JPH02127954A - Production of cv graphite cast iron pipe by centrifugal casting method - Google Patents

Production of cv graphite cast iron pipe by centrifugal casting method

Info

Publication number
JPH02127954A
JPH02127954A JP28228388A JP28228388A JPH02127954A JP H02127954 A JPH02127954 A JP H02127954A JP 28228388 A JP28228388 A JP 28228388A JP 28228388 A JP28228388 A JP 28228388A JP H02127954 A JPH02127954 A JP H02127954A
Authority
JP
Japan
Prior art keywords
cast iron
graphite
molten metal
added
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28228388A
Other languages
Japanese (ja)
Inventor
Katsuyuki Takeuchi
克行 竹内
Manabu Kurotobi
黒飛 学
Kazuo Kubota
一男 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP28228388A priority Critical patent/JPH02127954A/en
Publication of JPH02127954A publication Critical patent/JPH02127954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the segregation of an anti-graphite-spheroidizing element by ladle-adding a specific ratio of a rare earth metal to a molten ordinary cast iron, adding a specific ratio of Mg into the molten metal under pouring into a die and centrifugally casting the molten metal under GNo of a specific value or below. CONSTITUTION:The rare earth metal is added at 0.003 to 0.01wt.% to the molten ordinary cast iron in the ladle 6. Since the amt. of the metal to be added is slight, the metal is added to the ladle in order to uniformly add the element at a good yield to the molten metal. The Mg is added at 0.01 to 0.04wt.% to the molten metal under pouring into a die 1 for centrifugal casting. The Mg is included into the molten metal flow and is thereby uniformly added thereto. This molten metal is poured into the die 1 and is centrifugally cast under <=40 GNo. to produce the CV graphite cast iron pipe. The segregation of the anti-graphite-spheroidizing element is suppressed by selecting the adequate GNo. The cast iron pipe having the CV graphite cast iron structure down to the inside surface of the pipe is produced by the neutralization effect of the inhibiting element of the rare earth metal together with the graphite spheroidization treatment agent Mg in the molten metal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、CV黒鉛組織(芋虫状黒鉛組織)から成る鋳
鉄管を遠心力鋳造によって製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a cast iron pipe made of CV graphite structure (caterpillar-like graphite structure) by centrifugal casting.

(従来の技術) CV黒鉛鋳鉄は、通常、黒鉛球状化率が30〜70%の
ものをいい、引張強さや伸びの点で球状黒鉛鋳鉄(以下
、FCDという)材に若干劣るものの普通鋳鉄(以下、
FCという)材に比べて極めて優れており、またFCD
材に比べて製造が極めて容易である。このため、近年、
鋳造品に対する高品質化、多様化等の要請に応えうる材
料として注目されている。
(Prior art) CV graphite cast iron usually has a graphite nodularity rate of 30 to 70%, and although it is slightly inferior to ductile graphite cast iron (hereinafter referred to as FCD) in terms of tensile strength and elongation, it is comparable to ordinary cast iron ( below,
It is extremely superior to FC (FC) material, and FCD
It is extremely easy to manufacture compared to wood. For this reason, in recent years,
It is attracting attention as a material that can meet the demands for higher quality and diversification of cast products.

一般にC■黒鉛鋳鉄鋳物は、Mgを含有しないFC溶湯
の天場に対して黒鉛球状化剤(代表的なものとしてMg
がある。)の添加量を調整したり、天場に黒鉛球状化阻
害元湯を含む処理剤(たとえば、Mg−Ti合金材)を
取鍋添加したり、あるいは所定の比率でFCD溶湯とF
C溶湯とを混合したりすることによって得られたCv黒
鉛鋳鉄溶湯を置注鋳造して製作されている。
In general, C graphite cast iron castings are made using a graphite nodularizing agent (typically Mg
There is. ), add a treatment agent (for example, Mg-Ti alloy material) containing a graphite spheroidization inhibiting source metal to the ladle, or add FCD molten metal and F in a predetermined ratio.
It is manufactured by placing Cv graphite cast iron molten metal obtained by mixing Cv molten metal with Cv molten metal.

