JPH02126540A - Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube - Google Patents

Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube

Info

Publication number
JPH02126540A
JPH02126540A JP27730688A JP27730688A JPH02126540A JP H02126540 A JPH02126540 A JP H02126540A JP 27730688 A JP27730688 A JP 27730688A JP 27730688 A JP27730688 A JP 27730688A JP H02126540 A JPH02126540 A JP H02126540A
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
panel glass
coating
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27730688A
Other languages
Japanese (ja)
Inventor
Yoshihito Katayama
佳人 片山
Junichi Iura
井浦 純一
Toshiyasu Kawaguchi
年安 河口
Tsunehiko Sugawara
恒彦 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP27730688A priority Critical patent/JPH02126540A/en
Priority to US07/424,871 priority patent/US5045751A/en
Priority to EP19890119755 priority patent/EP0366090A3/en
Priority to KR1019890015386A priority patent/KR900007042A/en
Priority to KR1019890015896A priority patent/KR900007740A/en
Priority to EP19890120309 priority patent/EP0367269A3/en
Publication of JPH02126540A publication Critical patent/JPH02126540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To increase rupture strength of a panel glass by coating a skirt portion of the panel glass of a cathode ray tube with a specific sol liquid and forming the panel glass into a minute successive membrane by heat treatment at a temperature lower than a strain point of the panel glass. CONSTITUTION:Water and acid are added to the solution composed by dissolving metallic alkoxide and metallic salt as precursor of metallic acid of one kind or more into organic solvent such as alcohol to form sol liquid in which compand is dispersed as hydrophilic oligomer. A skirt portion of a panel glass of a cathode ray tube is coated with the sol liquid and heated at a temperature lower than a strain point of the panel glass to be a minute membrane. Thus, flaw on the glass surface is restricted to grow by stress. Further, the stress is not concentrated on an edge of the flaw. Therefore, rupture strength of the cathode ray tube is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、陰極線管の真空排気時の破壊確率を減少させ
るため、パネルガラス・スカート部の表面に化学結合に
よって固着した緻密なガラス質連続被膜を形成すること
による陰極線管の破壊強度の増加方法及び補強された陰
極線管。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims to reduce the probability of cathode ray tubes being destroyed during evacuation. A method for increasing the breaking strength of a cathode ray tube by forming a coating and a reinforced cathode ray tube.

[従来の技術] 従来、ガラスの破壊強度を増加させる方法としては、ガ
ラスを軟化点付近の温度まで加熱しておき急冷する風冷
強化法と、ガラス中に含まれるアルカリイオンを別種の
アルカリイオンとイオン交換する化学強化法の二つが知
られている。しかるに、風冷強化法は陰極線管が変形す
る700℃の高温処理が必要であり、一方、化学強化法
は、製造コスト高、温度上界に伴うイオン移動による強
度減少といった問題点がある。
[Conventional technology] Conventionally, methods for increasing the breaking strength of glass include the air-cooling strengthening method, in which glass is heated to a temperature near its softening point and then rapidly cooled; There are two known chemical strengthening methods: and ion exchange. However, the air-cooling strengthening method requires high-temperature treatment at 700° C., which deforms the cathode ray tube, while the chemical strengthening method has problems such as high manufacturing costs and a decrease in strength due to ion migration associated with the upper temperature limit.

[発明の解決しようとする課題] 本発明の目的は、陰極線管のシール後の真空排気中での
破壊確率を0.1%以下に低減しようとするものである
。また、最近のパネルの大型化に伴ない、その軽量化の
要請が高まっているが本発明は、これをも可能にしよう
とするものである。
[Problems to be Solved by the Invention] An object of the present invention is to reduce the probability of destruction of a cathode ray tube during vacuum evacuation after sealing to 0.1% or less. Furthermore, with the recent increase in the size of panels, there is an increasing demand for their weight reduction, and the present invention is intended to make this possible.

