型単結晶GGG(Gds Ga
s O□)を非磁性イオンであるYで希釈する場合につ
いての実施例を示す、この場合の磁気冷凍用作業物質組
成式は (Gd+−x Yll) s Gas O+諺である。
Garnet type single crystal GGG (Gds Ga
s O□) is diluted with Y, which is a non-magnetic ion, and the compositional formula of the working material for magnetic refrigeration in this case is (Gd+-x Yll) s Gas O+.

希釈度x = 0.1とx=O14の2種類を作製した
Two types of dilutions were prepared: x = 0.1 and x = O14.

原料粉としてのcaxos 、 ytos及びGa*O
sを所定の比率でボールミルで充分に混合し、金型ブレ
スにて成形後、1200℃の温度で24時間焼成した。
caxos, ytos and Ga*O as raw material powders
s were thoroughly mixed in a predetermined ratio in a ball mill, molded in a mold press, and then fired at a temperature of 1200° C. for 24 hours.

この焼結体350gからチョクラルスキー弓上法により
単結晶を作製した。
A single crystal was produced from 350 g of this sintered body by the Czochralski bow method.

チョクラルスキー引上条件は次の通りである=Ir製ル
ツボ:50IIII11直径X50mm高さ雰囲気: 
N、+ 2%08 X=αl   20 rpa+       2 am
/hrx = 0.4  5 Orpm       
2 am/hr作製された単結晶(x = 0.2及び
0.4)について4テスラの磁界で4.2Kから断熱消
磁をした際の最低到達温度の実験結果を第1図に示す、
生じした低到達温度は転移温度を反映しているので転移
温度も同様の変化を与えていると考えてよい。
Czochralski pulling conditions are as follows = Ir crucible: 50III11 diameter x 50mm height Atmosphere:
N, + 2%08 X=αl 20 rpa+ 2 am
/hrx = 0.4 5 Orpm
Figure 1 shows the experimental results of the lowest temperature reached when adiabatic demagnetization was performed from 4.2 K in a 4 Tesla magnetic field for single crystals (x = 0.2 and 0.4) produced at 2 am/hr.
Since the resulting low temperature reflects the transition temperature, it can be considered that the transition temperature also changes in the same way.

実験結果から非磁性イオンの希釈による転移温度低下の
効果は明らかである。x=0.1の結晶でもx=0(G
GG)に対して最低到達温度が約10%以上低下してい
る。
From the experimental results, the effect of lowering the transition temperature by diluting nonmagnetic ions is clear. Even for a crystal with x=0.1, x=0(G
GG), the lowest temperature reached is about 10% or more lower.

他方、IKにおける冷凍能力は第2図に示すように希釈
度により低下する。
On the other hand, the refrigerating capacity of IK decreases with dilution as shown in FIG.

両者を勘案することにより、本発明は、所定の冷凍能力
を保持しつつ0.2〜0.5にの、IK以下の超低温生
成に、ガーネット型単結晶の使用を可能ならしめるもの
である。
By taking both into consideration, the present invention makes it possible to use a garnet type single crystal for ultra-low temperature production below IK of 0.2 to 0.5 while maintaining a predetermined refrigeration capacity.

免豆立立呈 本発明は、所定の冷凍能力を保持しつつIK以下の超低
温生成を可能ならしめるものである0本発明ガーネット
単結晶の熱伝導率はGGGとほぼ同様で、4にで無酸素
銅の1000程度と十分な値を有しカルノーサイクルの
実行に対して必要とされる十分の高熱伝導性を有してい
る。化学的にも安定であり吸湿性もないので取扱いは従
来に比べて極めて容易になる。こうした特性から、本発
明磁気冷凍作業物質は宇宙その他の極限環境を含めた広
い分野での利用が期待される。
The present invention enables ultra-low temperature production below IK while maintaining a predetermined refrigeration capacity.The thermal conductivity of the garnet single crystal of the present invention is almost the same as that of GGG, and it is It has a sufficiently high thermal conductivity of about 1000 compared to oxygen copper, and has a sufficiently high thermal conductivity required for carrying out the Carnot cycle. It is chemically stable and non-hygroscopic, making handling much easier than before. Due to these characteristics, the magnetic refrigeration material of the present invention is expected to be used in a wide range of fields including space and other extreme environments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、磁気冷凍用作業物質を使用する磁気冷凍方式
の原理図である。 第2図は、本発明磁気冷凍用作業物質を使用しての最低
到達温度と希釈度との関係を示すグラフである。 第3図は、希釈度とIKにおける冷凍能力の関係を示す
グラフである。 1:磁気冷凍作業物質 2.3:吸熱、排熱用熱スィッチ 4:マグネット 1に 二あ!する:ぐq東能力(J) 第3図
FIG. 1 is a diagram showing the principle of a magnetic refrigeration system using a working material for magnetic refrigeration. FIG. 2 is a graph showing the relationship between the lowest temperature reached and the degree of dilution using the working material for magnetic refrigeration of the present invention. FIG. 3 is a graph showing the relationship between dilution and refrigerating capacity at IK. 1: Magnetic refrigeration working substance 2.3: Heat absorption/exhaust heat switch 4: Magnet 1! Do: Guq East ability (J) Figure 3