(発明が解決しようとする課題) 金型遠心力鋳造法は鋳鉄管を多量生産する場合に極めて
経済的な方法であるが、Cv黒鉛鋳鉄管の製造にはあま
り適用されていないのが実情である。
(Problem to be solved by the invention) Although the mold centrifugal casting method is an extremely economical method for mass-producing cast iron pipes, the reality is that it is not often applied to the production of Cv graphite cast iron pipes. be.

これは、前述のような方法によって溶製されたCV黒鉛
鋳鉄溶湯を用いて金型遠心力鋳造法によって鋳鉄管を製
作する場合、金型内に注湯された溶湯の外面側(すなわ
ち、金型と接触する側)と内面側とで大きな冷却速度の
差を生じて内面側の凝固が遅れる。そして、金型の回転
によって生ずる遠心力のため、溶湯中の球状化阻害元素
が前記未凝固の内面側に偏析することによって、内面側
にFC組織が生成発達し易いからである。内面側に生成
したFC組織は機械的性質がCV黒鉛組織に比べて著し
く劣るので、鋳鉄管として十分な強度が得られず、健全
な製品が得られない。尚、外面側はFCD組織となる傾
向があるが製品品質上問題とならない。
This is because when manufacturing a cast iron pipe by die centrifugal casting using CV graphite cast iron molten metal produced by the method described above, the outer surface of the molten metal poured into the mold (i.e., the metal There is a large difference in cooling rate between the inner surface (the side in contact with the mold) and the inner surface, which delays solidification on the inner surface. This is because, due to the centrifugal force generated by the rotation of the mold, the spheroidization-inhibiting elements in the molten metal segregate to the unsolidified inner surface, which tends to generate and develop an FC structure on the inner surface. Since the FC structure formed on the inner surface side is significantly inferior in mechanical properties to the CV graphite structure, sufficient strength as a cast iron pipe cannot be obtained, and a sound product cannot be obtained. Incidentally, the outer surface side tends to have an FCD structure, but this does not pose a problem in terms of product quality.

本発明は上述の問題点に鑑みてなされたもので、金型遠
心力鋳造法によって、管内面までC■黒鉛組織を有する
鋳鉄管を得る方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for obtaining a cast iron pipe having a C■ graphite structure up to the inner surface of the pipe by a mold centrifugal casting method.

(課題を解決するための手段) 上記目的を達成するためになされた本発明は、普通鋳鉄
溶湯から成る天場に、該元湯量に対して0.003〜0
.01wt%の希土類金属を取鍋添加し、前記元湯量に
対して0.01〜0.04wt%のMgを遠心力鋳造用
金型に注湯中の溶湯に添加し、GN040以下で遠心力
鋳造することを発明の構成としている。
(Means for Solving the Problems) The present invention, which has been made to achieve the above object, has a method of adding 0.003 to 0.0
.. 01 wt% of rare earth metal is added to the ladle, and 0.01 to 0.04 wt% of Mg is added to the molten metal being poured into the centrifugal casting mold with respect to the above-mentioned base metal amount, and centrifugal casting is performed at GN of 040 or less. The structure of the invention is to do so.

(作 用) FC溶湯からなる天場にMgを0.01〜0.04wt
%添加するのは次の理由による。
(Function) Add 0.01 to 0.04wt of Mg to the heaven made of FC molten metal.
% is added for the following reason.

すなわち、一般にC■黒鉛鋳鉄は、その黒鉛球状化率が
30%〜70%の範囲であり、黒鉛球状化剤であるMg
の添加量が0.01wt%未満では黒鉛が球状化せず片
状黒鉛組織(FC組織)となり、一方、0.04wt%
をこえると組織全体が球状化して球状黒鉛鋳鉄組織(通
常のダクタイル鋳鉄)となり、経済的でない。
That is, in general, C graphite cast iron has a graphite nodularization rate in the range of 30% to 70%, and Mg, which is a graphite nodularizing agent,
When the amount of addition is less than 0.01 wt%, graphite does not become spheroidized and forms a flaky graphite structure (FC structure);
If it exceeds this, the entire structure becomes spheroidal and becomes a spheroidal graphite cast iron structure (ordinary ductile cast iron), which is not economical.

