JPH02128501A - Phase adjusting circuit - Google Patents

Phase adjusting circuit

Info

Publication number
JPH02128501A
JPH02128501A JP28300288A JP28300288A JPH02128501A JP H02128501 A JPH02128501 A JP H02128501A JP 28300288 A JP28300288 A JP 28300288A JP 28300288 A JP28300288 A JP 28300288A JP H02128501 A JPH02128501 A JP H02128501A
Authority
JP
Japan
Prior art keywords
conductor
dielectric
phase
length
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28300288A
Other languages
Japanese (ja)
Inventor
Yukio Watabe
幸生 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP28300288A priority Critical patent/JPH02128501A/en
Publication of JPH02128501A publication Critical patent/JPH02128501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

PURPOSE:To make a microwave integrating circuit low-cost, small-sized, and light-weight by setting a dielectric wide gamma than a conductor of a micro strip line on this conductor and changing its length to adjust the phase. CONSTITUTION:A dielectric 3 is set on a micro strip conductor 2 on a dielectric substrate 1. With respect to this micro strip line, a circuit is normally so designed that the upper part of the conductor 2 is an air layer (epsilongamma=1.0). Consequently, when the dielectric (epsilongamma>1.0) 3 is set on the conductor 2, an equivalent electric length is extended to advance the phase because the dielectric constant of this part is increased. The material, the thickness, and the length in the direction of signal transmission of the dielectric 3 are changed to change the phase. Thus, a micro-sized inexpensive phase adjusting circuit is obtained with the simple constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマイクロ波集積回@における位相調整回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a phase adjustment circuit in a microwave integrated circuit.

〔従来の技術〕[Conventional technology]

従来、マイクロ波集積回路における位相調歪の一方法と
しては一般にダイオードによるアナログ形移相器が使用
されていた。
Conventionally, an analog phase shifter using a diode has generally been used as a method for controlling phase distortion in microwave integrated circuits.

第8図は宮内、山本:[通信用マイクロ波回路」、電子
通信学会編、318頁に示された従来のサーキュレータ
分用いた反射形移相器を示す回路図で、図において、(
4)はサーキュレータ、I6)はバラクタダイオードで
ある。
Figure 8 is a circuit diagram showing a reflection type phase shifter using a conventional circulator as shown in Miyauchi and Yamamoto: [Communication Microwave Circuits], edited by the Institute of Electronics and Communication Engineers, page 318.
4) is a circulator, and I6) is a varactor diode.

次に動作について説明する。この移相器は印加される逆
バイアス電圧の大きさにともない静電容量が変化するバ
ラクタダイオード・61と、ダイオードからの反射信号
がすべて出力側から取り出されるというサーキュレータ
(4)の性質を利用したものである。
Next, the operation will be explained. This phase shifter utilizes the properties of a varactor diode 61 whose capacitance changes depending on the magnitude of the reverse bias voltage applied, and a circulator (4) in which all reflected signals from the diode are taken out from the output side. It is something.

入力信号はサーキュレータ)4)を介してバラクタダイ
オード+51に入力され、バラクタダイオードI51の
りアクタンスに対応した位相変移を受けて、サーキュレ
ータ(41の出力側端子から取り出される。第4図はバ
ラクタダイオードの正規化リアクタンスと移相量の関係
を示す曲線図で、図において、XIはバラクタダイオー
ド+51にvIの逆バイアス′晰圧が印加された時の正
規化リアクタンス、θ1はその時の出力信号位相である
。同様に、Xsf”IV*の逆バイアス電圧印加時の正
規化リアクタンス、θ、は出力信号位相である。すなわ
ち、バラクタダイオード151 VC印加する逆バイア
ス電圧k V+からV!に変えることにより、約80°
の移相量が得られる。
The input signal is input to the varactor diode +51 via the circulator (4), undergoes a phase shift corresponding to the actance of the varactor diode I51, and is taken out from the output terminal of the circulator (41). Figure 4 shows the normal diagram of the varactor diode. In the figure, XI is the normalized reactance when a reverse bias voltage of vI is applied to the varactor diode +51, and θ1 is the output signal phase at that time. Similarly, the normalized reactance, θ, when applying the reverse bias voltage of °
The amount of phase shift is obtained.

マイクロ波集積回路において、位相の微調整が要求され
る場合が多い。従来に、ハイブリッドもしくはサーキュ
レータとバラクタダイオードおよびバイアス供給回路で
構成された反射形移相器を用いて位相調整を行なってい
た。従って、構成部品が多いため高価となり、しかも寸
法が大きくなるという欠点があった。
Microwave integrated circuits often require fine phase adjustment. Conventionally, phase adjustment has been performed using a reflective phase shifter composed of a hybrid or a circulator, a varactor diode, and a bias supply circuit. Therefore, it has the drawbacks of being expensive due to the large number of component parts and of being large in size.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の反射形移相器による位相調整回路は以上のように
′4jt成されていたので、サーキュレータ、バラクタ
ダイオードおよびバイアス供給回路等が必要不可欠とな
る。
Since the conventional phase adjustment circuit using a reflection type phase shifter is constructed as described above, a circulator, a varactor diode, a bias supply circuit, etc. are indispensable.

