JPH0233465B2 - - Google Patents

Info

Publication number
JPH0233465B2
JPH0233465B2 JP57135678A JP13567882A JPH0233465B2 JP H0233465 B2 JPH0233465 B2 JP H0233465B2 JP 57135678 A JP57135678 A JP 57135678A JP 13567882 A JP13567882 A JP 13567882A JP H0233465 B2 JPH0233465 B2 JP H0233465B2
Authority
JP
Japan
Prior art keywords
base material
raw materials
additives
melting
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57135678A
Other languages
Japanese (ja)
Other versions
JPS5927753A (en
Inventor
Taku Yoshimitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP13567882A priority Critical patent/JPS5927753A/en
Publication of JPS5927753A publication Critical patent/JPS5927753A/en
Publication of JPH0233465B2 publication Critical patent/JPH0233465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鋼の造塊及び連続鋳造などに使用する
鋳造用添加剤の基材の新しい製造方法に関するも
のである。 従来、鋳造用添加剤の主原料(以下、単に原料
という)として金属酸化物、金属弗化物及びアル
カリ土類金属炭酸塩等が使用されており、これら
のものは熱処理されていないものと熱処理された
ものを使用する場合があるが、熱処理により焼成
又は溶融させたものは熱処理しないものを原料と
した添加剤よりも滓化性及び水分に帰因するトラ
ブルの点で優れている。熱処理による原料として
は高炉滓やガラス粉末又、天然のものとして玄武
岩、ウオラストナイト、シラス等がある。 しかし、これらのものは成分のバラツキが大き
いので得られる添加剤の成分にバラツキが大き
い。及びこれらのものを原料としたのでは原料に
組成の限定があるので、得られる添加剤の品種が
一定組成の品種に限定される等の欠点がある。 一方、熱処理されていない原料を炉で溶解しよ
うとする試みはなされているが、未だ成分のバラ
ツキの少い溶融物を経済的に得る事は実現してい
ない。 溶解炉として電気炉を使用した場合特に電力費
の点で問題がある。たとえば1000KWH/Tonあ
るいはそれ以上溶解に大量に使用する点で問題が
ある。これに対し発明者は電気炉と異なる溶解炉
として鋳鉄溶解に使用するキユポラの検討を行な
つた。キユポラ溶解は鋳鉄の例にみられるように
単に溶解するだけならば非常に経済的な溶解炉と
いえる。しかしながら各種の金属酸化物、弗化物
等をキユポラに投入し一定な成分の溶融物がえら
れるかどうかは問題がある。例えば、径約50mmの
石灰石、珪石、アルミナ塊(塊状に成形)、炭酸
ソーダ塊(塊状に成形)、蛍石塊をキユポラで溶
解を行つた例を示すと第1表のとおりであつた。
第1表は炉が定常状態になつてから1時間后に10
分間毎にサンプリングし分析してえられた5回の
最大値、最小値および平均値である。表から分る
ようにその変動は著しく、このように変動するも
のを同一溶融物として管理することははなはだ困
難である。
The present invention relates to a new method for producing a base material for casting additives used in steel ingot making and continuous casting. Conventionally, metal oxides, metal fluorides, alkaline earth metal carbonates, etc. have been used as the main raw materials (hereinafter simply referred to as raw materials) for casting additives, and these can be either unheat-treated or heat-treated. However, additives that have been calcined or melted through heat treatment are superior to additives made from materials that have not been heat treated in terms of sludge formation and troubles caused by moisture. Raw materials produced by heat treatment include blast furnace slag, glass powder, and natural materials such as basalt, wollastonite, and shirasu. However, since these products have large variations in their components, the components of the resulting additives also vary widely. If these materials are used as raw materials, the composition of the raw materials is limited, so there are drawbacks such as the additives that can be obtained are limited to those with a certain composition. On the other hand, although attempts have been made to melt raw materials that have not been heat treated in a furnace, it has not yet been possible to economically obtain a molten material with less variation in composition. When an electric furnace is used as a melting furnace, there is a problem particularly in terms of electric power costs. For example, there is a problem in using a large amount of 1000KWH/Ton or more for melting. In response, the inventor investigated a cupola used for melting cast iron as a melting furnace different from an electric furnace. Cupora melting can be said to be a very economical melting furnace if it only melts, as seen in the example of cast iron. However, there is a problem as to whether or not it is possible to obtain a molten product with a constant composition by introducing various metal oxides, fluorides, etc. into a cupola. For example, Table 1 shows examples in which limestone, silica stone, alumina lumps (formed into lumps), soda carbonate lumps (formed into lumps), and fluorite lumps with a diameter of about 50 mm were melted using Kyupora.
Table 1 shows 10 hours after the furnace has reached steady state.
These are the maximum value, minimum value, and average value of five times obtained by sampling and analyzing every minute. As can be seen from the table, the fluctuations are significant, and it is extremely difficult to manage such fluctuating materials as the same melt.