Mgの溶湯添加に際し、取鍋から金型に注湯中の溶湯流
に添加するので、Mgが溶湯流に巻き込まれて均一な添
加ができる。
When adding Mg to the molten metal, it is added to the molten metal flow that is being poured from the ladle into the mold, so Mg is caught up in the molten metal flow and can be added uniformly.

また、希土類金属は、黒鉛球状化補助剤として使用され
、黒鉛球状化阻害元素(たとえば、Ti。
Rare earth metals are also used as graphite spheroidization aids and graphite spheroidization inhibiting elements (eg, Ti).

Pb)の影響を中和して、黒鉛組織を整える上で有効で
ある。0.003 wt%未満では鋳鉄管内面の未凝固
部分に偏析した球状化阻害元素の影響を中和できず、鋳
鉄管内面が片状黒鉛組織(FC組織)となる。0.01
wt%をこえると相応する効果の向上が認められないた
め経済的でない。
It is effective in neutralizing the influence of Pb) and adjusting the graphite structure. If it is less than 0.003 wt%, the effect of the spheroidization-inhibiting elements segregated in the unsolidified portion of the inner surface of the cast iron pipe cannot be neutralized, and the inner surface of the cast iron pipe becomes a flaky graphite structure (FC structure). 0.01
If it exceeds wt%, it is not economical because a corresponding improvement in effect is not observed.

尚、希土類金属は上記のように添加量が微少量であるの
で、溶湯に対して歩留り良く均一に添加するため、取鍋
添加するのがよい。
Incidentally, since the rare earth metal is added in a very small amount as mentioned above, it is preferable to add it to the molten metal in a ladle in order to uniformly add it to the molten metal with a good yield.

G No、は遠心力による加速度を重力加速度の倍数で
表わしたものである。GNαが40をこえると鋳鉄管内
面側の未凝固部分への球状化阻害元素の偏析が過大とな
り、管内面側がFC組織となる。尚、下限は特に示して
いないが、湯回り不良やレイニングなどの遠心力不足に
起因する不良が発生することなく、円滑な遠心力鋳造が
可能である値以上であることはもちろんである。
G No. is the acceleration due to centrifugal force expressed as a multiple of gravitational acceleration. When GNα exceeds 40, the segregation of spheroidization-inhibiting elements in the unsolidified portion on the inner surface of the cast iron pipe becomes excessive, and the inner surface of the tube becomes an FC structure. Although the lower limit is not particularly specified, it is needless to say that it is at least a value that allows smooth centrifugal casting without causing defects such as poor hot water circulation or raining due to insufficient centrifugal force.

(実施例) 本発明において使用する天場はFC溶湯であればよいが
、好ましい化学組成を下記に示す。
(Example) Although the tenba used in the present invention may be any FC molten metal, a preferable chemical composition is shown below.

炭素光It : 4.Owt%〜5.5 wt%Mn 
: 0.2 wt%〜1.5wt%P : 0.7 w
t%未満   S : 0.05wt%未満残部実質的
にFe 以下に上記各成分の限定理由を述べる。
Carbon Light It: 4. Owt%~5.5 wt%Mn
: 0.2wt%~1.5wt%P: 0.7w
Less than t% S: Less than 0.05wt% remainder substantially Fe The reasons for limiting each of the above components will be described below.

炭素当量: 4.Owt%〜5.5 wt%5.5 w
t%をこえると強度の低下が大きくなり、一方4.Ow
t%未満では共晶成分から離れ、鋳造性が著しく低下す
る。
Carbon equivalent: 4. Owt%~5.5 wt%5.5w
When it exceeds t%, the strength decreases significantly, while 4. Ow
If it is less than t%, it will separate from the eutectic component and the castability will drop significantly.