一般にガラスが理論強度よりはるかに弱く、われやすい
原因として、ガラス表面に存在する極めて小さい傷−G
riffiむh Flaw−が考えられている。ガラス
に応力が加わるとこの傷が広げられる方向に変形し、そ
の先端に応力集中が起き、クラックが成長して破壊にい
たる。従来の強化法は、ガラス表面に圧縮応力層を形成
することにより、傷の先端への応力集中を緩和しようと
するものである。しかして、本発明においては、ガラス
表面に固着した緻密なガラス質被膜を形成することによ
り、応力による傷口の拡大を軽減し、傷の先端への応力
集中を緩和しようとするものである。
In general, the reason why glass is much weaker than its theoretical strength and easy to break is because of the extremely small scratches that exist on the glass surface.
Riffimh Flow- is being considered. When stress is applied to the glass, it deforms in a direction that widens this flaw, causing stress concentration at the tip of the glass, causing a crack to grow and breakage. Conventional strengthening methods attempt to alleviate stress concentration at the tip of a flaw by forming a compressive stress layer on the glass surface. In the present invention, therefore, by forming a dense glassy film fixed to the glass surface, the expansion of the wound due to stress is reduced and the concentration of stress at the tip of the wound is alleviated.

[課題を解決するだめの手段] 本発明は、従来の強化法のもつ、製造コスト高、高温処
理といった問題点を解法ずべくなされたものであり、陰
極線管の破壊強度の増加方法及び補強された陰極線管を
提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the problems of conventional strengthening methods, such as high manufacturing costs and high-temperature treatment, and provides a method for increasing the breaking strength of cathode ray tubes and a method for reinforcing them. The present invention provides a cathode ray tube.

本発明におけるガラス表面のコーティングは、ガラス表
面に存在する傷の応力による拡大を軽減し、傷先端への
応力集中を緩和することが目的であるから、被膜はガラ
ス表面に化学結合で強く固着され、十分に緻密でマイク
ロクラックのないガラス質の連続被膜であることが必波
である。したがって、被膜としては、ガラス表面の叶基
と化学結合が可能な金属酸化物であることが望まれ、そ
の前駆体としては金属アルコキシドおよびl′iri酸
塩、酢酸塩、ハロゲン化物笠の金属塩の1種または2種
以上を組み合せて使用でき、特にエチルシリケートのよ
うなシリコンアルコキシドが有効である。その他、この
iTI駆体の主成分金属元素としては、Ti、7.rA
l、Na等のガラス質を作りつるものが使用できる。ま
た、十分に緻密でマイクロクラックのない連続被膜を得
るためには、コート液中のゾル液は十分に加水分解され
た親水性オリゴマーであることが望ましい。さらに、パ
ネルガラスに被膜を形成する場合、その歪点以下の低温
(通常30[1℃〜470℃)での熱処理により緻密な
連続被膜とすることが重要である。470℃以下の温度
であれば、パネルのフリットシール時に同時に焼成する
ことができ、かつ徐冷も必要でなくなるからである。な
お、このように低温焼成で被膜形成するためには、エチ
ルシリケートの縮重合度がまだ低く、反応性の高い表面
をもちつるlO八へ100人の粒径のゾル粒子が、コー
ト液中で準安定に存在にすることが望ましい。
The purpose of coating the glass surface in the present invention is to reduce the expansion of scratches existing on the glass surface due to stress and to alleviate stress concentration at the tip of the scratch, so the coating is strongly adhered to the glass surface by chemical bonds. , it is essential that the film be a continuous glassy coating that is sufficiently dense and free of microcracks. Therefore, the coating is preferably a metal oxide that can chemically bond with the glass surface group, and its precursors include metal alkoxides, l'iriates, acetates, and metal salts of halide caps. One type or a combination of two or more types can be used, and silicon alkoxides such as ethyl silicate are particularly effective. In addition, the main component metal elements of this iTI precursor include Ti, 7. rA
A glass material made of vitreous material such as L, Na, etc. can be used. Furthermore, in order to obtain a sufficiently dense and continuous coating without microcracks, it is desirable that the sol in the coating liquid be a sufficiently hydrolyzed hydrophilic oligomer. Furthermore, when forming a film on panel glass, it is important to form a dense continuous film by heat treatment at a low temperature below the strain point (usually 30°C to 470°C). This is because if the temperature is 470° C. or lower, baking can be performed simultaneously with the frit sealing of the panel, and slow cooling is not necessary. In addition, in order to form a film by firing at a low temperature, ethyl silicate has a low condensation degree and a highly reactive surface. It is desirable to have it exist in a metastable manner.