【表】 本発明は、これらの欠点を無くする事を目的に
なされたもので、原料を一定粒度以下に粉砕し、
混合しそれを造粒したものを溶解炉で溶解すれば
成分のバラツキの非常に少い溶解物を得られる事
を見出した事による。即ち、本発明は鋼の鋳造用
添加剤の原料を3mm以下に粉砕して混合したもの
を使用することによつて溶融物の成分の均一性を
計り、また、この混合物を5〜100mmの粒径に造
粒することによつてキユポラでの溶解を可能とし
(キユポラの操業を可能とし)更に、造粒物単位
ごとに溶解させて溶融物の成分の均一性を計るこ
とにより、経済的に非常に成分変動の少い鋼の鋳
造用添加剤の基材を得る方法を提供するものであ
る。以下、本発明に関し詳細に説明する。 原料を粒径3mm以下に粉砕する理由は3mmより
も大きくなると、溶解物の成分のバラツキが大き
くなる傾向がある事、混合物の原料の混合バラツ
キが大きくなる傾向がある事と、キユポラに装入
する為に、粉砕、混合した原料を造粒する場合、
造粒性が悪くなつたり、造粒強度が劣しくなる傾
向が現われる為である。最も望ましい粒度は100
メツシユアンダーである。 次に、キユポラに装入する為に、粉砕、混合し
た原料を造粒する場合、原料中のCaO質、粘土質
等がバインダーとしての働をするので、一般に小
さい粒度のものはバインダーを必要としないが、
大きい粒度でバインダーを必要とする場合は水ガ
ラス、コロイダルシリカ、レジン、スターチ等の
有機、無機のものを使用出来る。造粒品の粒径と
しては5〜100mmが望ましい。5mmより小さいと
装入物間の通気性が悪く、又100mmより大きくな
ると通気が良過ぎて溶解の為の熱効率、溶解性が
悪くなり、キユポラの操業が悪くなるためであ
る。キユポラに上記、造粒品と造粒品より少し大
きい粒径のコークスを装入し、これらを溶解さ
せ、この溶解物を水砕で粉砕し添加剤の基材と成
す。この様にして、得られた基材に使用目的に応
じて、一般に公知である炭素質、窒化硼素等の溶
融速度調整剤、弗化ナトリウム、水晶石、炭酸ソ
ーダー、炭酸リチユーム、螢石等のフラツクス及
びSiO2源としてガラス粉、珪藻土等、CaO源と
して炭酸カルシユウム、螢石等の少量の成分調整
材品の添加剤とする場合と、そのままの成分で他
は何も加えないで製品とする場合がある。 以下に本発明の実施例を説明する。 実施例 1 100メツシユアンダーに粉砕した珪石27.3wt%、
石灰石33.7wt%、アルミナ3.6wt%、螢石20.9wt
%、炭酸ソーダー14.5wt%をナウターミキサーで
均一に混合し、パン型造粒機でこの混合物に水を
加えて20〜60mm径のペレツトを製造、このペレツ
ト80wt%と60〜80mm径のコークス20wt%を径650
mmの水冷式キユポラに装入、送風量100Nm3
min・m2で40時間の連続溶解を行つた。溶融物は
タツプホールより水槽に投下、水砕し、乾燥後添
加剤の基材とした。1時間毎にこの基材を採取
し、分析を行なつた結果は第2表のとおりであつ
た。第2表に示すように本基材は40時間の連続操
業にもかかわらずその成分の変動は標準偏差から
みてもはなはだ良好で、品質の均一性を示してい
る。本基材97.5重量部に、溶融速度調整剤として
カーボンブラツク2.5授量部、バインダとして
CMC(カルボキシメチルセルローズ)を加え均一
に混合した後押出し造粒を行ない連続鋳造用添加
剤とした。本添加剤を中炭アルミキルド鋼の連続
鋳造(引抜速度1.8m/min)に使用した結果は鋳
造作業性も鋳片清浄性もはなはだ良好であつた。
[Table] The present invention was made to eliminate these drawbacks, and it involves pulverizing raw materials to below a certain particle size,
This is based on the discovery that if the mixture is mixed and granulated and then melted in a melting furnace, a melt with very little variation in components can be obtained. That is, the present invention measures the uniformity of the composition of the melt by using raw materials for steel casting additives that have been ground and mixed into particles of 3 mm or less, and the mixture is ground into particles of 5 to 100 mm. By granulating the granules to a certain diameter, it is possible to melt them in a cupola (capable of operating a cupola), and furthermore, by melting each granule unit and measuring the uniformity of the composition of the melt, it is possible to achieve economical results. The present invention provides a method for obtaining a base material for a steel casting additive with very little variation in composition. The present invention will be explained in detail below. The reason why raw materials are crushed to a particle size of 3 mm or less is that when the particle size is larger than 3 mm, there is a tendency for the dispersion of the components of the melt to increase, and that the dispersion of the raw materials for the mixture tends to increase. When granulating crushed and mixed raw materials in order to
This is because there is a tendency for granulation properties to deteriorate and granulation strength to deteriorate. The most desirable particle size is 100
It is mesh under. Next, when the crushed and mixed raw materials are granulated to be charged into Kyupora, CaO, clay, etc. in the raw materials act as binders, so small particle sizes generally do not require a binder. I don't, but
If a binder is required with large particle size, organic or inorganic materials such as water glass, colloidal silica, resin, starch, etc. can be used. The particle size of the granulated product is preferably 5 to 100 mm. If it is smaller than 5 mm, the air permeability between the charges will be poor, and if it is larger than 100 mm, the air permeability will be too good, resulting in poor thermal efficiency and solubility for melting, and poor operation of the cupola. The above-mentioned granulated product and coke with a particle size slightly larger than the granulated product are charged into Kyupora, these are melted, and this melt is pulverized by water pulverization to form the base material of the additive. In this way, depending on the purpose of use, the base material obtained may be coated with generally known carbonaceous materials, melting rate regulators such as boron nitride, sodium fluoride, quartzite, soda carbonate, lithium carbonate, fluorite, etc. Glass powder, diatomaceous earth, etc. are used as flux and SiO 2 sources, and calcium carbonate, fluorite, etc. are used as CaO sources as additives for small amounts of component adjustment materials, and when used as products with the same ingredients without adding anything else. There are cases. Examples of the present invention will be described below. Example 1 27.3wt% of silica stone crushed to under 100 mesh,
Limestone 33.7wt%, alumina 3.6wt%, fluorite 20.9wt
% and 14.5 wt% of soda carbonate are mixed uniformly in a Nauta mixer, water is added to this mixture in a pan-type granulator to produce pellets with a diameter of 20 to 60 mm, and the pellets are mixed with 80 wt% of coke and coke with a diameter of 60 to 80 mm. 20wt% diameter 650
Charged to mm water-cooled cupola, air flow rate 100Nm 3 /
Continuous dissolution was carried out for 40 hours at min·m 2 . The molten material was poured into a water tank through a taphole, pulverized, dried, and used as a base material for additives. The base material was sampled every hour and analyzed. The results are shown in Table 2. As shown in Table 2, even though this base material was operated continuously for 40 hours, the fluctuation of its components was very good in terms of standard deviation, indicating uniformity of quality. 97.5 parts by weight of this base material, 2.5 parts of carbon black as a melting rate regulator, and 2.5 parts of carbon black as a binder.
CMC (carboxymethyl cellulose) was added and mixed uniformly, followed by extrusion granulation to create an additive for continuous casting. When this additive was used in continuous casting of medium-coal aluminum-killed steel (with a drawing speed of 1.8 m/min), both casting workability and slab cleanliness were extremely good.