Mn : 0.2 wt%〜1.5wL%Mnは脱酸の
ために添加される元素であるが、0.2wt%未満では
脱酸効果が十分でなく、一方1.5wt%をこえると相
応する効果の向上が認められず経済的でなく、また脆く
なる。
Mn: 0.2 wt% to 1.5 wL% Mn is an element added for deoxidation, but if it is less than 0.2 wt%, the deoxidizing effect is not sufficient, while if it exceeds 1.5 wt%, the deoxidation effect will be insufficient. It is not economical as there is no improvement in the effectiveness of the method, and it also becomes fragile.

P : 0.7 wt%未満、 S : 0.05wt
%未満いずれも材質を脆くするので少ない程望ましく、
Pは0.7wt%未満、Sは0 、05w t%未満に
止めておくのがよい。
P: less than 0.7 wt%, S: 0.05 wt
Anything less than % makes the material brittle, so the lower the content, the better.
It is preferable to keep P at less than 0.7 wt% and S at less than 0.05 wt%.

本発明で溶湯に添加されるMgは、Mg金属のはかMg
系合金材(たとえば、Cu−Mg、 Ni −Mg、 
Ni −51−Mg、 Ca−31−Mg、 Mg−5
t−Fe)が使用できる。
The Mg added to the molten metal in the present invention is the base of Mg metal.
based alloy materials (e.g. Cu-Mg, Ni-Mg,
Ni-51-Mg, Ca-31-Mg, Mg-5
t-Fe) can be used.

そして、本発明では、?Ig金属または同合金材を、鋳
造用取鍋から金型へ注湯中の溶湯に添加し、該溶湯が凝
固するまでの間に溶湯のCV黒鉛化処理を行なう。この
ため、上記添加材は溶湯添加俊速やかに溶解する必要が
あるので、その粒径は5瞭以下にすることが望ましい。
And in the present invention? Ig metal or its alloy material is added to molten metal that is being poured from a casting ladle into a mold, and CV graphitization treatment of the molten metal is performed until the molten metal solidifies. For this reason, since it is necessary for the above-mentioned additive to dissolve quickly when added to the molten metal, it is desirable that the particle size thereof be 5.5 mm or less.

また、本発明で天場に添加される希土類金属としては、
希土類金属単体(単体として使用される希土類金属とし
て、たとえばCeがある。)のほか、希土類金属を含む
複化合物、たとえば、第1表に示すような化学組成を有
するミツシュメタルやセリウム強化メタルなどを用いて
もよい。
In addition, rare earth metals added to Tenba in the present invention include:
In addition to rare earth metals (for example, Ce is a rare earth metal used as a single element), complex compounds containing rare earth metals, such as Mitsushi metal and cerium-reinforced metals having chemical compositions as shown in Table 1, are used. It's okay.

第1表 加は、その添加量が微少量であるので、天場に対して歩
留り良く均一に添加するには取鍋添加が好適である。こ
の場合、添加に使用する取鍋としては遠心力鋳造設備中
の鋳造用取鍋(所謂、三角取鍋)又は配湯用取鍋を利用
すればよい。もっとも鋳造用取鍋を用いて置注添加すれ
ば、配湯取鍋中のFC溶湯によって、FC材とC■黒鉛
鋳鉄材の吹き分けができる。
Since the amount of the first addition is very small, it is preferable to add it in a ladle in order to uniformly add it to the top surface with a good yield. In this case, the ladle used for addition may be a casting ladle (so-called triangular ladle) or a distributing ladle in centrifugal casting equipment. However, if the casting ladle is used for pouring, the FC material and the C2 graphite cast iron material can be separately blown using the FC molten metal in the distribution ladle.

希土類金属やその複化合物の形状は上記添加操作によっ
て天場に溶解するような大きさであればよい。
The shape of the rare earth metal or its composite compound may be such that it can be dissolved in the atmosphere by the above-mentioned addition operation.

以下、具体的製造実施例について説明する。Hereinafter, specific manufacturing examples will be described.