本発明において、処理液のパネルガラスへのコーティン
グは、デイシブ法、スプレー法あるいはへケ塗り法など
の方法が適宜選択できる。
In the present invention, for coating the panel glass with the treatment liquid, a method such as a dissipative method, a spray method, or a brush coating method can be selected as appropriate.

また、被膜の厚みは特に限定されないが5通常は数千人
あれば十分その効果が得られる。特に、被膜の膜厚を大
きくしたい場合には、必要に応じ重ね塗りを行なえば良
い。
Further, the thickness of the coating is not particularly limited, but usually several thousand people can obtain the desired effect. In particular, when it is desired to increase the thickness of the coating, multiple coatings may be performed as necessary.

更にまた、通常は陰極線管のパネルガラスのスカート部
の全体にコーティングするが、特に取扱い時に損傷を受
けやすい部分あるいは引張応力が集中的に発生しやすい
部分など補強効果の大きい部分のみにコーティングする
ことも可能である。
Furthermore, although the entire skirt portion of the panel glass of a cathode ray tube is usually coated, it is recommended that the coating be applied only to areas where the reinforcing effect is large, such as areas that are particularly susceptible to damage during handling or areas where tensile stress is likely to be concentrated. is also possible.

[実施例] エチルシリケートに8モル倍のエタノールと11モル倍
の酸性水溶液(all=2〜3)を混合し、約90℃で
3時間還流を行い、十分に加水分解したシロキサン・オ
リゴマーからなる粒径数 100人オーダーのゾル液を
合成した。
[Example] Ethyl silicate is mixed with 8 moles of ethanol and 11 times the mole of an acidic aqueous solution (all = 2 to 3) and refluxed at about 90°C for 3 hours to form a fully hydrolyzed siloxane oligomer. A sol solution with a particle size on the order of 100 particles was synthesized.

このゾル液をコーテイング液とし、パネルガラスより切
り出した5 mmX 5 mmX 60mmのサンプル
・ピースに引き」二げ速度10cm/minでデイツプ
・コートした。この時、サンプル・ピースには予め、1
kgの荷重をかけたビッカース圧針により加傷しておい
た。次に、これを60℃で5分間屹燥した後、440℃
で30分間焼成した。こうして作製された被膜の膜厚は
約3000人であった。また、屈折率1.45.動的押
し込み硬度380 gf/μm2で、溶融石英ガラスの
屈折率1.458 、動的押し込み硬度410gf/μ
m2に非常に近い値であることより、はぼ細孔のない緻
密なガラス質の被膜であることがわかった。このような
ガラス質被膜で処理した加傷サンプル・ピースの三点曲
げ強度は約800kg/cm”となり、被膜のない加傷
サンプル・ピースの三点曲げ強度である約500kg/
cm”に対し約186倍となった。
This sol solution was used as a coating solution, and was dip-coated onto a 5 mm x 5 mm x 60 mm sample piece cut out from a panel glass at a cutting speed of 10 cm/min. At this time, the sample piece has 1
The wound was inflicted using a Vickers pressure needle with a load of 1 kg. Next, this was dried at 60°C for 5 minutes, and then dried at 440°C.
Baked for 30 minutes. The thickness of the film thus produced was about 3,000. Also, the refractive index is 1.45. Dynamic indentation hardness is 380 gf/μm2, refractive index of fused silica glass is 1.458, dynamic indentation hardness is 410 gf/μm
Since the value was very close to m2, it was found that the film was a dense glassy film with no pores. The three-point bending strength of the scratched sample piece treated with such a glassy coating is approximately 800 kg/cm", which is approximately 500 kg/cm", which is the three-point bending strength of the scratched sample piece without the coating.
cm” is approximately 186 times larger.

2、 メチルシリケートに10モル倍のエタノールと2
モル倍の酸性水溶液(all=2〜3)を混合し、30
℃で2時間攪拌し、十分に加水分解したシロキサン・オ
リゴマーからなるゾル液とする。これに、10モル倍の
エタノールに溶解した等モルのチタンイソプロポキシド
溶液を添加し、コーテイング液とした。
2. Methyl silicate with 10 moles of ethanol and 2
Mix twice the molar amount of acidic aqueous solution (all = 2 to 3), and add 30
The mixture was stirred at ℃ for 2 hours to obtain a sol solution consisting of a sufficiently hydrolyzed siloxane oligomer. To this was added an equimolar titanium isopropoxide solution dissolved in 10 moles of ethanol to obtain a coating solution.

