JP2509291B2 - Glass substrate - Google Patents

Glass substrate

Info

Publication number
JP2509291B2
JP2509291B2 JP9753888A JP9753888A JP2509291B2 JP 2509291 B2 JP2509291 B2 JP 2509291B2 JP 9753888 A JP9753888 A JP 9753888A JP 9753888 A JP9753888 A JP 9753888A JP 2509291 B2 JP2509291 B2 JP 2509291B2
Authority
JP
Japan
Prior art keywords
film
glass substrate
weather resistance
magneto
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9753888A
Other languages
Japanese (ja)
Other versions
JPH01308847A (en
Inventor
厚範 松田
慎也 片山
好洋 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP9753888A priority Critical patent/JP2509291B2/en
Publication of JPH01308847A publication Critical patent/JPH01308847A/en
Application granted granted Critical
Publication of JP2509291B2 publication Critical patent/JP2509291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 本発明は、耐候性の優れたガラス基板に関し、特に光
磁気ディスク基板として使用するのに優れたガラス基板
に関する。
The present invention relates to a glass substrate having excellent weather resistance, and particularly to a glass substrate excellent for use as a magneto-optical disk substrate.

〔従来の技術〕 従来、絶縁膜を有するガラス基板としては、ソーダラ
イムガラス基板上に化学気相析出(CVD)法により、SiO
2膜を形成したものが、広く知られている。(例えばN.G
oldsmith and W.Kern,RCA Review,28,153(1967)) また同じく化学気相析出法によりSiO2−P2O5系膜を形
成したガラス基板が多く報告されている。(例えばW.ke
rn,RCA Review 31[4],715(1970)) 一方、溶液塗布法により絶縁膜を形成したガラス基板
としてはソーダライムガラス基板上にSiO2膜を形成した
もの(例えば、S.Sakka,et al.,J.Non−Cryst,Solids,6
3,223(1984))や、SiO2−P2O5系をベースとする複合
酸化物膜を形成したもの(例えば特開昭62−158136)
や、SiO2−TiO2系膜を形成したもの(例えばThin Solid
Films,77 129(1981))が知られている。
[Prior Art] Conventionally, as a glass substrate having an insulating film, a soda-lime glass substrate is coated with SiO 2 by a chemical vapor deposition (CVD) method.
The one in which two films are formed is widely known. (Eg NG
oldsmith and W. Kern, RCA Review, 28 , 153 (1967)) Also, many glass substrates on which a SiO 2 —P 2 O 5 based film is formed by the chemical vapor deposition method have been reported. (Eg W.ke
RCA, RCA Review 31 [4], 715 (1970)) On the other hand, as a glass substrate on which an insulating film is formed by a solution coating method, a soda lime glass substrate on which a SiO 2 film is formed (for example, S. Sakka, et. al., J. Non-Cryst, Solids, 6
3, 223 (1984)) or, obtained by forming a composite oxide film based on SiO 2 -P 2 O 5 system (for example, JP 62-158136)
Or those with a SiO 2 -TiO 2 film formed (for example, Thin Solid
Films, 77 129 (1981)) is known.

又、従来、光磁気ディスク基板としては、ガラス基板
上にエッチング処理を行なうことにより凹凸を形成した
ものが知られている。(例えば、J.Braar and K.S.Immi
nk,SPIE,420 206(1983)) またガラス板の上にシリコンアルコキシドを含む溶液
を塗布し型を押しあてることにより凹凸を形成したもの
が知られている。(例えば特開昭62−102445) 〔発明が解決しようとする課題〕 しかしながら、上記従来のガラス基板においては高温
高湿度(例えば70℃、相対湿度90%)で保持すると、表
面にナトリウムの炭酸塩が析出したり、基板が劣化する
という問題点があった。
Conventionally, as a magneto-optical disk substrate, one in which irregularities are formed by performing an etching process on a glass substrate is known. (For example, J. Braar and KSImmi
nk, SPIE, 420 206 (1983)) Further, it is known that a glass plate is coated with a solution containing a silicon alkoxide and a mold is pressed to form irregularities. (For example, Japanese Patent Laid-Open No. 62-102445) [Problems to be Solved by the Invention] However, when the conventional glass substrate is kept at high temperature and high humidity (for example, 70 ° C. and relative humidity of 90%), sodium carbonate However, there is a problem in that it is deposited and the substrate is deteriorated.

特に高度の信頼性が必要とされる光磁気ディスク等の
基板としては、上記問題は重大な問題であった。
The above problem has been a serious problem for a substrate such as a magneto-optical disk that requires a particularly high degree of reliability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上記従来の問題点を解決するためになされ
たものであって、アルキル基含有金属有機化合物が焼成
されたSiO2−TiO2系酸化物焼成膜が表面に被覆されたガ
ラス基板において、該焼成膜に該アルキル基を該酸化物
に対して0.5〜5wt%残留させている。
The present invention has been made in order to solve the above-mentioned conventional problems, in a glass substrate having a surface coated with a SiO 2 —TiO 2 based oxide fired film obtained by firing an alkyl group-containing metal organic compound. In the fired film, the alkyl group is left in an amount of 0.5 to 5 wt% with respect to the oxide.

本発明に使用できる基板としては、ソーダライムガラ
ス、ボロシリケートガラス、アルミノシリケートガラス
等任意のガラス基板が使用できるが、ソーダライムガラ
ス等のアルカリ金属含有ガラスを使用することが本質的
に本発明の効果が大きく反映されることになり、また価
格も低価格となるので好ましい。
As the substrate that can be used in the present invention, any glass substrate such as soda lime glass, borosilicate glass, aluminosilicate glass can be used, but it is essentially the use of an alkali metal-containing glass such as soda lime glass of the present invention. The effect will be greatly reflected and the price will be low, which is preferable.

本発明に用いる金属有機化合物は重縮合あるいは架橋
反応がおこることによって溶液の粘性を上昇させるよう
な化合物であれば使用できる。
The metal organic compound used in the present invention may be any compound as long as it causes a polycondensation or a crosslinking reaction to increase the viscosity of the solution.

例えばSi(OCH34,Si(OC2H54,Ti(OC3H74,Ti
(OC4H94,Zr(OC3H74,Zr(OC4H94,Al(OC3H73,
Al(OC4H93,NaOC2H5等のM(OR) 〔MはSi,Ti,Zr,Ca,Al,Na,Pb,B,Sn,Ge等の金属、Rはメ
チル,エチル等のアルキル基、nは1〜4の整数〕で示
される化合物および−Cl,−COOH,−COOR,−NH2, 等の重縮合あるいは架橋反応を行なう一般的官能基を含
む金属有機化合物等が例示できる。
For example Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Ti (OC 3 H 7 ) 4 , Ti
(OC 4 H 9) 4, Zr (OC 3 H 7) 4, Zr (OC 4 H 9) 4, Al (OC 3 H 7) 3,
M (OR) n [M is a metal such as Si, Ti, Zr, Ca, Al, Na, Pb, B, Sn, Ge, R is methyl, Al (OC 4 H 9 ) 3 and NaOC 2 H 5 are alkyl groups such as ethyl, n represents a compound represented by the integer from 1 to 4] and -Cl, -COOH, -COOR, -NH 2 , Examples thereof include metal organic compounds containing a general functional group that undergoes polycondensation or cross-linking reaction.