〈実施例A〉 第1図は本実施例の鋳鉄管鋳造状況を略示しており、配
湯用取鍋8によって第2表に示す化学組成を有するFC
元湯を鋳造用取鍋6に注湯した(図中、点線矢印で示し
た。)。この際、希土類金属として前記第1表に示した
ようなミツシュメタル(含有全希土類金属(T、RE)
量98.38%形状5mmφX200ma/りを、前記
鋳造用取鍋6に置注添加した。
<Example A> Figure 1 schematically shows the cast iron pipe casting situation of this example.
The source hot water was poured into a casting ladle 6 (indicated by a dotted arrow in the figure). At this time, as rare earth metals, Mitshu metals (total rare earth metals (T, RE) as shown in Table 1 above) are used.
A quantity of 98.38% and a shape of 5 mmφ x 200 ma/liter was poured into the casting ladle 6.

第2表 (注)単位 重量%、残部実質的にFeそして、前記鋳
造用取鍋6から遠心力鋳造用金型1にトラフ4を介して
注湯中の希土類金属を含む溶湯に対し、Mg源としてM
g  5i−Fe合金(Mg :6.74wt%5粒度
42メツシユ〜150メツシユ)を投入用ホッパー7か
ら適宜添加しつつ、GNα30で金型遠心力鋳造して外
径500mm、管長2500+n[II、管厚6mm、
背型200kgの鋳鉄管を製造した。尚、図中2は中子
、5は回転ローラーである。また、図中矢印は鋳造用取
鍋6の傾動する方向を示している。
Table 2 (Note) Unit: Weight %, balance is substantially Fe, and Mg M as a source
While adding g 5i-Fe alloy (Mg: 6.74 wt% 5 particle size 42 mesh to 150 mesh) from the charging hopper 7, the mold was centrifugally cast using GNα30 to form an outer diameter of 500 mm and a pipe length of 2500 + n [II, pipe Thickness 6mm,
A cast iron pipe with a back type of 200 kg was manufactured. In addition, in the figure, 2 is a core, and 5 is a rotating roller. Further, the arrow in the figure indicates the direction in which the casting ladle 6 is tilted.

第2図は上記操作によって上記寸法の鋳鉄管を遠心力鋳
造によって製造するに際して、ミツシュメタルとFlg
−3i−Fe合金材を種々の割合で添加した場合に得ら
れる鋳鉄管の組織を示している。尚、図中M8添加量は
、使用したMg−3i−Fe合金材からMg分として求
めた値を示した。希土類金属添加量もミツシュメタル添
加量より計算によって求めた値を使用している。
Figure 2 shows Mitsushmetal and Flg when manufacturing a cast iron pipe of the above dimensions by centrifugal casting according to the above operation.
-3I-Fe alloy materials are shown in the structures of cast iron pipes obtained when various proportions are added. In addition, the amount of M8 added in the figure shows the value determined as the Mg content from the Mg-3i-Fe alloy material used. The amount of rare earth metal added is also calculated from the amount of Mitsushi metal added.

同図より、球状化処理剤であるMgの添加だけでは鋳鉄
管内面のFC組織化を阻止することができないことがわ
かる。そして、C■黒鉛鋳鉄組織を得るためには、Mg
と共に希土類金属を添加共存させて管内面側に偏析した
球状化阻害元素の影響を中和させることが必要であるこ
とがわかる。
From the figure, it can be seen that the addition of Mg, which is a spheroidizing agent, alone cannot prevent the formation of FC structure on the inner surface of the cast iron pipe. In order to obtain a C■ graphite cast iron structure, Mg
It is also understood that it is necessary to add and coexist rare earth metals to neutralize the influence of the spheroidization-inhibiting elements segregated on the inner surface of the tube.

次に、第2表のFC元湯に対して、希土類金属0.00
6 wt%とMg O,01wt%を前記と同様の操作
で天場に添加しつつ、種々のGNαで前記と同寸法の鋳
鉄管を遠心力鋳造によって製造した。
Next, for the FC source water in Table 2, rare earth metal 0.00
Cast iron pipes with the same dimensions as above were manufactured by centrifugal casting with various GNα while adding 6 wt % and Mg 2 O, 01 wt % to the top in the same manner as above.