このコーテイング液を実施例1と同じ加傷サンプル・ピ
ースにデイツプコートし、同様の熱処理を行った。こう
して作製された被膜の膜厚は約3000人であり、屈折
率1.95、動的押し込み硬度340gr/μm2であ
った。このようなシリカ・チタニア混合系ガラス質被膜
でコートした加傷サンプル・ピースの三点曲げ強度は約
750kg/cm”となり、被膜のない加傷サンプル・
ピースの三点曲げ強度の約1.5倍であった。
This coating liquid was dip coated on the same damaged sample piece as in Example 1, and the same heat treatment was performed. The film thus produced had a thickness of approximately 3000 mm, a refractive index of 1.95, and a dynamic indentation hardness of 340 gr/μm2. The three-point bending strength of the damaged sample piece coated with such a silica-titania mixed vitreous coating is approximately 750 kg/cm, whereas the damaged sample piece without the coating is approximately 750 kg/cm''.
It was about 1.5 times the three-point bending strength of the piece.

3、 メチルシリケートに10モル倍のエタノールと2
モル倍の酸性水溶液(pH=2〜3)を混合し、30℃
で2時間攪拌し、十分に加水分解したシロキサン・オリ
ゴマーからなるゾル液とする。これに、10モル倍のイ
ソプロパツールに溶解した等モルのジルコニウム、n−
ブトキシド溶液を添加し、コーテイング液とした。
3. Methyl silicate with 10 moles of ethanol and 2
Mix twice the molar amount of acidic aqueous solution (pH = 2 to 3) and heat at 30°C.
The mixture was stirred for 2 hours to form a sol solution consisting of sufficiently hydrolyzed siloxane oligomers. To this, equimolar zirconium dissolved in 10 molar isopropanol, n-
A butoxide solution was added to form a coating solution.

このコーテイング液を実施例1と同じ加傷サンプル・ピ
ースにデイツプコートし、同様の熱処理を行った;こう
して作製された被膜の膜厚は約2500人であり、屈折
率1.72、動的押し込み硬度330gf/μm2であ
った。このようなシリカ−ジルコニア混合系ガラス質被
膜でコートした加傷サンプル・ピースの三点曲げ強度は
、約730kg/cm2となり、被膜のない加傷サンプ
ル・ピースの三点曲げ強度の約15倍であった。
This coating solution was dip-coated on the same damaged sample piece as in Example 1, and the same heat treatment was performed; It was 330 gf/μm2. The three-point bending strength of the scratched sample piece coated with such a silica-zirconia mixed vitreous coating is approximately 730 kg/cm2, which is approximately 15 times the three-point bending strength of the scratched sample piece without the coating. there were.

[発明の効果] 本発明は上記説明の構成により、パネルガラスの歪点で
ある470℃以下の低温で緻密なガラス質の連続被膜を
パネルガラスのスカート部にコートすることができ、そ
れによりパネルガラスの破壊強度が増加するという効果
が認められる。
[Effects of the Invention] With the configuration described above, the present invention can coat the skirt portion of the panel glass with a continuous dense glass film at a low temperature of 470° C. or lower, which is the strain point of the panel glass. The effect of increasing the breaking strength of glass is recognized.

Claims (1)