ガラス基板上の前記金属有機化合物の焼成膜は、ガラ
ス基板を前記金属有機化合物を含む溶液(以後溶液と略
称する)に浸漬した後引き上げる方法(通称ディッピン
グ法)、溶液を滴下した後回転させる方法(通称スピン
コート法)およびスプレー法等の通常用いられている被
膜作製方法により作製された塗布膜を乾燥焼成すること
により作製される。
The baked film of the metal organic compound on the glass substrate is a method of immersing the glass substrate in a solution containing the metal organic compound (hereinafter abbreviated as a solution) and then pulling it up (commonly called dipping method), and a method of dropping the solution and then rotating it. It is prepared by drying and baking a coating film prepared by a commonly used film forming method such as a so-called spin coating method and a spray method.

本発明は、該金属有機化合物のSiO2−TiO2系の焼成膜
を該金属有機化合物のアルキル基が酸化物に対して0.5
〜5wt%残留したものとしているが、該焼成膜中の残留
アルキル基が5wt%よりも多いと、該焼成膜の機械的特
性が極端に低下してしまう。又残留アルキル基が0.5wt
%より少ないと、本発明の耐候性の改善の効果が現われ
ない。
The present invention provides a SiO 2 —TiO 2 -based fired film of the metal organic compound, wherein the alkyl group of the metal organic compound is 0.5 to the oxide.
It is assumed that the residual amount of the alkyl group is up to 5 wt%, but if the residual alkyl group in the fired film is more than 5 wt%, the mechanical properties of the fired film are extremely deteriorated. The residual alkyl group is 0.5wt
If it is less than%, the effect of improving the weather resistance of the present invention does not appear.

本発明は金属有機化合物の焼成膜として、SiO2−TiO2
系膜を用いているが、該SiO2−TiO2系膜が耐候性の向上
が著しい。該SiO2−TiO2系非晶質膜の内でもSiO2−TiO2
2成分系非晶質膜を用いることが、製造が簡単であるの
で望ましい。
The present invention, as a baked film of a metal organic compound, SiO 2 -TiO 2
Although a SiO 2 -TiO 2 -based film is used, the weather resistance is remarkably improved. Among the SiO 2 -TiO 2 based amorphous films, SiO 2 -TiO 2
It is desirable to use a binary amorphous film because it is easy to manufacture.

SiO2−TiO2系非晶質膜中のTiO2含有量は任意に設定で
きるが、6〜70モルパーセントとすることが好ましい。
該膜体のTiO2含量が6モルパーセント未満であって70モ
ルパーセントを越えても、膜体を形成したガラス基板の
耐候性の向上の効果が現われにくくなる。
The TiO 2 content in the SiO 2 —TiO 2 amorphous film can be set arbitrarily, but is preferably 6 to 70 mol%.
Even if the TiO 2 content of the film is less than 6 mol% and exceeds 70 mol%, the effect of improving the weather resistance of the glass substrate on which the film is formed is less likely to appear.

特にTiO2含有量を6〜12モルパーセントとしたもの
が、光学的な用途用基板として好ましい。該膜体のTiO2
含量が6モルパーセント未満であっても12モルパーセン
トを越えても、膜体とガラス基板との境界面における光
の反射が増大しやすくなる。
Particularly, a substrate having a TiO 2 content of 6 to 12 mol% is preferable as a substrate for optical use. TiO 2 of the film body
When the content is less than 6 mol% or more than 12 mol%, light reflection tends to increase at the interface between the film body and the glass substrate.

又特に、塗布膜作製溶液中に増粘剤としての有機高分
子(ポリエチレングリコール等)を含ませた様な場合に
は、形成される焼成膜が気孔率の高い膜体となり、屈折
率が低下するので前記光学的用途に対するTiO2含有量は
10〜25モル%とすることが好ましい。該含有量が10モル
%未満であっても25モル%よりも多くとも膜体とガラス
基板との境界面における光の反射が増大しやすい。
In particular, when an organic polymer (polyethylene glycol, etc.) as a thickener is included in the coating film preparation solution, the fired film formed becomes a film with high porosity and the refractive index decreases. Therefore, the TiO 2 content for the optical applications is
It is preferably 10 to 25 mol%. Even if the content is less than 10 mol% and more than 25 mol%, the reflection of light at the interface between the film body and the glass substrate is likely to increase.

特に光磁気ディスク基板を、前記塗布膜にプレス型等
の溝形状を転写して作製する方法においては、塗布溶液
中に増粘剤を加えておくことが作業性等の面で好まし
く、(例えば特開昭62−225273)この様な場合において
は前述の通りTiO2含有量を10〜25モル%とすることが好
ましい。(塗布溶液中に増粘剤を加えずに行なう場合は
6〜12モル%とすることが好ましい。) 前記出発金属有機化合物のアルキル基が酸化物に対し
て0.5〜5wt%残留した金属有機化合物の焼成膜は、例え
ば前記金属有機化合物の塗布膜を90〜400℃の温度で熱
処理することにより得られる。
In particular, in the method for producing a magneto-optical disk substrate by transferring a groove shape such as a press die to the coating film, it is preferable to add a thickener to the coating solution in terms of workability, In such a case, the TiO 2 content is preferably 10 to 25 mol% as described above. (When it is performed without adding a thickener to the coating solution, it is preferably 6 to 12 mol%.) The metal organic compound in which the alkyl group of the starting metal organic compound remains 0.5 to 5 wt% with respect to the oxide. The baked film of is obtained, for example, by heat-treating the coating film of the metal organic compound at a temperature of 90 to 400 ° C.

90℃未満の温度の熱処理では、残留アルキル基が5wt
%以下となりにくく、又膜中に水分が多く残り、水分に
基づく問題が生じやすくなる。又前述の通り機械的強度
が低い被膜となりやすい。400℃より高い温度の熱処理
では、残留アルキル基が0.5wt%以上となりにくく、又
熱処理中に基板ガラス中のアルカリ金属イオンが金属有
機化合物の焼成膜中に拡散によって入り込み、90〜400
℃で焼成した被膜による耐候性向上の効果よりもかえっ
て低い効果しか示さない様になりやすい。又該焼成温度
は、90〜200℃とすることが特に良好な耐候性が得られ
るので望ましい。
When heat treatment is performed at a temperature of less than 90 ° C, residual alkyl groups are 5 wt%
% Or less, and a large amount of water remains in the film, and problems due to water are likely to occur. Further, as described above, the film tends to have low mechanical strength. When the heat treatment is performed at a temperature higher than 400 ° C, the residual alkyl groups are unlikely to reach 0.5 wt% or more, and during the heat treatment, alkali metal ions in the substrate glass enter the baked film of the metal-organic compound by diffusion, and 90 to 400
It tends to show a lower effect than the effect of improving the weather resistance of the coating film baked at ℃. Further, the firing temperature is preferably 90 to 200 ° C. because particularly good weather resistance can be obtained.