第3図は、上記操作によって得た鋳鉄管の組織とG N
o、との関係を示しており、同図よりONα40以下で
遠心力鋳造することによって管内面まで良好なCv黒鉛
組織となることが確かめられた。
Figure 3 shows the structure of the cast iron pipe obtained by the above operation and the G N
From the same figure, it was confirmed that centrifugal force casting at ONα of 40 or less results in a good Cv graphite structure up to the inner surface of the tube.

〈実施例B〉 第3表は、他の実施例および比較例をまとめて示したも
のであるが、実施例1.2および3では管内面までC■
黒鉛鋳鉄組織から成る鋳鉄管を得ることができたが、比
較例では希土類金属の添加量を本発明外の0.002%
としたため、管内面がC■黒鉛鋳鉄組織とならずFC組
織となった。
<Example B> Table 3 shows other examples and comparative examples. In Examples 1, 2 and 3, C■
Although it was possible to obtain a cast iron pipe consisting of a graphite cast iron structure, in a comparative example, the amount of rare earth metal added was 0.002%, which is outside the scope of the present invention.
As a result, the inner surface of the tube did not have a C■ graphite cast iron structure but an FC structure.

(次 葉) (発明の効果) 以上説明した通り、本発明の製造方法によれば、遠心力
鋳造に際して適切なGNαを選択することによって溶湯
中の黒鉛球状化阻害元素が鋳造中に未凝固の管の内面側
に過度に偏析するのを抑える。
(Next page) (Effect of the invention) As explained above, according to the manufacturing method of the present invention, by selecting an appropriate GNα during centrifugal force casting, elements that inhibit graphite spheroidization in the molten metal are removed from the unsolidified state during casting. Prevents excessive segregation on the inner surface of the tube.

さらに、溶湯中に黒鉛球状化処理剤と共に希土類金属を
添加しておくことによって、該希土類金属が管の内面側
に偏析した黒鉛球状化阻害元素の影響を中和して内面側
がFC組織となるのを防止するので、管内面までCV黒
鉛鋳鉄組織を有する鋳鉄管を、金型遠心力鋳造法によっ
て容易に製造することができる。
Furthermore, by adding a rare earth metal to the molten metal together with a graphite spheroidization treatment agent, the rare earth metal neutralizes the influence of the graphite spheroidization inhibiting elements segregated on the inner surface of the tube, and the inner surface becomes an FC structure. Therefore, a cast iron pipe having a CV graphite cast iron structure up to the inner surface of the pipe can be easily manufactured by the mold centrifugal casting method.