Claims (1)

【特許請求の範囲】 1)組成式(R_1_−_xD_x)_3B_5O_1
_2(R=Gd、Dy、Er等の1種以上の希土類磁性
イオン D=Y、La等の1種以上の非磁性イオン B=Ga及び又はAl で表わされ、且つxの値が 0.10≦x≦0.70 の範囲にある) を有する、希土類磁性イオンを含むガーネット単結晶を
非磁性イオンにより希釈したことを特徴とする磁気冷凍
作業物質。
[Claims] 1) Composition formula (R_1_-_xD_x)_3B_5O_1
_2 (R = one or more rare earth magnetic ions such as Gd, Dy, Er, etc. D = one or more nonmagnetic ions such as Y, La, etc. B = Ga and/or Al, and the value of x is 0. 10≦x≦0.70) A magnetic refrigeration material characterized by diluting a garnet single crystal containing rare earth magnetic ions with non-magnetic ions.
JP63280502A 1988-11-08 1988-11-08 Magnetic refrigeration working substance Expired - Lifetime JP2694545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63280502A JP2694545B2 (en) 1988-11-08 1988-11-08 Magnetic refrigeration working substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63280502A JP2694545B2 (en) 1988-11-08 1988-11-08 Magnetic refrigeration working substance

Publications (2)

Publication Number Publication Date
JPH02129097A true JPH02129097A (en) 1990-05-17
JP2694545B2 JP2694545B2 (en) 1997-12-24

Family

ID=17625984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63280502A Expired - Lifetime JP2694545B2 (en) 1988-11-08 1988-11-08 Magnetic refrigeration working substance

Country Status (1)

Country Link
JP (1) JP2694545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671065A1 (en) * 2018-12-20 2020-06-24 Commissariat à l'énergie atomique et aux énergies alternatives Cooling device comprising a paramagnetic garnet ceramic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218394A (en) * 1988-07-05 1990-01-22 Natl Res Inst For Metals Rare earth element-al garnet single crystal body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218394A (en) * 1988-07-05 1990-01-22 Natl Res Inst For Metals Rare earth element-al garnet single crystal body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671065A1 (en) * 2018-12-20 2020-06-24 Commissariat à l'énergie atomique et aux énergies alternatives Cooling device comprising a paramagnetic garnet ceramic
FR3090830A1 (en) * 2018-12-20 2020-06-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives COOLING DEVICE COMPRISING A PARAMAGNETIC GRENAT CERAMIC

Also Published As

Publication number Publication date
JP2694545B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
Bohigas et al. Tunable magnetocaloric effect in ceramic perovskites
JP4663328B2 (en) Magnetic material having cooling capacity, method for producing the material, and method for using the material
US7063754B2 (en) Magnetic material for magnetic refrigeration and method for producing thereof
Hamad Theoretical work on magnetocaloric effect in La 0.75 Ca 0.25 MnO 3
Sinyavsky et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration
Maple et al. Interaction between superconductivity and magnetism in the pseudoternary system (Lu1− xHox) Rh4B4
Liu et al. Effect of Bi doping on the crystal structure, magnetic and magnetocaloric properties of La0. 7-xBixSr0. 15Ca0. 15MnO3 (x= 0, 0.05, 0.10, 0.15) manganites
Tian et al. Unstable antiferromagnetism and large reversible magnetocaloric effect in TmNi2Si2
JPS6230840A (en) Working substance for magnetic refrigerator and its production
Hamad et al. Room temperature magnetocaloric effect of Ce0. 65Mg0. 35Co3
US5462610A (en) Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants
JPH02129097A (en) Operative substance for magnetic freezer
Gschneidner Jr et al. Magnetic refrigeration
Bouhbou et al. Effect of Zn substitution on the magnetic and magnetocaloric properties of Cd 1− x Zn x Cr 2 Se 4 spinel
CN103334043B (en) Magnetic alloy serving as magnetic refrigeration material
Kamiya et al. Hydrogen liquefaction by magnetic refrigeration
Fujieda et al. Control of Working Temperature of Large Isothermal Magnetic Entropy Change in La (FexTMySi1− x− y) 13 (TM= Cr, Mn, Ni) and La1− zCez (FexMnySi1− x− y) 13
JP3461114B2 (en) Magnetic material for magnetic cooling and magnetic cooling device using the same
Numazawa et al. New regenerator material for sub-4 K cryocoolers
JPS63236712A (en) Superconductive material
Kimura et al. Single crystals of RAlO3 (R: Dy, Ho and Er) for use in magnetic refrigeration between 4.2 and 20 K
RU2804024C1 (en) Magnetocaloric material for magnetic heat engine
CN105112025A (en) Solid magnetic refrigerating material, preparing method and magnetic refrigerator
JP6648884B2 (en) Magnetic refrigeration material
CN110556221B (en) Single crystal-like heterojunction room temperature magnetic refrigeration material with large magnetic entropy change and wide working temperature zone and preparation process thereof