該SiO2−TiO2系非晶質膜等の金属有機化合物の焼成膜
の平均膜厚は0.02〜2.0μmが好ましい。該膜体の膜厚
が0.02μm未満の場合、該膜体を設けることによるガラ
ス基板の耐候性の向上の程度は低い。また該膜体の膜厚
が2.0μmを越えるとはく離の問題が生じやすくなる。
The average film thickness of the baked film of a metal organic compound such as the SiO 2 —TiO 2 amorphous film is preferably 0.02 to 2.0 μm. When the film thickness of the film body is less than 0.02 μm, the degree of improvement in weather resistance of the glass substrate by providing the film body is low. If the film thickness of the film exceeds 2.0 μm, the problem of delamination easily occurs.

特に光磁気ディスク基板として使用する場合には、該
SiO2−TiO2系非晶質膜の平均膜厚は、0.15〜2.0μmの
平均膜厚とすることが好ましい。
Especially when used as a magneto-optical disk substrate,
The average film thickness of the SiO 2 —TiO 2 based amorphous film is preferably 0.15 to 2.0 μm.

該膜体はガラス板の両面に設けることによりガラス板
の両面を保護することができる。しかしながら、必要に
応じてガラス板の片面に設けるなど任意の形で実施でき
る。
By providing the film on both sides of the glass plate, both sides of the glass plate can be protected. However, it can be carried out in any form such as being provided on one surface of the glass plate if necessary.

光磁気ディスク基板として使用する場合には、ガラス
基板にエッチング法、ゾルゲルスタンプ法(特開昭62−
102445)等によって溝を形成し、その後金属有機化合物
の焼成膜を形成してもかまわない。しかしながら、平滑
なガラス基板上に表面に凹凸を有する膜体を設ける方法
が生産性が高いので好ましい。該凹凸は少なくとも片面
に設ければ良い。
When used as a magneto-optical disk substrate, an etching method or a sol-gel stamp method is applied to a glass substrate (Japanese Patent Laid-Open No. 62-
102445) or the like to form a groove, and then a baked film of a metal organic compound may be formed. However, a method of providing a film body having unevenness on the surface of a smooth glass substrate is preferable because of high productivity. The unevenness may be provided on at least one surface.

上記金属有機化合物中の残留アルキル基は、例れば赤
外線分光光度法、熱重量分析法等によって測定すること
ができる。
The residual alkyl group in the metal organic compound can be measured, for example, by infrared spectrophotometry, thermogravimetric analysis, or the like.

塗布に使用する溶液中に含まれる金属有機化合物のア
ルキル基の量は、金属有機化合物の重合度が変化すると
変化するが、本発明で言う金属有機化合物のアルキル基
の残留量とは金属有機化合物が完全に酸化物になった場
合の重量を基準として評価している。(たとえば、原料
のSi(OC2H5)が全く加水分解をうけず単量体で存在し
ている場合、未反応のアルキル基は酸化物SiO2の重量を
基準として247wt%含まれていることになる。また3つ
のアルキル基が加水分解をうけて単量体で存在してい
る、即ちSi(OC2H5)(OH)の形で存在している場
合、未反応のアルキル基は61wt%含まれていることにな
る。さらに重合度が増し、加水分解の程度が進むと未反
応のアルキル基の量は減少する。即ちシリコン(Si)原
子10個からなる無機高分子中に未反応のエトキシ基が1
個存在するような場合、6wt%アルキル基が含まれてい
ることになる。) 〔作 用〕 本発明によれば、該SiO2−TiO2系金属有機化合物の焼
成膜がガラス基板側からのナトリウムイオンの拡散防止
層として作用し、該ガラス基板の耐候性を向上させる保
護膜の役割を果たしている。
The amount of the alkyl group of the metal organic compound contained in the solution used for coating changes when the degree of polymerization of the metal organic compound changes, but the residual amount of the alkyl group of the metal organic compound referred to in the present invention means the metal organic compound. Is evaluated on the basis of the weight when it is completely oxidized. (For example, if the raw material Si (OC 2 H 5 ) is not hydrolyzed and exists as a monomer, unreacted alkyl groups are contained in 247 wt% based on the weight of the oxide SiO 2 . In addition, when three alkyl groups are present in the monomer after being hydrolyzed, that is, in the form of Si (OC 2 H 5 ) (OH) 3 , unreacted alkyl groups are present. The amount of unreacted alkyl groups decreases as the degree of polymerization increases and the degree of hydrolysis progresses, that is, in an inorganic polymer consisting of 10 silicon (Si) atoms. 1 unreacted ethoxy group
In the case where there is one, 6 wt% alkyl group is contained. ) [Operation] According to the present invention, the fired film of the SiO 2 —TiO 2 -based metal organic compound acts as a diffusion preventing layer for sodium ions from the glass substrate side, and protects the glass substrate to improve weather resistance. Plays the role of a membrane.

該金属有機化合物の焼成膜として、金属有機化合物の
アルキル基を酸化物に対して0.5〜5wt%残留した物を用
いると、該焼成膜中のアルキル基がアルカリ金属捕獲等
の作用を行ない、良好な耐候性を実現できると考えられ
る。
When a material in which the alkyl group of the metal organic compound remains in an amount of 0.5 to 5 wt% with respect to the oxide is used as the fired film of the metal organic compound, the alkyl group in the fired film performs an action such as capturing an alkali metal. It is thought that excellent weather resistance can be realized.

又この様な0.5〜5wt%の残留アルキル基を有する焼成
膜は、無機骨格がすでに十分発達しており、機械的強度
を著しくそこなうことがない。
Further, in such a fired film having a residual alkyl group of 0.5 to 5 wt%, the inorganic skeleton has already been sufficiently developed, and the mechanical strength is not significantly impaired.

〔実施例〕〔Example〕

実施例−1 出発原料として、シリコンテトラエトキシド(Si(OC
2H5)およびチタニウムテトラn−ブトキシド(Ti
(O−nC4H9)を用い、溶媒にはエタノール、加水
分解触媒には塩化水素をそれぞれ用いた。加える水の量
はシリコンテトラエトキシドに対してモル比で4倍とし
た。シリコンテトラエトキシドのエタノール溶液に希塩
酸(1wt%)を加え室温で30分間撹拌した。その後チタ
ニウムテトラn−ブトキシドのエタノール溶液を徐々に
加え、同じく室温でさらに30分間反応させた。シリコン
テトラエトキシドとチタニウムテトラn−ブトキシドは
モル比で91:9となるようにした。
Example 1 As a starting material, silicon tetraethoxide (Si (OC
2 H 5 ) 4 ) and titanium tetra n-butoxide (Ti
(O-nC 4 H 9) 4) using, the solvent ethanol, the hydrolysis catalyst using hydrogen chloride, respectively. The amount of water added was 4 times the molar ratio of silicon tetraethoxide. Dilute hydrochloric acid (1 wt%) was added to an ethanol solution of silicon tetraethoxide, and the mixture was stirred at room temperature for 30 minutes. Then, an ethanol solution of titanium tetra-n-butoxide was gradually added, and the mixture was reacted at room temperature for another 30 minutes. The molar ratio of silicon tetraethoxide and titanium tetra n-butoxide was set to 91: 9.