また、FC溶湯に希土類金属を取鍋で添加し、Mgを前
記取鍋から金型に注湯中の溶湯流に添加するので、鋳造
前の天場のCV黒鉛化処理作業を省略することができ、
溶湯温度低下が防止でき、生成スラグ量も減少するので
取鍋スラグの除滓作業が軽減できる。
In addition, since the rare earth metal is added to the FC molten metal in a ladle, and Mg is added to the molten metal flow from the ladle into the mold, it is possible to omit the CV graphitization process at the top before casting. I can,
Since a drop in molten metal temperature can be prevented and the amount of slag produced is also reduced, the work of removing slag from the ladle can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の鋳鉄管鋳造状況を示す説明図
、第2図は一定GNαにおけるMg添加量および希土類
金属添加量と黒鉛組織との関係を示す説明図、第3図は
G No、と黒鉛組織との関係を示す説明図である。 特 許 出 願 人  久保田鉄工株式会社代 理 人
 弁理士  安  1)敏 雄第 図 第 図
Fig. 1 is an explanatory diagram showing the cast iron pipe casting situation of an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the relationship between Mg addition amount and rare earth metal addition amount and graphite structure at a constant GNα, and Fig. 3 It is an explanatory view showing the relationship between No. and graphite structure. Patent applicant: Kubota Iron Works Co., Ltd. Agent: Patent attorney Yasu 1) Toshio Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)普通鋳鉄溶湯から成る元湯に、該元湯量に対して
0.003〜0.01wt%の希土類金属を取鍋添加し
、前記元湯量に対して0.01〜0.04wt%のMg
を遠心力鋳造用金型に注湯中の溶湯に添加し、GNo.
40以下で遠心力鋳造することを特徴とする遠心力鋳造
法によるCV黒鉛鋳鉄管の製造方法。
(1) A rare earth metal of 0.003 to 0.01 wt% based on the amount of the source metal is added in a ladle to the source metal consisting of molten ordinary cast iron, and 0.01 to 0.04 wt% of the amount of rare earth metal is added to the amount of the source metal. Mg
was added to the molten metal being poured into the centrifugal casting mold, and GNo.
A method for manufacturing a CV graphite cast iron pipe using a centrifugal force casting method, characterized in that centrifugal force casting is performed at a temperature of 40°C or less.
JP28228388A 1988-11-08 1988-11-08 Production of cv graphite cast iron pipe by centrifugal casting method Pending JPH02127954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28228388A JPH02127954A (en) 1988-11-08 1988-11-08 Production of cv graphite cast iron pipe by centrifugal casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28228388A JPH02127954A (en) 1988-11-08 1988-11-08 Production of cv graphite cast iron pipe by centrifugal casting method

Publications (1)

Publication Number Publication Date
JPH02127954A true JPH02127954A (en) 1990-05-16

Family

ID=17650412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28228388A Pending JPH02127954A (en) 1988-11-08 1988-11-08 Production of cv graphite cast iron pipe by centrifugal casting method

Country Status (1)

Country Link
JP (1) JPH02127954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221309A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Method for manufacturing cylindrical body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221309A (en) * 2007-03-15 2008-09-25 Honda Motor Co Ltd Method for manufacturing cylindrical body

Similar Documents

Publication Publication Date Title
JP2009226484A (en) Product for protection of continuous cast mold for cast-iron pipe
KR20200032160A (en) Method for recycling and purification of aluminum alloy
JP2010189706A (en) Spheroidal graphite cast iron tube and method for producing the same
CA1082005A (en) Alloy for rare earth treatment of molten metals
JP2003171729A (en) Method of reutilizing steel sheet scrap
JP5367041B2 (en) Thin wall spheroidal graphite cast iron casting
JPH02127954A (en) Production of cv graphite cast iron pipe by centrifugal casting method
JP3112452B2 (en) Method for modifying microstructure of master alloy, eutectic and hypoeutectic aluminum-silicon casting alloy, and method for manufacturing master alloy
US3367395A (en) Method and apparatus for treating molten metals
JP2002275574A (en) High strength high toughness spheroidal graphite cast iron
JP3286469B2 (en) Cast iron processing agent
JPH02127953A (en) Production of cv graphite cast iron pipe by centrifugal casting method
JP3475607B2 (en) Prevention of chunky graphite crystallization of spheroidal graphite cast iron.
EP0958391A1 (en) Strontium-aluminum intermetalic alloy granules
JPH04308018A (en) Production of spheroidal graphite cast iron
JP2783925B2 (en) Production method of iron-containing copper alloy
RU2102495C1 (en) Metallothermal reaction mixture
JP3797818B2 (en) Graphite spheroidized alloy for cast iron production
JPH08209217A (en) Production of spherical graphite cast iron
CA2515509C (en) Cast iron semi-finished product excellent in workability and method of production of the same
KR910001077A (en) Hexafluorophosphate, master composition containing the same and structural refining method using the same
JPH0454723B2 (en)
JPH08120396A (en) Pearlitic spheroidal graphite cast iron as cast and its production
JPS6035405B2 (en) Method for producing Mg-AL alloy powder by natural disintegration
JP3777207B2 (en) Method for producing spheroidal graphite cast iron product and spheroidal graphite cast iron product