JPH0212662B2 - - Google Patents

Info

Publication number
JPH0212662B2
JPH0212662B2 JP13800482A JP13800482A JPH0212662B2 JP H0212662 B2 JPH0212662 B2 JP H0212662B2 JP 13800482 A JP13800482 A JP 13800482A JP 13800482 A JP13800482 A JP 13800482A JP H0212662 B2 JPH0212662 B2 JP H0212662B2
Authority
JP
Japan
Prior art keywords
forehearth
base material
melt
raw materials
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13800482A
Other languages
Japanese (ja)
Other versions
JPS5930451A (en
Inventor
Taku Yoshimitsu
Masaji Nadayoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP13800482A priority Critical patent/JPS5930451A/en
Publication of JPS5930451A publication Critical patent/JPS5930451A/en
Publication of JPH0212662B2 publication Critical patent/JPH0212662B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/08Shaft or like vertical or substantially vertical furnaces heated otherwise than by solid fuel mixed with charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼の造塊及び連続鋳造などに使用する
鋳造用添加剤の基材の新しい製造方法に関するも
のである。 従来、鋳造用添加剤の主原料(以下、単に原料
という)として金属酸化物、金属弗化物及びアル
カリ土類金属の炭酸塩が使用されており、例え
ば、特公昭47−48763、特公昭47−48765、特開昭
51−94424、特開昭53−65212等において、CaO、
Al2O3、SiO2、MgO、Na2O、B2O3等の金属酸化
物、CaF2、AlF3、NaF、Na3AlF6等の金属弗化
物、CaCO3のアルカリ土類金属の炭酸塩が示さ
れており、その原料として、CaO源としてポルト
ランドセメント、石灰、高炉滓、ダイカルシウム
シリケート等、SiO2源として硅砂、フライアツ
シユ、シラス、ウオラストナイト等、Al2O3源と
してシヤモツト、ムライト等、B2O3源として硼
砂等、Na2O源としてソーダ灰等、MgO源として
ドロマイト等、CaF2源として蛍石、Na3AlF6
として氷晶石、CaCO3源として石灰石が示され
ている。 これらのものは熱処理されていないものと熱処
理されたものを使用する場合があるが、熱処理に
より焼成又は溶融させたものは熱処理しないもの
を原料とした添加剤よりも滓化性及び水分に起因
するトラブル抑制の点で優れている。熱処理によ
る原料としては高炉滓やガラス粉末、又、天然の
ものとして玄武岩、ウオラストナイト、シラス等
がある。 しかし、これらのものは成分のバラツキが大き
いので、得られる添加剤の成分にバラツキが大き
い。しかもこれらのものを原料としたのでは原料
に組成の限定があるので、得られる添加剤の品種
が一定組成の品種に限定される等の欠点がある。 一方、生の原料を炉で溶解しようとする試みは
なされているが、今だ成分のバラツキの少い溶融
物を経済的に得る方法は実現していない。溶解炉
として電気炉を使用した場合、特に電力費の点で
問題があり、溶解に電力費がかかり過ぎる。 これに対し、発明者は溶解炉として鋳鉄溶解に
使用するキユポラの検討を行つた。キユポラは鋳
鉄の例にみられるように単に溶解するだけならば
非常に経済的な炉といえる。しかし各種の金属酸
化物、金属弗化物、アルカリ土類金属の炭酸塩等
をキユポラに装入し一定成分の溶融物を得るのは
困難である。 例えば、石灰石、珪石、アルミナ塊、炭酸ソー
ダ塊、蛍石をキユポラで溶解を行つた例を表1に
示す。表1は炉が定常状態になつてから1時間後
に10分毎にサンプリングし分析して得られた5回
の最大値、最小値、平均値である。表から分かる
様に溶融物の成分変動が大きく、この様な溶融物
を同一の添加剤の基材として使用する事は困難で
ある。更に、キユポラで溶解する場合、未燃焼の
コークスや未溶融の原料が介在物として少量溶融
物中に残る事がある。
The present invention relates to a new method for producing a base material for casting additives used in steel ingot making and continuous casting. Conventionally, metal oxides, metal fluorides, and carbonates of alkaline earth metals have been used as the main raw materials (hereinafter simply referred to as raw materials) for additives for casting. 48765, Tokukai Sho
51-94424, JP 53-65212, etc., CaO,
Metal oxides such as Al 2 O 3 , SiO 2 , MgO, Na 2 O, B 2 O 3 , metal fluorides such as CaF 2 , AlF 3 , NaF, Na 3 AlF 6 , alkaline earth metals such as CaCO 3 Carbonates are shown, and their raw materials include portland cement, lime, blast furnace slag, dicalcium silicate, etc. as CaO sources, silica sand, flyash, shirasu, wollastonite, etc. as SiO 2 sources, and silica as Al 2 O 3 source. , mullite, etc., borax etc. as a source of B 2 O 3 , soda ash etc. as a source of Na 2 O, dolomite etc. as a source of MgO, fluorite as a source of CaF 2 , cryolite as a source of Na 3 AlF 6 , limestone as a source of CaCO 3 It is shown. These materials may be used either unheated or heat-treated, but those fired or melted through heat treatment are more susceptible to sludge formation and moisture content than additives made from non-heat-treated materials. Excellent in preventing trouble. Raw materials produced by heat treatment include blast furnace slag and glass powder, and natural materials such as basalt, wollastonite, and shirasu. However, since these products have large variations in their components, the components of the resulting additives also vary widely. Moreover, when these materials are used as raw materials, the composition of the raw materials is limited, so there are drawbacks such as the types of additives that can be obtained are limited to those with a certain composition. On the other hand, although attempts have been made to melt raw raw materials in a furnace, no method has yet been realized to economically obtain a molten material with little variation in composition. When an electric furnace is used as a melting furnace, there is a problem particularly in terms of electric power cost, and the electric power cost for melting is too high. In response to this, the inventor studied a cupola used as a melting furnace for melting cast iron. Cyupora can be said to be a very economical furnace if it is used only for melting, as in the case of cast iron. However, it is difficult to charge various metal oxides, metal fluorides, carbonates of alkaline earth metals, etc. into a cupola and obtain a molten product with a constant composition. For example, Table 1 shows an example in which limestone, silica stone, alumina lump, soda carbonate lump, and fluorite were dissolved using Kyupora. Table 1 shows the maximum, minimum, and average values obtained by sampling and analyzing samples every 10 minutes one hour after the furnace reached a steady state. As can be seen from the table, the composition of the melt varies greatly, and it is difficult to use such a melt as a base material for the same additive. Furthermore, when melting in a cupola, a small amount of unburned coke or unmelted raw materials may remain as inclusions in the melt.