こうして得られた溶液は、黄色〜無色透明であり酸化
物換算濃度は、8.5wt%である。該溶液をエタノールで
2倍の体積に希釈して塗布溶液とした。
The solution thus obtained is yellow to colorless and transparent, and the oxide conversion concentration is 8.5 wt%. The solution was diluted with ethanol to twice the volume to obtain a coating solution.

該塗布溶液中にソーダライムガラス基板を浸漬し、一
定速度(1.6mm/Sec)で引き上げることにより91SiO2・9
TiO2塗布膜をガラス基板上に形成した。該塗布膜に、迅
速に峰高さ0.15μm、峰巾2μm、峰間隔4μmの多数
の峰部を有するアセチルセルロース製(弾性係数104kg
f/cm2)の厚さ50μmの型を押しあて接合した。
By dipping a soda lime glass substrate in the coating solution and pulling it up at a constant speed (1.6 mm / Sec), 91 SiO 2 · 9
A TiO 2 coating film was formed on a glass substrate. The coating film is made of acetyl cellulose having a large number of peaks with a peak height of 0.15 μm, a peak width of 2 μm, and a peak interval of 4 μm (modulus of elasticity 10 4 kg
A mold with a thickness of 50 μm (f / cm 2 ) was pressed and joined.

その後、該型を接合した塗布膜つきガラス基板を室温
で15分間乾燥し、次いで90℃で30分間クリーンオーブン
を用い大気中で一次焼成を行った後アセチルロース製の
型の離型を行なった。該離型後の塗布膜つきガラス基板
を、400℃で15分間最終焼成を行った。
Then, the glass substrate with a coating film bonded to the mold was dried at room temperature for 15 minutes, then primary baking was performed in the atmosphere at 90 ° C. for 30 minutes in a clean oven, and then the mold made of acetylose was released from the mold. . The glass substrate with the coating film after the mold release was finally baked at 400 ° C. for 15 minutes.

この最終焼成により塗布膜は平均210nm厚の非晶質膜
(屈折率1.52)になっていた。
By this final baking, the coating film was an amorphous film with an average thickness of 210 nm (refractive index 1.52).

上記操作により作製された光磁気ディスク基板の表面
および断面を走査型電子顕微鏡により観察したことろ溝
深さ約75nm、溝巾約2μm、溝間隔約4μmの良好な溝
形状が形成されていた。
The surface and cross section of the magneto-optical disk substrate produced by the above operation were observed by a scanning electron microscope. As a result, a good groove shape having a groove depth of about 75 nm, a groove width of about 2 μm and a groove interval of about 4 μm was formed.

上記実施例により作製された光磁気ディスク基板の概
略断面を第1図に示す。
FIG. 1 shows a schematic cross section of a magneto-optical disk substrate manufactured by the above-mentioned embodiment.

次に該光磁気ディスク基板の耐候性試験を行った。耐
候性試験は、一旦結露させた後70℃、相対湿度90%の雰
囲気中に4日間保持することにより行った。
Next, a weather resistance test was conducted on the magneto-optical disk substrate. The weather resistance test was conducted by once dew condensation, and then keeping it in an atmosphere of 70 ° C. and 90% relative humidity for 4 days.

耐候性試験後の該光磁気ディスク基板の表面は、耐候
性試験前と同様、均一で、表面の劣化や析出物の発生は
認められなかった。
The surface of the magneto-optical disk substrate after the weather resistance test was uniform as in the case before the weather resistance test, and neither surface deterioration nor generation of precipitates was observed.

本実施例と同一の作製方法により、最終焼成温度のみ
を90℃,200℃と変えて作製した光磁気ディスク基板につ
いて、同一の耐候性試験を行った。
The same weather resistance test was performed on the magneto-optical disk substrate manufactured by the same manufacturing method as in this example except that the final firing temperature was changed to 90 ° C and 200 ° C.

90℃で最終熱処理したものも、200℃で最終熱処理し
たものも、先の400℃で最終熱処理したものと同様、耐
候性試験後のこれらの光磁気ディスク基板の表面は均一
で表面の劣化や析出物の発生は認められなかった。
Whether the final heat treatment at 90 ° C or the final heat treatment at 200 ° C was the same as the final heat treatment at 400 ° C, the surface of these magneto-optical disk substrates after the weather resistance test was uniform and the surface was not deteriorated. No generation of deposits was observed.

上記90℃,200℃,400℃の各温度で焼成した焼成膜中の
残留アルキル基を熱重量分析法により測定した所、出発
の金属有機化合物(脱水縮合前)のアルキル基が酸化物
に対して各々4.4,3.7,0.8wt%残留していることがわか
った。SiO2−TiO2系非晶質膜の組成は、上記の91SiO2
9TiO2に限られるものではなく、本系においてTiO2を6
〜12モルパーセント含む組成範囲において同様の耐候性
を持つ光磁気ディスク基板が得られた。
When the residual alkyl group in the baked film baked at each of the above 90 ° C, 200 ° C and 400 ° C was measured by thermogravimetric analysis, the alkyl group of the starting metal organic compound (before dehydration condensation) was compared with the oxide. It was found that 4.4, 3.7 and 0.8 wt% remained respectively. The composition of the SiO 2 —TiO 2 -based amorphous film is 91SiO 2 ·
It is not limited to 9TiO 2, TiO 2 in the present system the 6
A magneto-optical disk substrate having similar weather resistance was obtained in the composition range containing ~ 12 mol%.

比較例−1 表面に凹凸を有するSiO2−TiO2系非晶質膜つきガラス
基板のかわりに表面に凹凸を有するSiO2非晶質膜つきガ
ラス基板について実施例−1と同様の耐候性試験を行っ
た。
Comparative Example-1 The same weather resistance test as in Example-1 was carried out on the glass substrate with the SiO 2 amorphous film having the surface irregularities instead of the glass substrate with the SiO 2 —TiO 2 based amorphous film having the surface irregularities. I went.

該SiO2非晶質膜の作製方法としては、出発原料として
シリコンテトラエトキシドを用いた。溶媒にはエタノー
ル加水分解触媒には塩化水素をそれぞれ用いた。加える
水の量およびエタノールの量はシリコンテトラエトキシ
ドに対してそれぞれモル比で6および5とした。
In the method for producing the SiO 2 amorphous film, silicon tetraethoxide was used as a starting material. Hydrogen chloride was used as the solvent for the ethanol hydrolysis catalyst. The amount of water added and the amount of ethanol were 6 and 5 with respect to silicon tetraethoxide in a molar ratio, respectively.

シリコンテトラエトキシドのエタノール溶液に希塩酸
(1wt%)を加え室温で1時間撹拌した。こうして得ら
れた溶液は無色透明であり、該溶液をエタノールで3倍
の体積に希釈して塗布溶液とした。
Dilute hydrochloric acid (1 wt%) was added to an ethanol solution of silicon tetraethoxide, and the mixture was stirred at room temperature for 1 hour. The solution thus obtained was colorless and transparent, and the solution was diluted with ethanol to a volume three times as large as a coating solution.