【表】 実施例 2 48メツシユアンダーに粉砕した珪石25.5wt%、
シヤモツト12.7wt%、消石灰35.2wt%、炭酸ソー
ダー17.8wt%、螢石8.8wt%をナウターミキサー
で均一に混合し、パン型造粒機でこの混合物に水
を加えて30〜50mm径のペレツトを製造、このペレ
ツト80wt%と60〜80mm径のコークス20wt%を水
冷式キユポラに装入、送風量90Nm3/min・m2
60時間の連続溶解を行つた。溶融物は水砕し、乾
燥後添加剤の基材とした。この基材は1時間毎に
採取し分析を行つた結果は第3表のとおりであつ
た。
[Table] Example 2 25.5wt% of silica stone crushed into 48 mesh under,
12.7wt% of limestone, 35.2wt% of slaked lime, 17.8wt% of soda carbonate, and 8.8wt% of fluorite are mixed uniformly in a Nauta mixer, and water is added to this mixture in a pan-shaped granulator to form pellets with a diameter of 30 to 50 mm. 80wt% of these pellets and 20wt% of coke with a diameter of 60 to 80mm were charged into a water-cooled cupola, and the air flow rate was 90Nm 3 /min・m 2
Continuous lysis was performed for 60 hours. The melt was crushed into water and used as a base material for additives after drying. This base material was sampled every hour and analyzed, and the results are shown in Table 3.