【表】 本発明はこれらの欠点を無くする事を目的にな
されたもので、キユポラで溶解した溶融物を更に
前炉で撹拌加熱、保持する事により、成分のバラ
ツキの非常に少い溶融物を得る事が出来る事、更
に、溶融物中の介在物である未燃焼コークスは完
全に燃焼溶融し、未溶融の原料も完全に溶融し介
在物は消失してしまうことを見出した事になる。 即ち、本発明は鋼の鋳造用添加剤の原料をキユ
ポラで溶解し、次に溶融物を前炉で加熱撹拌した
後、冷却粉砕し鋼の鋳造用添加剤の基材を製造す
る方法を提供するものである。 以下、本発明に関し詳細に説明する。 キユポラで添加剤の原料を溶解させただけで
は、表1に示す様に、溶融物の成分にバラツキが
あるので、この溶融物を前炉に移し、前炉で溶融
物を一定時間加熱撹拌保持する事により、成分の
バラツキの少い溶融物とすると同時に、溶融物中
の介在物である未燃焼のコークスを完全に燃焼さ
せ灰分を溶解させ、同じく介在物である未溶融の
原料も完全に溶解させられコークスの灰分ととも
に均一な溶融物とされる。この様にしてバラツキ
の少い溶融物を得る事が出来る。 前炉で加熱する理由は、前炉に装入された溶融
物の温度低下を防止する目的の他、介在物の未燃
焼コークスを完全燃焼させてその灰分を溶融させ
る為と未溶融の原料を完全溶融させる為である。
加熱には特に選ばないが重油又はガスバーナが使
用され、加熱温度は溶融物の成分により多少異な
るが、鋼の添加剤の原料組成から考えて1300℃以
上が望ましい。 前炉での撹拌時間は溶融物の成分及びバラツキ
にもよるが、10分以上で良く、最も望ましいのは
20分程度である。 一方、本発明のものは前炉で溶融物を一定時間
撹拌加熱保持する様にしているので、この時、少
量の成分調整材やキユポラで溶解したのでは少量
配分の原料で成分のバラツキの原因となり易いも
のを、前炉で配分し均一な溶融物とする事が出来
る。 この様にして、前炉で均一に溶解された溶融物
を水砕で粉砕し添加剤の基材と成す。この基材に
使用目的に応じてカーボン、窒化硼素、炭酸リチ
ウム、フツ化ナトリウム等の溶融速度調整材やフ
ラツクス又は少量の成分調整材の1種又は数種を
加えて製品の添加剤とする場合と、そのままの成
分で他は何も加えないで製品とする場合がある。 以下に、本発明の実施例を説明する。 実施例 1 径約50mmの珪石28.4wt%、消石灰30.9wt%(塊
状に成形)、シヤモツト8.7wt%(塊状に成形)、
炭酸ソーダ19.4wt%(塊状に成形)、蛍石12.6wt
%を原料2として第1図に示す径650mmのキユポ
ラ11に径60〜80mmのコークス1とともに原料80
重量部に対しコークス20重量部の割合で装入し、
羽口12から送風量100Nm3/min・m2でこれら
をコークスの熱で溶解させる。その溶解物を炉床
13に設けた出湯口14より出湯し、出湯樋15
を通して前炉16の装入口20より前炉へ溶融物
を2トン装入する。 その後溶融物22の入つた前炉16を台車23
ごと別の場所へ移動させ、代わりに空の前炉を出
湯樋15の位置に配置してキユポラの連続運転を
行う。この時溶融物の入つた前炉内の温度は加熱
バーナ19により1300℃に保たれており、撹拌機
18により溶融物を20分間撹拌後、前炉16を傾
動させて出湯口21より溶融物を水槽へ投入して
水砕し乾燥後添加剤の基材とした。この基材を50
Kgごとに採取し分析を行つた結果は表2のとおり
であつた。基材の品質は非常に均一である事を示
している。又、各前炉のロツト間のバラツキも表
1に示される標準偏差とほぼ同一の値であつた。
更に、未溶融の原料や未燃焼コークスも見当らな
かつた。 本基材97重量部に、溶融速度調整剤としてコー
クス粉3重量部、バインダーとしてCMCを加え
均一に混合した後、押出し造粒を行ない連続鋳造
用添加剤とした。本添加剤を中炭アルミキルド鋼
の連続鋳造(引抜速度1.8m/min)に使用した
結果は鋳造作業性が良く、又鋳片の欠陥も無く良
好であつた。
[Table] The present invention was made to eliminate these drawbacks, and by further stirring, heating and holding the molten material melted in the cupola in the forehearth, it is possible to create a molten material with very little variation in composition. Furthermore, it was discovered that unburned coke, which is an inclusion in the melt, is completely burned and melted, and that the unmelted raw materials are also completely melted and the inclusions disappear. . That is, the present invention provides a method for producing a base material for a steel casting additive by melting raw materials for a steel casting additive in a cupola, then heating and stirring the melt in a forehearth, cooling and pulverizing the material. It is something to do. The present invention will be explained in detail below. If the raw materials for additives are simply melted in the cupola, the composition of the melt will vary as shown in Table 1, so the melt is transferred to the fore-furnace, where it is heated and stirred for a certain period of time. By doing this, it is possible to obtain a molten material with less variation in composition, while at the same time completely burning the unburned coke that is an inclusion in the molten material and dissolving the ash, and also completely burning the unburned coke that is an inclusion in the molten material. It is melted and made into a homogeneous melt together with the ash of the coke. In this way, a melt with little variation can be obtained. The reason for heating in the fore-furnace is to prevent the temperature of the molten material charged into the fore-furnace from decreasing, as well as to completely burn the unburned coke included in the inclusions and melt the ash. This is to ensure complete melting.