該塗布溶液を用いて実施例−1と同様の操作を行って
表面に凹凸を有するSiO2非晶質膜つきガラス基板を作製
した。400℃15分間の最終焼成により該SiO2非晶質膜は
平均200nm厚、屈折率1.45になっていた。
Using the coating solution, the same operation as in Example-1 was performed to prepare a glass substrate with a SiO 2 amorphous film having irregularities on the surface. After the final baking at 400 ° C. for 15 minutes, the SiO 2 amorphous film had an average thickness of 200 nm and a refractive index of 1.45.

上記操作により作製された光磁気ディスク基板の概略
断面を第2図に示す。本比較例により作製した光磁気デ
ィスク基板について実施例−1と同様の耐候性試験を行
った。
A schematic cross section of the magneto-optical disk substrate manufactured by the above operation is shown in FIG. The same weather resistance test as in Example-1 was performed on the magneto-optical disk substrate manufactured according to this comparative example.

耐候性試験後の該光磁気ディスク基板の表面には直径
0.1μm〜0.2μmの析出粒子が全面に1平方マイクロメ
ートルあたり32ケの密度で析出していた。該析出粒子は
分析の結果ナトリウムの炭酸塩であることがわかった。
耐候性試験後の該光磁気ディスク基板の概略断面を第3
図に示す。本比較例と同一の作製方法により、最終焼成
温度のみを90℃,200℃と変えて作製した光磁気ディスク
基板について同一の耐候性試験を行った。90℃最終熱処
理したものも、200℃で最終熱処理したものも、先の400
℃で最終熱処理したものと同様、これらの光磁気ディス
ク基板の表面には直径0.1〜0.2μmの析出粒子が同程度
に認められた。
The diameter of the surface of the magneto-optical disk substrate after the weather resistance test
Precipitated particles of 0.1 μm to 0.2 μm were deposited on the entire surface at a density of 32 per square micrometer. As a result of analysis, the deposited particles were found to be sodium carbonate.
A schematic cross section of the magneto-optical disk substrate after the weather resistance test
Shown in the figure. The same weather resistance test was conducted on the magneto-optical disk substrate manufactured by the same manufacturing method as in this comparative example except that the final firing temperature was changed to 90 ° C and 200 ° C. Both the final heat treatment at 90 ° C and the final heat treatment at 200 ° C are
Precipitated particles having a diameter of 0.1 to 0.2 .mu.m were observed to the same extent on the surfaces of these magneto-optical disk substrates as in the case of the final heat treatment at .degree.

上記90℃,200℃,400℃の各焼成膜中の残留アルキル基
を実施例−1と同様測定した所各々4.3,4.1,1.1wt%の
アルキル基が酸化物(SiO2)に対して残留していること
がわかった。
When the residual alkyl groups in the respective baked films at 90 ° C., 200 ° C. and 400 ° C. were measured in the same manner as in Example-1, 4.3, 4.1 and 1.1 wt% of alkyl groups remained on the oxide (SiO 2 ) respectively. I found out that

比較例−2 化学強化されたソーダライムガラス基板上にスピンコ
ート法を用いてフォトレジスト膜を形成し光磁気ディス
ク基板としての溝形状に露光装置を用いて選択的に露光
を行った。現像処理を行なった後ドライエッチングによ
って該基板上に巾約1.6μm、深さ約70nmの連続的溝形
状を作製した。フォトレジストを除去した後のガラス基
板の概略断面図を第4図に示す。
Comparative Example-2 A photoresist film was formed on a chemically strengthened soda lime glass substrate by a spin coating method, and a groove shape as a magneto-optical disk substrate was selectively exposed using an exposure device. After the development process, a continuous groove shape having a width of about 1.6 μm and a depth of about 70 nm was formed on the substrate by dry etching. FIG. 4 shows a schematic cross-sectional view of the glass substrate after removing the photoresist.

上記操作により作製された光磁気ディスク基板につい
て実施例−1と同様の耐候性試験を行った。耐候性試験
後の該光磁気ディスク基板の表面は極めてひどい劣化を
おこしており、両面ともに全面に1〜5μmの径の孔を
持った網目状の析出物が観察された。
The same weather resistance test as in Example-1 was performed on the magneto-optical disk substrate manufactured by the above operation. The surface of the magneto-optical disk substrate after the weather resistance test was extremely deteriorated, and a mesh-like precipitate having pores with a diameter of 1 to 5 μm was observed on the entire surfaces of both surfaces.

該網目状析出物は分析の結果ナトリウムの炭酸塩であ
ることがわかった。耐候性試験後の該光磁気ディスク基
板の概略断面を第5図に示す。
As a result of analysis, the reticulated precipitate was found to be sodium carbonate. A schematic cross section of the magneto-optical disk substrate after the weather resistance test is shown in FIG.

実施例−2 実施例−1で調製した塗布溶液中に平均分子量600の
ポリエチレングリコール(PEG600)を、最終生成物であ
る91SiO2・9TiO2組成の酸化物に対する重量比で(PEG60
0)/(酸化物)=1の量加え、均一に溶解したものを
塗布溶液とした。
Example-2 Polyethylene glycol having an average molecular weight of 600 (PEG600) was added to the coating solution prepared in Example-1 in a weight ratio (PEG60) of the final product of 91SiO 2 .9TiO 2 composition.
The amount of (0) / (oxide) = 1 was added and uniformly dissolved to obtain a coating solution.

該塗布溶液を用いて実施例−1と同様の操作を行って
表面に凹凸を有するPEG600添加91SiO2・9TiO2非晶質膜
つきガラス基板を作製した。400℃15分間の最終焼成後
塗布膜は平均400nm厚の非晶質膜になっていた。また屈
折率はPEG添加により最終焼成後;薄膜の気孔率が増大
したため1.46に低下していた。
Using the coating solution, the same operation as in Example-1 was performed to prepare a PEG600-added 91SiO 2 .9TiO 2 amorphous film-coated glass substrate having irregularities on the surface. After the final baking at 400 ° C. for 15 minutes, the coating film was an amorphous film having an average thickness of 400 nm. The refractive index was decreased to 1.46 after the final baking by adding PEG; the porosity of the thin film was increased.

上記操作により作製された光磁気ディスク基板の表面
および断面を走査型電子顕微鏡により観察したところ溝
深さ69nm、溝巾約2μm、溝間隔約4μmの良好な溝形
状が形成されていた。
When the surface and cross section of the magneto-optical disk substrate manufactured by the above operation were observed with a scanning electron microscope, a good groove shape having a groove depth of 69 nm, a groove width of about 2 μm and a groove interval of about 4 μm was formed.

本実施例により作製した光磁気ディスク基板について
実施例−1と同様の耐候性試験を行った。
The same weather resistance test as in Example-1 was performed on the magneto-optical disk substrate manufactured in this example.