そのため、回路構成が複雑で高価なものになり。As a result, the circuit configuration becomes complex and expensive.

さらに寸法も犬きくなるという問題点があった。Another problem was that the dimensions were too large.

この発明は上記のような問題点を解消するためになされ
たもので、構成が簡単で超小形のしかも非常に安価な位
相11贅回路を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and its object is to obtain a phase 11 phase circuit that is simple in construction, ultra-small, and very inexpensive.

〔課題を解決するための手段〕[Means to solve the problem]

この発明はマイクロストリップ線路の導体上に、この導
体よりは広い幅を有する誘電体を装着することによって
、位相の微調整ができるようにしたものである。
This invention enables fine adjustment of the phase by installing a dielectric material having a width wider than the conductor on the conductor of the microstrip line.

〔作用〕[Effect]

この発明における位相調整回路はマイクロストリップ線
路の導体に誘電体を装着し、その長さを変えることによ
って位相の微調整が容易にできる。
In the phase adjustment circuit according to the present invention, fine phase adjustment can be easily performed by attaching a dielectric material to the conductor of the microstrip line and changing the length of the dielectric material.

〔実施例〕〔Example〕

以下、コの発明の一実施例を図について説明する。第1
図はこの発明の一実施例VCよる位相れたマイクロスト
リップ導体、+31ij導体+21上に装着された誘電
体である。
An embodiment of this invention will be described below with reference to the drawings. 1st
The figure shows a dielectric mounted on a phased microstrip conductor, +31ij conductor +21, according to one embodiment of the present invention.

次に動作について説明する。マイクロストリップ線路は
通常、導体(2)の上部を空気層(εr=1.0)とし
て回路設計が成されている。従って、導体(21上に誘
電体(εr>1.0)を装着すると、その部分の防電率
が大きくなるため等制電気長が長くなり位相が進む。そ
こで、誘電体の材質、厚さ、信号伝搬方向の長さを変え
ることにより位相が変化する。
Next, the operation will be explained. A microstrip line is usually designed with an air layer (εr=1.0) above the conductor (2). Therefore, when a dielectric (εr>1.0) is mounted on the conductor (21), the electrical resistivity of that part increases, the uniform electrical length becomes longer, and the phase advances.Therefore, the material and thickness of the dielectric , the phase changes by changing the length in the signal propagation direction.

第2図はその実験結果を示す曲線図で、実験に用いた誘
電体にアルミナと石英の2種類で、アルミナは比誘電率
εrた9、厚さtコ0.6側9幅ω−8m謂。
Figure 2 is a curve diagram showing the experimental results. Two types of dielectric materials were used in the experiment: alumina and quartz. So-called.

また石英にεr=4. t=0.4鍔、ω=8msの物
を用いて信号伝搬方向の長さLを変えて移相量を測定し
た。その結果、周波数10GHz、誘電体基板としてε
r=9 、 t −0,6蛎のアルミナを用いたインピ
ーダンス50flのマイクロストリップ線路において、
アルミナの場合L−’10+sで約85°1石英の場合
LlOo+で約25°の位相進み?生じた。なお、誘電
体装着によるVSWR,挿入損失の変化は殆んど無かっ
た。
Also, εr=4 for quartz. The amount of phase shift was measured by changing the length L in the signal propagation direction using a device with t = 0.4 tsuba and ω = 8 ms. As a result, the frequency is 10 GHz, and ε as a dielectric substrate.
r = 9, t -0, In a microstrip line with an impedance of 50 fl using 6-layer alumina,
For alumina, L-'10+s is approximately 85°1 For quartz, LlOo+ is approximately 25° phase advance? occured. Note that there was almost no change in VSWR and insertion loss due to the attachment of the dielectric.

なお、上li!、実施例では誘電体(3)にアルミナお
よび石英と用いた場合について説明したが、比誘電率が
1.0以上の誘電体あるいは非導電性の接着剤等でも良
く、上記実施例と同様の効果を得ることができる。
In addition, upper li! In the example, the case where alumina and quartz were used as the dielectric material (3) was explained, but a dielectric material with a dielectric constant of 1.0 or more or a non-conductive adhesive may also be used, and the same as in the above example example may be used. effect can be obtained.

4、 〔発明の効果〕 以上のようにこの発明rCよれば、マイクロ波集積回路
において、マイクロストリップ線路の導体上に導体より
は広い幅を有する誘電体を装着し、その長さを変えるこ
とによって容易に位相調整を行うようにしたので、マイ
クロ波集積回路のコストダウンおよび小型軽量化を図る
こηぐ と夜できるという効果がある。
4. [Effects of the Invention] As described above, according to this invention rC, in a microwave integrated circuit, by mounting a dielectric material having a width wider than the conductor on the conductor of the microstrip line and changing the length of the dielectric material, Since the phase adjustment is made easy, it is possible to reduce the cost, size and weight of the microwave integrated circuit, and it is possible to do it overnight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+al (illはこの発明の一実施例による位
相調整回路を示す平面図と側面図、第2図は第1図によ
る実験結果を示す曲線図、第8図は従来のサーキュレー
タを用いた反射形移相器の回路図、第4図は第8図の正
規化リアクタンスと移相量の関係を示す曲線図である。 図において、111は誘電体基板、12)は導体、(3
)は誘電体を示す。 なお、図中、同一符号は四−1又は相当部分を示す。
Figure 1 + al (ill is a plan view and side view showing a phase adjustment circuit according to an embodiment of the present invention, Figure 2 is a curve diagram showing the experimental results from Figure 1, Figure 8 is a diagram showing a phase adjustment circuit using a conventional circulator. A circuit diagram of a reflective phase shifter, and FIG. 4 is a curve diagram showing the relationship between normalized reactance and phase shift amount in FIG. 8. In the figure, 111 is a dielectric substrate, 12 is a conductor, and (3
) indicates a dielectric material. In the figures, the same reference numerals indicate 4-1 or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  マイクロストリップ線路の導体上に、導体よりは広い
幅を有する誘電体を装着したことを特徴とする位相調整
回路。
A phase adjustment circuit characterized in that a dielectric material having a width wider than the conductor is mounted on the conductor of a microstrip line.
JP28300288A 1988-11-08 1988-11-08 Phase adjusting circuit Pending JPH02128501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28300288A JPH02128501A (en) 1988-11-08 1988-11-08 Phase adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28300288A JPH02128501A (en) 1988-11-08 1988-11-08 Phase adjusting circuit

Publications (1)

Publication Number Publication Date
JPH02128501A true JPH02128501A (en) 1990-05-16

Family

ID=17659947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28300288A Pending JPH02128501A (en) 1988-11-08 1988-11-08 Phase adjusting circuit

Country Status (1)

Country Link
JP (1) JPH02128501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722805A (en) * 1993-06-29 1995-01-24 Nec Corp Microwave phase adjusting circuit
JPH0730401A (en) * 1993-07-15 1995-01-31 Nec Corp Semiconductor integrated circuit
KR100362849B1 (en) * 1995-06-13 2003-04-26 텔레폰아크티에볼라게트 엘엠 에릭슨 Apparatus and method related to tunable device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722805A (en) * 1993-06-29 1995-01-24 Nec Corp Microwave phase adjusting circuit
JPH0730401A (en) * 1993-07-15 1995-01-31 Nec Corp Semiconductor integrated circuit
KR100362849B1 (en) * 1995-06-13 2003-04-26 텔레폰아크티에볼라게트 엘엠 에릭슨 Apparatus and method related to tunable device

Similar Documents

Publication Publication Date Title
US5414394A (en) Microwave frequency device comprising at least a transition between a transmission line integrated on a substrate and a waveguide
US4580116A (en) Dielectric resonator
WO1994013028B1 (en) Tunable microwave devices incorporating high temperature superconducting and ferroelectric films
US5499005A (en) Transmission line device using stacked conductive layers
JPH11103201A (en) Phase shifter, phase shifter array and phased array antenna system
US4618838A (en) Impedance adjusting element for a microstrip circuit
JPH02128501A (en) Phase adjusting circuit
US4500847A (en) Transistor amplifier variable matching transformer apparatus
EP1294090A1 (en) Filter circuit
TW404080B (en) High-frequency module
JPH01300701A (en) Coplanar type antenna
US5160904A (en) Microstrip circuit with transition for different dielectric materials
EP0734087A3 (en) Microwave stripline filter
JPS6322723B2 (en)
JP3191952B2 (en) IC oscillator
JPS6032408A (en) Tuner
Kooi et al. A full-height waveguide to thinfilm microstrip transition
Teo et al. Linear scanning array with bulk ferroelectric-integrated feed network
JPH06216602A (en) Phase shifter
JPS6230321Y2 (en)
Sakakibara Broadband and planar microstrip-to-waveguide transitions
JPH0352002Y2 (en)
JP2000151328A (en) Delay quantity adjusting circuit
GB2192494A (en) Strip transmission line impedance transformation
JPH07226601A (en) Phase shifter