Heavy oil or a gas burner is used for heating, although not particularly selected, and the heating temperature varies somewhat depending on the composition of the melt, but it is preferably 1300°C or higher considering the raw material composition of the steel additive. The stirring time in the forehearth depends on the composition and variation of the melt, but it can be at least 10 minutes, and the most desirable is
It takes about 20 minutes. On the other hand, in the case of the present invention, the molten material is stirred and heated for a certain period of time in the forehearth, so at this time, if a small amount of component adjustment material or cupola is used for melting, the small amount of raw materials distributed may cause variations in the components. It is possible to distribute the materials that tend to form into a uniform melt in the forehearth. In this way, the molten material uniformly melted in the forehearth is pulverized by water pulverization to form the base material of the additive. Depending on the purpose of use, one or more of melting rate adjusting materials such as carbon, boron nitride, lithium carbonate, sodium fluoride, flux, or a small amount of component adjusting materials may be added to this base material to use it as a product additive. In some cases, products are made with the same ingredients without adding anything else. Examples of the present invention will be described below. Example 1 28.4wt% silica stone with a diameter of about 50mm, 30.9wt% slaked lime (formed into a lump), 8.7wt% siyamoto (formed into a lump),
Soda carbonate 19.4wt% (formed into lumps), fluorite 12.6wt
% as raw material 2, raw material 80 is placed in cupola 11 with a diameter of 650 mm as shown in Figure 1 together with coke 1 with a diameter of 60 to 80 mm.
Charge the coke at a ratio of 20 parts by weight to parts by weight,
These are melted by the heat of the coke with an air flow rate of 100 Nm 3 /min·m 2 from the tuyere 12. The melted material is tapped out from the tap hole 14 provided in the hearth 13,
Two tons of melt is charged into the forehearth from the charging port 20 of the forehearth 16 through the forehearth. After that, the forehearth 16 containing the molten material 22 is transferred to the trolley 23.
Instead, an empty forehearth is placed at the tap water gutter 15, and the cupola is continuously operated. At this time, the temperature in the fore-furnace containing the molten material is maintained at 1300°C by the heating burner 19, and after stirring the molten material for 20 minutes by the stirrer 18, the fore-furnace 16 is tilted and the molten material is poured from the tapping port 21. The mixture was poured into a water tank, pulverized, dried, and used as a base material for additives. 50 pieces of this base material
Table 2 shows the results of sampling and analysis for each kg. It shows that the quality of the substrate is very uniform. Furthermore, the variation between lots of each forehearth was approximately the same as the standard deviation shown in Table 1.
Furthermore, no unmelted raw material or unburned coke was found. To 97 parts by weight of this base material, 3 parts by weight of coke powder as a melting rate regulator and CMC as a binder were added and mixed uniformly, followed by extrusion granulation to obtain an additive for continuous casting. When this additive was used in continuous casting of medium-coal aluminum-killed steel (with a drawing speed of 1.8 m/min), the casting workability was good and there were no defects in the slabs.

【表】 実施例 2 径約50mmの珪石35.4wt%、消石灰44.1wt%、炭
酸ソーダ12.0wt%、蛍石8.5wt%の配合のものを
原料として、原料80重量部に対し、60〜80mm径の
コークス20重量部の割合でキユポラに装入し、送
風量90Nm3/min・m2で溶解させ、これらの溶融
物を2Ton前炉へ装入後、原料投入装置17より
フツ化ソーダ30Kg装入後、前炉内の温度を1350℃
に保ち、撹拌機18で30分間撹拌後、溶融物を水
砕し乾燥後添加剤の基材とした。この基材を40個
所より採取し分析を行つた結果は表3のとおりで
あつた。基材の品質は非常に均一である事も示し
ている。更に、未溶融の原料や未燃焼コークスも
見当たらなかつた。
[Table] Example 2 Using a mixture of 35.4 wt% silica stone, 44.1 wt% slaked lime, 12.0 wt% soda carbonate, and 8.5 wt% fluorite with a diameter of about 50 mm as a raw material, a diameter of 60 to 80 mm was added to 80 parts by weight of the raw material. 20 parts by weight of coke is charged into the cupola and melted at an air flow rate of 90Nm 3 /min・m 2 .After charging these melts to a 2Ton forehearth, a 30Kg charge of soda fluoride is charged from the raw material charging device 17. After heating, the temperature inside the forefurnace is set to 1350℃.
After stirring for 30 minutes with a stirrer 18, the melt was crushed, dried, and used as a base material for additives. This base material was sampled from 40 locations and analyzed, and the results are shown in Table 3. It also shows that the quality of the substrate is very uniform. Furthermore, no unmelted raw materials or unburned coke were found.