耐候性試験後の該光磁気ディスク基板の表面は、耐候
性試験前と同様、均一で、表面の劣化や析出物の発生は
認められなかった。
The surface of the magneto-optical disk substrate after the weather resistance test was uniform as in the case before the weather resistance test, and neither surface deterioration nor generation of precipitates was observed.

本実施例と同一の作製方法により、最終焼成温度のみ
を90℃,200℃と変えて作製した光磁気ディスク基板につ
いて、同一の耐候性試験を行った。
The same weather resistance test was performed on the magneto-optical disk substrate manufactured by the same manufacturing method as in this example except that the final firing temperature was changed to 90 ° C and 200 ° C.

90℃で最終熱処理したものも、200℃で最終熱処理し
たものも、先の400℃で最終熱処理したものと同様、耐
候性試験後のそれらの光磁気ディスク基板の表面は均一
で表面の劣化や析出物の発生は認められなかった。
Both the final heat treatment at 90 ° C and the final heat treatment at 200 ° C were similar to those of the previous final heat treatment at 400 ° C, and the surface of those magneto-optical disk substrates after the weather resistance test was uniform and the surface was not deteriorated. No generation of deposits was observed.

上記400℃の各焼成膜中に残留する未反応アルキル基
を測定した所1.2wt%(対91SiO2:9TiO2酸化物)であっ
た。
The amount of unreacted alkyl groups remaining in each of the baked films at 400 ° C. was 1.2 wt% (vs 91 SiO 2 : 9TiO 2 oxide).

PEG600添加SiO2−TiO2系非晶質膜の組成は、上記の91
SiO2・9TiO2に限られるものではなく本系においてTiO2
を10〜25モルパーセント含む組成範囲において同様の耐
候性を持つ光磁気ディスク基板が得られた。特にTiO2
17モルパーセントを含む、PEG600を添加したこの組成の
膜体は400℃で15分熱処理した後、屈折率1.51を有し、
膜体をガラス基板との境界面における光の反射率が少な
く優れていた。(上記83SiO2・17TiO2400℃焼成膜中の
残留アルキル基は酸化物に対して0.7wt%であった。) 実施例−3 実施例−1で調製した塗布溶液中にソーダライムガラ
ス板を浸漬し、一定速度(1.8mm/Sec)で引きあげ塗布
膜を作製した。
The composition of the PEG600-added SiO 2 -TiO 2 -based amorphous film is 91
Not limited to SiO 2 · 9TiO 2 , but TiO 2 in this system
A magneto-optical disk substrate with similar weather resistance was obtained in the composition range containing 10 to 25 mol% of. Especially TiO 2
A film body of this composition containing PEG 600, containing 17 mole percent, has a refractive index of 1.51 after heat treatment at 400 ° C. for 15 minutes,
The reflectance of light at the interface between the film body and the glass substrate was small and excellent. (The residual alkyl groups in the above-mentioned 83SiO 2 · 17TiO 2 400 ° C. calcined film was 0.7 wt% with respect to the oxide.) Example-3 A soda lime glass plate was added to the coating solution prepared in Example-1. It was dipped and pulled up at a constant speed (1.8 mm / Sec) to prepare a coating film.

該塗布膜つきガラス基板を90℃、30分間200℃、1
5分間400℃15分間の熱処理を各々行った。
Glass substrate with the coating film at 90 ° C for 30 minutes at 200 ° C, 1
Heat treatment was performed at 400 ° C. for 15 minutes for 5 minutes.

90℃で熱処理した膜体の厚みは、約280nm、200℃で熱
処理したものは260nmおよび400℃で熱処理したものは22
0nmにそれぞれなっていた。
The thickness of the film body heat-treated at 90 ℃ is about 280 nm, the one heat-treated at 200 ℃ is 260 nm and the one heat-treated at 400 ℃ is 22
It was 0 nm respectively.

膜体はすべて非晶質であった。熱処理温度を変えた各
ラス基板の耐候性試験を行った。
All the film bodies were amorphous. A weather resistance test was performed on each lath substrate with different heat treatment temperatures.

耐候性試験は、まず各ガラス基板を70℃相対湿度90%
の雰囲気中に4日間保持することにより行った。
For the weather resistance test, first test each glass substrate at 70 ° C and 90% relative humidity.
It was carried out by holding in the atmosphere of 4 days.

本耐候性試験後の各ガラス基板の表面は、耐候性試験
前と同様均一で、表面の劣化や析出物の発生は認められ
なかった。
The surface of each glass substrate after this weather resistance test was as uniform as before the weather resistance test, and neither surface deterioration nor generation of precipitates was observed.

さらに各ガラス基板を一旦結露させた後、70℃相対湿
度90%の雰囲気中で4日間保持する結露試験を行った。
Further, a dew condensation test was carried out in which each glass substrate was once condensed and then kept in an atmosphere of 70 ° C. and 90% relative humidity for 4 days.

本結露試験後の各ガラス基板の表面は、400℃で熱処
理したものにはごくわずかに0.1μm程度の析出粒子が
認められたものの、90℃および200℃で熱処理したもの
には全く劣化や析出物は認められず、全体として本方法
により作製したガラス基板は極めて耐候性に優れている
ことがわかった。
After the dew condensation test, the surface of each glass substrate was found to have deposited particles of only about 0.1 μm in the one heat-treated at 400 ° C, but no deterioration or precipitation was observed in the one heat-treated at 90 ° C and 200 ° C. No matter was observed, and it was found that the glass substrate manufactured by this method as a whole has extremely excellent weather resistance.

また特に、該膜体を形成したガラス基板の耐候性は90
℃〜200℃で熱処理したものが非常に優れていた。
In particular, the glass substrate formed with the film has a weather resistance of 90.
What was heat-treated at ℃ ~ 200 ℃ was very excellent.

実施例−4 チタニウムテトラn−ブトキシドのエタノール溶液に
シリコンテトラエトキシドを加え、室温で20分間撹拌し
た後、濃塩酸(36wt%)を加え、同じく室温で20分間反
応させた。次に全金属アルコキシドに対してモル比で4
倍となるように不足の水を加えさらに同じく室温で20分
間撹拌を続けた。
Example 4 Silicon tetraethoxide was added to an ethanol solution of titanium tetra-n-butoxide, stirred at room temperature for 20 minutes, concentrated hydrochloric acid (36 wt%) was added, and the mixture was reacted at room temperature for 20 minutes. Next, the molar ratio to all metal alkoxide is 4
Insufficient water was added to double the amount, and stirring was continued at room temperature for 20 minutes.

チタニウムテトラn−ブトキシドとシリコンテトラエ
トキシドのモル比は70:30となるようにした。
The molar ratio of titanium tetra-n-butoxide and silicon tetraethoxide was set to 70:30.

こうして得られた溶液をエタノールで4倍の体積に希
釈して塗布溶液とした。
The solution thus obtained was diluted with ethanol to a 4-fold volume to give a coating solution.

該溶液を用いて実施例−3と同様の操作を行って30Si
O2・70TiO2塗布膜をソーダライムガラス基板上に形成し
た。
Using the solution, the same operation as in Example-3 was performed to obtain 30Si.
An O 2 · 70TiO 2 coating film was formed on a soda lime glass substrate.