【特許請求の範囲】 1、金属酸化物前駆体である金属アルコキシド、金属塩
の1種または2種以上をアルコール等の有機溶媒に溶解
した溶液に水及び酸を加え前記化合物を親水性オリゴマ
ー状態として分散させたゾル液を、陰極線管のパネルガ
ラス・スカート部にコーティングし、さらにパネルガラ
スの歪点以下の低温で熱処理することにより、緻密な被
膜とすることを特徴とする陰極線管の破壊強度を増加さ
せる方法。 2、Ti、Zr、Al、Na等のガラスをつくりうる元
素を含む特許請求の範囲第一項記載の陰極線管の強度を
増加させる方法。 3、パネルガラス・スカート部に請求項1又は2記載の
被膜を有することを特徴とする陰極線管。
[Scope of Claims] 1. Water and acid are added to a solution of one or more of metal alkoxides and metal salts, which are metal oxide precursors, dissolved in an organic solvent such as alcohol to convert the compound into a hydrophilic oligomer state. The breaking strength of cathode ray tubes is characterized by coating the panel glass skirt of cathode ray tubes with a sol dispersed as How to increase. 2. A method for increasing the strength of a cathode ray tube according to claim 1, which contains elements capable of forming glass, such as Ti, Zr, Al, and Na. 3. A cathode ray tube comprising a coating according to claim 1 or 2 on the panel glass skirt.
JP27730688A 1988-10-25 1988-11-04 Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube Pending JPH02126540A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP27730688A JPH02126540A (en) 1988-11-04 1988-11-04 Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube
US07/424,871 US5045751A (en) 1988-10-25 1989-10-20 Cathode ray tube of improved breakdown voltage characteristic
EP19890119755 EP0366090A3 (en) 1988-10-25 1989-10-24 Cathode ray tube
KR1019890015386A KR900007042A (en) 1988-10-25 1989-10-25 Cathode ray tube
KR1019890015896A KR900007740A (en) 1988-11-04 1989-11-02 Glass reinforcement method and film-forming composites and tempered glass products used therein
EP19890120309 EP0367269A3 (en) 1988-11-04 1989-11-02 Method for reinforcing glass, film-forming composition for the reinforcement of glass and reinforced glass articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27730688A JPH02126540A (en) 1988-11-04 1988-11-04 Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube

Publications (1)

Publication Number Publication Date
JPH02126540A true JPH02126540A (en) 1990-05-15

Family

ID=17581699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27730688A Pending JPH02126540A (en) 1988-10-25 1988-11-04 Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube

Country Status (1)

Country Link
JP (1) JPH02126540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36838E (en) * 1993-11-16 2000-08-29 Asahi Glass Company Ltd. Glass bulb for a cathode ray and a method of producing the same
USRE38450E1 (en) 1997-02-06 2004-03-02 Asahi Glass Company, Ltd. Glass panel for a cathode ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36838E (en) * 1993-11-16 2000-08-29 Asahi Glass Company Ltd. Glass bulb for a cathode ray and a method of producing the same
USRE38450E1 (en) 1997-02-06 2004-03-02 Asahi Glass Company, Ltd. Glass panel for a cathode ray tube

Similar Documents

Publication Publication Date Title
AU748451B2 (en) Process for depositing optical layers
US6387517B1 (en) Inorganic polymer material with tantalic acid anhydride base, in particular with high refractive index, mechanically abrasionproof, method of manufacture, optical materials comprising such material
JP4224646B2 (en) Method for producing multilayer optical material using cross-linking / densification by exposure to ultraviolet light and optical material produced by said method
RU2429262C2 (en) Substrate having removable protective coating and corresponding methods
JPH10338820A (en) Hydrophilic coating film and its production
US3082099A (en) Inorganic fibers and method of preparation
EP0367269A2 (en) Method for reinforcing glass, film-forming composition for the reinforcement of glass and reinforced glass articles
US20100317512A1 (en) Photocatalytic film, method for forming photocatalytic film and photocatalytic film coated product
JPH02126540A (en) Method of increasing rupture strength of cathode ray tube and enforced cathode ray tube
JP4812935B2 (en) Hard coat film forming method
JPH06199528A (en) Production of film and spherical fine particles of metal oxide glass
US11459269B2 (en) Glazing comprising a stack of thin layers acting on solar radiation and a barrier layer
JPH0214A (en) Liquid crystal display device
JP2002121047A (en) Plasma corrosion-resistant glass member
US3810744A (en) Method for making fused silica glass composites
JPH02301017A (en) Glass substrate for information recording disk and information recording disk
JP3628802B2 (en) Antifogging thin film and method for forming the same
JPH02124982A (en) Coating composition for film to reinforce cathode ray tube and cathode ray tube reinforced therewith
JPH02302340A (en) Method for increasing breaking strength of glass
JPH02129836A (en) Cathode-ray tube
JP2509291B2 (en) Glass substrate
WO2023135997A1 (en) Glass article
WO2023136000A1 (en) Glass article with easy-to-clean coating
KR101130555B1 (en) Fabrication of Pb-free white dielectric layer adding mixing filler for soda-lime silecate glasses
JP2024127336A (en) Glass articles with easy-clean coating