【表】 以上、述べた様に本発明によれば経済的に非常
に成分変動の少い添加剤の基材を得る事が出来
る。しかも、生の原料を使用した場合は不向とさ
れていた、水酸化物、炭酸塩、結晶水を含む原料
でも本発明では制限なく使用出来、使用する原料
に制限がなく、目的とする成分の基材を自由に製
造する事が出来る。更に、その基材は最終目的の
添加剤成分と同一にする事も出来、又はそれに近
い基材とする事によつて使用目的に応じて少量の
溶融速度調整剤、フラツクス、成分調整材の1種
又はそれ以上を加えて目的の添加剤とすることが
可能な基材を得ることが出来る。 更に、本発明では前炉で溶融物を一定時間撹拌
加熱保持する様にしているので、この時、少量の
成分調整材やキユポラで溶解したのでは少量配合
の原料で成分のバラツキの原因となり易いものを
前炉で配合し均一な基材を得る事が出来る。 この様な基材を基に製造された添加剤は成分の
変動が少ないので条件のきびしい鋼の高速の連続
鋳造用に適している。
[Table] As described above, according to the present invention, it is possible to economically obtain an additive base material with very little variation in composition. Moreover, raw materials containing hydroxides, carbonates, and water of crystallization, which were considered unsuitable when using raw raw materials, can be used without restriction in the present invention, and there are no restrictions on the raw materials used, and the desired components can be base materials can be manufactured freely. Furthermore, the base material can be the same as the final target additive component, or by using a base material close to it, a small amount of melting rate modifier, flux, or component adjustment material can be added depending on the purpose of use. A base material can be obtained to which one or more species can be added to make the desired additive. Furthermore, in the present invention, the molten material is stirred and heated in the forehearth for a certain period of time, so if the melt is melted with a small amount of component adjustment material or cupora, it is likely to cause variations in the components due to the small amount of raw materials mixed. A uniform base material can be obtained by blending materials in the forehearth. Additives manufactured based on such base materials have little variation in composition and are therefore suitable for high-speed continuous casting of steel under severe conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するためのキユポラ及び
前炉の構造と操業法を説明するための断面図であ
る。 1……コークス、2……原料、11……キユポ
ラ、12……羽口、16……前炉、18……撹拌
機、19……加熱バーナ。
FIG. 1 is a sectional view for explaining the structure and operating method of a cupola and forehearth for carrying out the present invention. 1... Coke, 2... Raw material, 11... Kyupora, 12... Tuyere, 16... Forehearth, 18... Stirrer, 19... Heating burner.

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物、金属弗化物、アルカリ土類金属
の炭酸塩からなる鋼の鋳造用添加剤の原料をキユ
ポラで溶解し、次に前炉で加熱撹拌した後、冷却
粉砕し鋼の鋳造用添加剤の基材とすることを特徴
とする、鋼の鋳造用添加剤の基材の製造方法。
1 Raw materials for steel casting additives consisting of metal oxides, metal fluorides, and alkaline earth metal carbonates are melted in a cupola, then heated and stirred in a forehearth, cooled and ground, and added to steel casting additives. 1. A method for producing a base material for a steel casting additive, the method comprising using the base material as a base material for a steel casting additive.
JP13800482A 1982-08-10 1982-08-10 Production of base material for additive for casting of steel Granted JPS5930451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13800482A JPS5930451A (en) 1982-08-10 1982-08-10 Production of base material for additive for casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13800482A JPS5930451A (en) 1982-08-10 1982-08-10 Production of base material for additive for casting of steel

Publications (2)

Publication Number Publication Date
JPS5930451A JPS5930451A (en) 1984-02-18
JPH0212662B2 true JPH0212662B2 (en) 1990-03-23

Family

ID=15211805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13800482A Granted JPS5930451A (en) 1982-08-10 1982-08-10 Production of base material for additive for casting of steel

Country Status (1)

Country Link
JP (1) JPS5930451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530765U (en) * 1991-09-30 1993-04-23 株式会社日本アレフ Waterproof structure of sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008940A3 (en) * 1994-12-20 1996-10-01 Univ Bruxelles Method and device for retrieving aluminium contained in oxidised waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530765U (en) * 1991-09-30 1993-04-23 株式会社日本アレフ Waterproof structure of sensor

Also Published As

Publication number Publication date
JPS5930451A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
US4634461A (en) Method of melting raw materials for glass or the like with staged combustion and preheating
CA1269249A (en) Melting raw materials for glass or the like using solid fuels or fuel-batch mixtures
US4528035A (en) Composition and process to create foaming slag cover for molten steel
JP4727773B2 (en) Mold powder for continuous casting of steel using synthetic calcium silicate
CN1199908C (en) Artificial wallastonite and its producing method
CN1238531C (en) Outside of furnace refining agent and its manufacturing method
JPH0212662B2 (en)
JPH0233465B2 (en)
EP1036042B1 (en) Production of man-made vitreous fibres
JPH0699699B2 (en) Melting point depressant for coal ash
EP1036043B1 (en) Process for the production of man-made vitreous fibres
JPH0132196B2 (en)
JPH10263768A (en) Method for reusing converter slag
US3881917A (en) Method of refining steel
US2078158A (en) Method of utilizing slag
JPH0212661B2 (en)
CN1227374C (en) Production process of silicon calcium barium magnesium liquid steel cleaning agent and its production equipment
RU2697673C1 (en) Method of refining ferrosilicon from aluminum
EP1036040B1 (en) Processes and apparatus for the production of man-made vitreous fibres
CS209895B2 (en) Admixture for liningless cupola furnaces
JPH09156991A (en) Method for producing artificial rock from molten slag of baked ash and apparatus therefor
SU1305178A1 (en) Method for producing reagent for desulfurization of molten cast iron
JP3173322B2 (en) Manufacturing method of high strength rock wool
CN1348996A (en) Production process and equipment for Si-Ca-Mg agent for purifying molten steel
GB2024046A (en) Process for the production of a granular synthetic slag for continuous steel casting