該塗布膜つきガラス基板を実施例−4と同様90℃で
30分間、200℃で15分間、400℃で15分間の熱処理を
各々行った。
The glass substrate with the coating film was treated at 90 ° C. as in Example-4.
Heat treatment was performed for 30 minutes, 200 ° C. for 15 minutes, and 400 ° C. for 15 minutes.

90℃で熱処理した該膜体の厚みは約240nm、200℃で熱
処理したものは210nmおよび400℃で熱処理したものは18
0nmにそれぞれなっていた。
The thickness of the film body heat-treated at 90 ° C is about 240 nm, the thickness of heat-treated at 200 ° C is 210 nm, and the thickness of heat-treated at 400 ° C is 18 nm.
It was 0 nm respectively.

膜体はすべて非晶質であった。又90℃,200℃,400℃の
各温度での焼成膜中の残留アルキル基を測定した所各々
4.2,3.9,0.6wt(対30SiO2・70TiO2酸化物)であった。
All the film bodies were amorphous. The residual alkyl groups in the baked film were measured at 90 ℃, 200 ℃ and 400 ℃.
It was 4.2, 3.9 and 0.6 wt (vs. 30 SiO 2 · 70 TiO 2 oxide).

上記実施例により作製されたガラス基板について実施
例−1と同様の耐候性試験および結露試験を行った。
The same weather resistance test and dew condensation test as in Example-1 were performed on the glass substrates manufactured in the above Examples.

その結果本実施例により作製された30SiO2・70TiO2
晶質膜つきガラス基板は先の実施例−3で述べら91SiO2
・9TiO2非晶質膜つきガラス基板同様、試験後表面の劣
化や析出物は認められず、耐候性に優れていることがわ
かった。また90℃〜200℃で熱処理したものが耐候性の
点においては特に優れていた。
Consequently 30SiO 2 · 70TiO 2 amorphous film with a glass substrate manufactured by this example we described in the previous Example -3 91SiO 2
・ As with the glass substrate with 9TiO 2 amorphous film, no surface deterioration or precipitates were observed after the test, indicating that it has excellent weather resistance. Moreover, the one heat-treated at 90 ° C to 200 ° C was particularly excellent in terms of weather resistance.

SiO2−TiO2系非晶質膜の組成は、上記実施例−4、お
よび実施例−5の91SiO2・9TiO2あるいは、30SiO2・70T
iO2に限られるものではなく、本系においてTiO2を6〜7
0モルパーセント含む組成範囲において同様の耐候性を
持つガラス基板が得られた。
The composition of the SiO 2 —TiO 2 -based amorphous film is 91SiO 2 · 9TiO 2 or 30SiO 2 · 70T of the above-mentioned Example-4 and Example-5.
It is not limited to iO 2 , but TiO 2 of 6 to 7 is used in this system.
A glass substrate having similar weather resistance was obtained in the composition range containing 0 mol%.

比較例−3 膜体を有さないソーダライムガラス板について実施例
−4と同様の耐候性試験を行った。
Comparative Example-3 A soda lime glass plate having no film body was subjected to the same weather resistance test as in Example-4.

70℃相対湿度90%で4日間保持した後の膜体を有しな
い該ガラス基板の表面は極めてひどい劣化をおこしてお
り、全面に1〜7μm径の孔を持った網目状析出物や直
径0.2〜0.4μmの析出粒子が観察された。
The surface of the glass substrate having no film body after being kept at 70 ° C. and 90% relative humidity for 4 days was extremely deteriorated, and a network-like precipitate having pores with a diameter of 1 to 7 μm or a diameter of 0.2 Precipitated particles of ˜0.4 μm were observed.

これらの析出物は、分析結果、ナトリウムの炭酸塩で
あることがわかった。
As a result of analysis, these precipitates were found to be sodium carbonate.

SiO2−TiO2系非晶質膜つきガラス基板のかわりにSiO2
非晶質膜つきガラス基板について実施例−3と同様の耐
候性試験を行った。
SiO 2 -TiO 2 type SiO 2 instead of glass substrate with amorphous film
The same weather resistance test as in Example-3 was performed on the glass substrate with an amorphous film.

実施例2で調製した塗布溶液を用いて実施例−3と同
様の操作を行ってSiO2塗布膜をソーダライムガラス板上
に形成した。
Using the coating solution prepared in Example 2, the same operation as in Example 3 was performed to form a SiO 2 coating film on a soda lime glass plate.

該塗布膜つきガラス基板を90℃30分間200℃で15
分間400℃で15分間の熱処理を各々行った。
The glass substrate with the coating film is heated at 90 ° C for 30 minutes at 200 ° C for 15 minutes.
Each heat treatment was performed at 400 ° C. for 15 minutes.

90℃で熱処理した膜体の厚みは、約280nm、200℃で熱
処理したものは260nmおよび400℃で熱処理したものに23
0nmにそれぞれなっていた。
The thickness of the film heat-treated at 90 ° C is about 280 nm. The thickness of the film heat-treated at 200 ° C is about 23 nm at that of 260 nm and 400 ° C.
It was 0 nm respectively.

膜体はすべて非晶質であった。 All the film bodies were amorphous.

本比較例により作製したガラス基板について、実施例
−3と同様の耐候性試験を行った。
The weather resistance test similar to that of Example-3 was performed on the glass substrate manufactured according to this comparative example.

結露試験後の該ガラス基板の表面には直径0.1〜0.2μ
mの析出粒子が全面に析出していた。
The surface of the glass substrate after the condensation test has a diameter of 0.1 to 0.2 μ.
Precipitated particles of m were deposited on the entire surface.

また粒子の析出量は、熱処理温度の高いものほど多
く、特に400℃で熱処理した試料には2〜4μmの幅の
筋状析出物が全面に観察された。
Further, the amount of precipitation of particles increased as the temperature of the heat treatment increased, and particularly in the sample heat-treated at 400 ° C., streak-like precipitates having a width of 2 to 4 μm were observed on the entire surface.

これらの析出物は、分析の結果ナトリウムの炭酸塩で
あることがわかった。
As a result of analysis, these precipitates were found to be sodium carbonate.

上記実施例および比較例により作製されたガラス基板
およびその他のガラス基板の耐候性および焼成膜中の残
留アルキル基(対最終酸化物)を第1表に示す。
Table 1 shows the weather resistance and the residual alkyl groups (relative to the final oxide) in the fired films of the glass substrates and other glass substrates produced in the above Examples and Comparative Examples.

第1表中の耐候性は耐候性試験後のガラス基板の表面
を走査型電子顕微鏡(SEM)ですべて検査し、評価した
ものであって、◎印は耐候性良好を示し順次◎>○>△
>×>××>××××と悪化を示し××××印は耐候性
劣悪を示す。
The weather resistance in Table 1 is that all the surfaces of the glass substrates after the weather resistance test were inspected and evaluated by a scanning electron microscope (SEM), and ⊚ indicates that the weather resistance is good. △
>×>××> ×××× indicates deterioration, and ×××× indicates poor weather resistance.