【表】 第3表に示す様に本基材は60時間の長時間操業
にもかわらずその成分変動は非常に少く1%以下
で品質の均一性を示している。 実施例 3 12メツシユアンダーに粉砕したポルトランドセ
メント50wt%、珪石41.3wt%、炭酸ソーダー
8.7wt%をナウターミキサーで均一に混合し、パ
ン型造粒機でこの混合物100重量部、レジン4重
量部、水ガラス2重量部に水を加えて30〜60mm径
のペレツトを製造、このペレツト80wt%とコー
クス20wt%をキユポラに装入、40時間の連続溶
解を行つた。溶融物は水砕し、乾燥後添加剤の基
材とした。この基材は1時間毎に採取し分析を行
つた結果は第4表のとおりであつた。本基材は成
分の変動が非常に少く品質の均一性を示してい
る。本基材88wt%にガラス粉8wt%、コークス粉
2wt%、カーボンブラツク2wt%を加え均一に混
合して添加剤とした。この添加剤を高炭・アルミ
キルド/鋼の10Ton型下注造塊に使用した所、表
面キズや非金属介在物の非常に少い鋼塊を得る事
が出来た。
[Table] As shown in Table 3, despite long-term operation of 60 hours, this base material shows very little variation in its composition, less than 1%, indicating uniform quality. Example 3 50wt% Portland cement crushed into 12 mesh under, 41.3wt% silica stone, soda carbonate
Mix 8.7wt% uniformly with a Nauta mixer, add water to 100 parts by weight of this mixture, 4 parts by weight of resin, and 2 parts by weight of water glass using a pan-type granulator to produce pellets with a diameter of 30 to 60 mm. 80wt% pellets and 20wt% coke were charged into a cupola and melted continuously for 40 hours. The melt was crushed into water and used as a base material for additives after drying. This base material was sampled every hour and analyzed. The results are shown in Table 4. This base material exhibits uniform quality with very little variation in components. Base material 88wt%, glass powder 8wt%, coke powder
2wt% and carbon black were added and mixed uniformly to form an additive. When this additive was used in a 10-ton type bottom pouring ingot of high carbon/aluminum killed/steel, it was possible to obtain a steel ingot with very few surface scratches and nonmetallic inclusions.

【表】 以上、述べた様に本発明によれば経済的に非常
に成分変動の少い添加剤の基材を得る事が出来
る。しかも、生の原料を使用した場合は不向とさ
れていた、水酸化物、炭酸塩、結晶水を含む原料
でも本発明は制限なく使用出来、使用する原料に
制限が無く、目的とする成分の基材を自由に製造
する事が出来る。更に、その基材は最終目的の添
加剤成分と同一にする事も出来、又はそれに近い
基材とする事によつて使用目的に応じて少量の溶
融速度調整剤、フラツクス、成分調整材の1種又
はそれ以上を加えて目的の添加剤とするその様な
基材を得る事が出来る。 更に、この様な基材を基に製造された添加剤は
成分の変動が少いので条件のきびしい鋼の高速の
連続鋳造用に適している。
[Table] As described above, according to the present invention, it is possible to economically obtain an additive base material with very little variation in composition. In addition, the present invention allows the use of raw materials containing hydroxides, carbonates, and water of crystallization, which are considered unsuitable when raw raw materials are used, without any restrictions. base materials can be manufactured freely. Furthermore, the base material can be the same as the final target additive component, or by using a base material close to it, a small amount of melting rate modifier, flux, or component adjustment material can be added depending on the purpose of use. One or more species can be added to provide such a matrix as the desired additive. Furthermore, additives produced from such base materials have little variation in composition and are therefore suitable for high-speed continuous casting of steel under severe conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼の鋳造用添加剤の原料を3mm以下に粉砕
し、混合し、5〜100mmの粒径に造粒し、その造
粒物をキユポラで溶解し、冷却、粉砕することを
特徴とする鋼の鋳造用添加剤の基材の製造方法。
1. A steel characterized by pulverizing raw materials for additives for steel casting to 3 mm or less, mixing them, granulating them to a particle size of 5 to 100 mm, melting the granules in a cupora, cooling, and pulverizing them. A method for producing a base material for a casting additive.
JP13567882A 1982-08-05 1982-08-05 Production of base material for additive for casting of steel Granted JPS5927753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13567882A JPS5927753A (en) 1982-08-05 1982-08-05 Production of base material for additive for casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13567882A JPS5927753A (en) 1982-08-05 1982-08-05 Production of base material for additive for casting of steel

Publications (2)

Publication Number Publication Date
JPS5927753A JPS5927753A (en) 1984-02-14
JPH0233465B2 true JPH0233465B2 (en) 1990-07-27

Family

ID=15157364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13567882A Granted JPS5927753A (en) 1982-08-05 1982-08-05 Production of base material for additive for casting of steel

Country Status (1)

Country Link
JP (1) JPS5927753A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987003307A1 (en) * 1985-11-25 1987-06-04 Showa Denko Kabushiki Kaisha Process for synthesizing diamond
JPH0811827B2 (en) * 1985-12-24 1996-02-07 キヤノン株式会社 Deposited film formation method
JPS63285192A (en) * 1987-05-15 1988-11-22 Yoichi Hirose Synthesis of diamond in vapor phase
JP2636856B2 (en) * 1987-10-13 1997-07-30 株式会社リコー Method for producing diamond thin film
JPH02141494A (en) * 1988-07-30 1990-05-30 Kobe Steel Ltd Vapor phase synthetic device of diamond
JP3439423B2 (en) 2000-04-11 2003-08-25 オーエスジー株式会社 Method for removing diamond film and method for producing diamond-coated member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987515A (en) * 1972-09-18 1974-08-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987515A (en) * 1972-09-18 1974-08-21

Also Published As

Publication number Publication date
JPS5927753A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
CN1151902C (en) Pre-molten protective particle sludge and its production process
CN104556702A (en) Method for preparing high-alkalinity glass ceramic from metallurgical slag
JP4727773B2 (en) Mold powder for continuous casting of steel using synthetic calcium silicate
CN113698115B (en) Active auxiliary cementing material and method for on-line tempering of steel slag
US4141722A (en) Method of treating ferruginous slags
JPH0233465B2 (en)
CN102876839A (en) Low-silicon-aluminum-killed-steel-casting-slag-based refining agent and preparation method thereof
CN1049117A (en) Presmelting vitrification continuous casting protective slag and production technology thereof
JPH0656474A (en) Feedstock for producing rock wool
CN1341755A (en) Production process of silicon calcium barium liquid steel cleaning agent and its equipment
JPS6353245B2 (en)
JPH06248365A (en) Production of low-cao sintered ore
JP2003328022A (en) Desulfurizing agent for molten steel and manufacturing method therefor
CA1324239C (en) Mold additive for continuous casting of steel
JPH0212662B2 (en)
JPH06226410A (en) Insulating material for molten steel
CN1227374C (en) Production process of silicon calcium barium magnesium liquid steel cleaning agent and its production equipment
CN1227375C (en) Production process and equipment for Si-Ca-Mg agent for purifying molten steel
JP4084432B2 (en) Manufacturing method of inorganic material
WO2024090581A1 (en) Method for producing hydraulic cement composition using electric furnace slag
JPH0212661B2 (en)
SU1305178A1 (en) Method for producing reagent for desulfurization of molten cast iron
JP2000044303A (en) Production of artificial aggregate
CN108580821A (en) A kind of calcium and magnesium tundish thermal-insulating covering agent and preparation method thereof
JPH09279260A (en) Method for agglomerating iron ore