金属有機化合物を出発原料とするアルキル基残留焼成
膜つきガラス基板は、上記表より明らかなように金属有
機化合物を500℃以上の温度で焼成したガラス基板や、
膜体を有さないガラス基板にくらべて非常に耐候性の点
において優れている。
Alkyl group residual firing film-coated glass substrate using a metal organic compound as a starting material, a glass substrate obtained by firing the metal organic compound at a temperature of 500 ° C. or higher as is clear from the above table,
Compared to a glass substrate that does not have a film body, it is extremely excellent in weather resistance.

本発明の金属有機化合物の低温焼成によって得られる
膜体付ガラス基板は、光磁気ディスク用基板のみなら
ず、エレクトロルミネッセンス素子、エレクトロクロミ
ック素子、液晶素子等の表示素子や薄膜トランジスター
等の電子部品を形成するガラス基板としても適用するこ
とができる。また、光学部品などに本膜体を形成して、
その耐環境性を向上させることができる。
The glass substrate with a film obtained by low-temperature firing of the metal organic compound of the present invention is not only a substrate for a magneto-optical disk, but also an electroluminescent element, an electrochromic element, a display element such as a liquid crystal element, and an electronic component such as a thin film transistor. It can also be applied as a glass substrate to be formed. Also, by forming this film body on optical parts,
The environment resistance can be improved.

〔発明の効果〕〔The invention's effect〕

本発明のガラス基板は、実施例、比較例からも明らか
なとうり、従来法によって作製したガラス基板に比べ耐
候性において非常に優れている。そのため従来法のガラ
ス基板よりも、信頼性の高い基板として使用することが
できる。
As is clear from Examples and Comparative Examples, the glass substrate of the present invention is very excellent in weather resistance as compared with the glass substrate manufactured by the conventional method. Therefore, it can be used as a substrate having higher reliability than the conventional glass substrate.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例−1で作製した光磁気ディスク基板の概
略を示す断面図、第2図は比較例−1で作製した光磁気
ディスク基板の概略を示す断面図および第3図は比較例
−1で作製した光磁気ディスク基板の耐候性試験後の概
略を示す断面図である。また第4図は比較例−2で作製
した光磁気ディスク基板の概略を示す断面図、および第
5図は比較例−2で作製した光磁気ディスク基板の耐候
性試験後の概略を示す断面図である。
FIG. 1 is a sectional view showing the outline of the magneto-optical disk substrate manufactured in Example-1, FIG. 2 is a sectional view showing the outline of the magneto-optical disk substrate manufactured in Comparative Example-1, and FIG. 3 is a comparative example. FIG. 3 is a cross-sectional view showing an outline of the magneto-optical disk substrate manufactured in -1 after a weather resistance test. FIG. 4 is a sectional view showing the outline of the magneto-optical disk substrate manufactured in Comparative Example-2, and FIG. 5 is a sectional view showing the outline of the magneto-optical disk substrate manufactured in Comparative Example-2 after the weather resistance test. Is.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルキル基含有金属有機化合物が焼成され
たSiO2−TiO2系酸化物焼成膜が表面に被覆されたガラス
基板において、該焼成膜に該アルキル基を該酸化物に対
して0.5〜5wt%残留させたことを特徴とするガラス基
板。
1. A glass substrate having a surface coated with a SiO 2 —TiO 2 -based oxide calcined film obtained by calcining an alkyl group-containing metal organic compound, wherein the alkyl group in the calcined film is 0.5 A glass substrate characterized in that it remains up to 5 wt%.
【請求項2】該焼成膜が90〜400℃の温度の焼成膜であ
る請求項1記載のガラス基板。
2. The glass substrate according to claim 1, wherein the fired film is a fired film at a temperature of 90 to 400 ° C.
【請求項3】該焼成膜が表面に凹凸を有する膜体である
請求項1又は2記載のガラス基板。
3. The glass substrate according to claim 1, wherein the fired film is a film having unevenness on the surface.
JP9753888A 1988-01-21 1988-04-20 Glass substrate Expired - Fee Related JP2509291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9753888A JP2509291B2 (en) 1988-01-21 1988-04-20 Glass substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-11238 1988-01-21
JP1123888 1988-01-21
JP9753888A JP2509291B2 (en) 1988-01-21 1988-04-20 Glass substrate

Publications (2)

Publication Number Publication Date
JPH01308847A JPH01308847A (en) 1989-12-13
JP2509291B2 true JP2509291B2 (en) 1996-06-19

Family

ID=26346652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9753888A Expired - Fee Related JP2509291B2 (en) 1988-01-21 1988-04-20 Glass substrate

Country Status (1)

Country Link
JP (1) JP2509291B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558011B2 (en) * 1990-01-31 1996-11-27 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Magneto-optical storage medium
JP4520418B2 (en) 2005-02-18 2010-08-04 キヤノン株式会社 Optical transparent member and optical system using the same
US8501270B2 (en) 2005-02-18 2013-08-06 Canon Kabushiki Kaisha Optical transparent member and optical system using the same

Also Published As

Publication number Publication date
JPH01308847A (en) 1989-12-13

Similar Documents

Publication Publication Date Title
US6387517B1 (en) Inorganic polymer material with tantalic acid anhydride base, in particular with high refractive index, mechanically abrasionproof, method of manufacture, optical materials comprising such material
JP4224646B2 (en) Method for producing multilayer optical material using cross-linking / densification by exposure to ultraviolet light and optical material produced by said method
US5413865A (en) Water-repellent metal oxide film and method of forming same on glass substrate
US6638630B2 (en) Composition and method for a coating providing anti-reflective and anti-static properties
US5182143A (en) Layered sol-gel coatings
JP3781888B2 (en) Hydrophilic substrate and method for producing the same
US4636440A (en) Novel process for coating substrates with glass-like films and coated substrates
US8603372B2 (en) Method of manufacturing optical element, and optical element
JPS6366904B2 (en)
JPH04338137A (en) Water-repellent glass and its production
JPH10338820A (en) Hydrophilic coating film and its production
CN1168980A (en) Non-fogging antireflection film and optical member, and prodn. process thereof
WO2005095102A1 (en) Article with silica coating formed and process for producing the same
US20190309421A1 (en) Self-curing mixed-metal oxides
JP2009015310A (en) Method of manufacturing optical element, and optical element
KR101078948B1 (en) Photocatalyst thin film, method for forming photocatalyst thin film, and photocatalyst thin film coated product
JP2509291B2 (en) Glass substrate
WO2002070413A1 (en) Method for fabricating optical element
EP0818561B1 (en) Protection coatings produced by sol-gel on silver reflectors
JP3649585B2 (en) Water repellent coating solution
JPH0260397B2 (en)
JPS6153365A (en) Composition for forming thin film of silicon oxide
JP2901833B2 (en) Sol-gel film and method for forming the same
JP4175880B2 (en) Sol-gel film having a convex, concave or concave surface shape, coating liquid and production method
JP2001089141A (en) Coating agent for forming inorganic film, method of producing the same and method of forming the same inorganic film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees